On provably disjoint NP-pairs
DOI:
https://doi.org/10.7146/brics.v1i36.21607Resumé
In this paper we study the pairs (U,V) of disjoint NP-sets representable in a theory T of Bounded Arithmetic in the sense that T proves U intersection V = \emptyset. For a large variety of theories T we exhibit a natural disjoint NP-pair which is complete for the class of disjoint NP-pairs representable in T. This allows us to clarify the approach to showing independence of central open questions in Boolean complexity from theories of Bounded Arithmetic initiated in [1]. Namely, in order to prove the independence result from a theory T, it is sufficient to separate the corresponding complete NP-pair by a (quasi)poly-time computable set. We remark that such a separation is obvious for the theory S(S_2) + S Sigma^b_2 - PIND considered in [1], and this gives an alternative proof of the main result from that paper.[1] A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of Bounded Arithmetic. To appear in Izvestiya of the RAN, 1994.
Downloads
Publiceret
1994-11-30
Citation/Eksport
Razborov, A. A. (1994). On provably disjoint NP-pairs. BRICS Report Series, 1(36). https://doi.org/10.7146/brics.v1i36.21607
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).