Derandomizing Arthur-Merlin Games using Hitting Sets
DOI:
https://doi.org/10.7146/brics.v6i47.20117Resumé
We prove that AM (and hence Graph Nonisomorphism) is in NPif for some epsilon > 0, some language in NE intersection coNE requires nondeterministic
circuits of size 2^(epsilon n). This improves recent results of Arvind
and K¨obler and of Klivans and Van Melkebeek who proved the same
conclusion, but under stronger hardness assumptions, namely, either
the existence of a language in NE intersection coNE which cannot be approximated
by nondeterministic circuits of size less than 2^(epsilon n) or the existence
of a language in NE intersection coNE which requires oracle circuits of size 2^(epsilon n)
with oracle gates for SAT (satisfiability).
The previous results on derandomizing AM were based on pseudorandom
generators. In contrast, our approach is based on a strengthening
of Andreev, Clementi and Rolim's hitting set approach to derandomization.
As a spin-off, we show that this approach is strong enough
to give an easy (if the existence of explicit dispersers can be assumed
known) proof of the following implication: For some epsilon > 0, if there is
a language in E which requires nondeterministic circuits of size 2^(epsilon n),
then P=BPP. This differs from Impagliazzo and Wigderson's theorem
"only" by replacing deterministic circuits with nondeterministic
ones.
Downloads
Publiceret
1999-12-17
Citation/Eksport
Miltersen, P. B., & Variyam, V. N. (1999). Derandomizing Arthur-Merlin Games using Hitting Sets. BRICS Report Series, 6(47). https://doi.org/10.7146/brics.v6i47.20117
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).