Higher Order Reverse Mathematics
DOI:
https://doi.org/10.7146/brics.v7i49.20216Resumé
In this paper we argue for an extension of the second order frame-work currently used in the program of reverse mathematics to finite types. In particular we propose a conservative finite type extension RCA^omega_0 of the second order base system RCA_0. By this conservation nothing is lost for second order statements if we reason in RCA^omega_0 in stead of RCA_0. However, the presence of finite types allows to treat various analytical notions in a rather direct way, compared to the encodings needed in RCA_0 which are not always provably faithful in RCA_0. Moreover, the language of finite types allows to treat many more principles and gives rise to interesting extensions of the existing scheme of reverse mathematics. We indicate this by showing that the class of principles equivalent (over RCA^omega_0 ) to Feferman's nonconstructive mu-operator forms a mathematically rich and very robust class. This is closely related to a phenomenon in higher type recursion theory known as Grilliot's trick.Downloads
Publiceret
2000-06-19
Citation/Eksport
Kohlenbach, U. (2000). Higher Order Reverse Mathematics. BRICS Report Series, 7(49). https://doi.org/10.7146/brics.v7i49.20216
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).