Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata
DOI:
https://doi.org/10.7146/brics.v8i53.21714Resumé
We define the degree of aperiodicity of finite automata and show that for every set M of positive integers, the class QA_M of finite automata whose degree of aperiodicity belongs to the division ideal generated by M is closed with respect to direct products, disjoint unions, subautomata, homomorphic images and renamings. These closure conditions define q-varieties of finite automata. We show that q-varieties are in a one-to-one correspondence with literal varieties of regular languages. We also characterize QA_M as the cascade product of a variety of counters with the variety of aperiodic (or counter-free) automata. We then use the notion of degree of aperiodicity to characterize the expressive power of first-order logic and temporal logic with cyclic counting with respect to any given set M of moduli. It follows that when M is finite, then it is decidable whether a regular language is definable in first-order or temporal logic with cyclic counting with respect to moduli in M.Downloads
Publiceret
2001-12-04
Citation/Eksport
Ésik, Z., & Ito, M. (2001). Temporal Logic with Cyclic Counting and the Degree of Aperiodicity of Finite Automata. BRICS Report Series, 8(53). https://doi.org/10.7146/brics.v8i53.21714
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).