Recent Advances in Σ-definability over Continuous Data Types
DOI:
https://doi.org/10.7146/brics.v10i23.21793Resumé
The purpose of this paper is to survey our recent research in computability and definability over continuous data types such as the real numbers, real-valued functions and functionals. We investigate the expressive power and algorithmic properties of the language of Sigma-formulas intended to represent computability over the real numbers. In order to adequately represent computability we extend the reals by the structure of hereditarily finite sets. In this setting it is crucial to consider the real numbers without equality since the equality test is undecidable over the reals. We prove Engeler's Lemma for Sigma-definability over the reals without the equality test which relates Sigma-definability with definability in the constructive infinitary language L_{omega_1 omega}. Thus, a relation over the real numbers is Sigma-definable if and only if it is definable by a disjunction of a recursively enumerable set of quantifier free formulas. This result reveals computational aspects of Sigma-definability and also gives topological characterisation of Sigma-definable relations over the reals without the equality test. We also illustrate how computability over the real numbers can be expressed in the language of Sigma-formulas.Downloads
Publiceret
2003-06-06
Citation/Eksport
Korovina, M. (2003). Recent Advances in Σ-definability over Continuous Data Types. BRICS Report Series, 10(23). https://doi.org/10.7146/brics.v10i23.21793
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).