Efficient Algorithms for gcd and Cubic Residuosity in the Ring of Eisenstein Integers
DOI:
https://doi.org/10.7146/brics.v10i8.21779Resumé
We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, Z[zeta] , i.e. the integers extended with zeta , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and derived Jacobi symbol algorithms. Our algorithms take time O(n^2) for n bit input. This is an improvement from the known results based on the Euclidian algorithm, and taking time O(n· M(n)), where M(n) denotes the complexity of multiplying n bit integers. The new algorithms have applications in practical primality tests and the implementation of cryptographic protocols. The technique underlying our algorithms can be used to obtain equally fast algorithms for gcd and quartic residuosity in the ring of Gaussian integers, Z[i].Downloads
Publiceret
2003-02-06
Citation/Eksport
Damgård, I. B., & Frandsen, G. S. (2003). Efficient Algorithms for gcd and Cubic Residuosity in the Ring of Eisenstein Integers. BRICS Report Series, 10(8). https://doi.org/10.7146/brics.v10i8.21779
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).