LCF Examples in HOL
DOI:
https://doi.org/10.7146/brics.v1i18.21649Resumé
The LCF system provides a logic of fixed point theory and is useful to reason about non-termination, arbitrary recursive definitions and infinite types as lazy lists. It is unsuitable for reasoning about finite types and strict functions. The HOL system provides set theory and supports reasoning about finite types and total functions well. In this paper a number of examples are used to demonstrate that an extension of HOL with domain theory combines the benefits of both systems. The examples illustrate reasoning about infinite values and non-terminating functions and show how mixing domain and set theoretic reasoning eases reasoning about finite LCF types and strict functions. An example presents a proof of the correctness and termination of a recursive unification algorithm using well-founded induction.Downloads
Publiceret
1994-06-03
Citation/Eksport
Agerholm, S. (1994). LCF Examples in HOL. BRICS Report Series, 1(18). https://doi.org/10.7146/brics.v1i18.21649
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).