Stable Bistructure Models of PCF
DOI:
https://doi.org/10.7146/brics.v1i13.21656Resumé
Stable bistructures are a generalisation of event structures to represent spaces of functions at higher types; the partial order of causal dependency is replaced by two orders, one associated with input and the other output in the behaviour of functions. They represent Berry's bidomains. The representation can proceed in two stages. Bistructures form a categorical model of Girard's linear logic consisting of a linear category together with a comonad. The comonad has a co-Kleisli category which is equivalent to a cartesian-closed full subcategory of Berry's bidomains. A main motivation for bidomains came from the full abstraction problem for Plotkin's functional language PCF. However, although the bidomain model incorporates both the Berry stable order and the Scott pointwise order, its PCF theory (those inequalities on terms which hold in the bidomain model) does not include that of the Scott model. With a simple modification we can obtain a new model of PCF, combining the Berry and Scott orders, which does not have this inadequacy.Downloads
Publiceret
1994-05-03
Citation/Eksport
Winskel, G. (1994). Stable Bistructure Models of PCF. BRICS Report Series, 1(13). https://doi.org/10.7146/brics.v1i13.21656
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).