Finite Equational Bases in Process Algebra: Results and Open Questions
DOI:
https://doi.org/10.7146/brics.v12i19.21885Resumé
Van Glabbeek (1990) presented the linear time-branching time spectrum of behavioral equivalences for finitely branching, concrete, sequential processes. He studied these semantics in the setting of the basic process algebra BCCSP, and tried to give finite complete and omega-complete axiomatizations for them. (An axiomatization E is omega-complete when an equation can be derived from E if, and only if, all its closed instantiations can be derived from E.) Obtaining such axiomatizations in concurrency theory often turns out to be difficult, even in the setting of simple languages like BCCSP. This has raised a host of open questions that have been the subject of intensive research in recent years. Most of these questions have been settled over BCCSP, either positively by giving a finite complete or omega-complete axiomatization, or negatively by proving that such an axiomatization does not exist. Still some open questions remain. This paper reports on these results, and on the state-of-the-art on axiomatizations for richer process algebras, containing constructs like sequential and parallel composition.Downloads
Publiceret
2005-06-11
Citation/Eksport
Aceto, L., Fokkink, W. J., Ingólfsdóttir, A., & Luttik, B. (2005). Finite Equational Bases in Process Algebra: Results and Open Questions. BRICS Report Series, 12(19). https://doi.org/10.7146/brics.v12i19.21885
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).