On the Uniform Weak König’s Lemma
DOI:
https://doi.org/10.7146/brics.v6i11.20068Resumé
The so-called weak K¨onig's lemma WKL asserts the existence of an infinitepath b in any infinite binary tree (given by a representing function f). Based on
this principle one can formulate subsystems of higher-order arithmetic which
allow to carry out very substantial parts of classical mathematics but are PI^0_2-conservative
over primitive recursive arithmetic PRA (and even weaker fragments of arithmetic). In [10] we established such conservation results relative to finite type extensions PRA^omega of PRA (together with a quantifier-free axiom of choice schema). In this setting one can consider also a uniform version UWKL of WKL which asserts the existence of a functional Phi which selects uniformly in a given infinite binary tree f an infinite path Phi f of that tree.
This uniform version of WKL is of interest in the context of explicit mathematics as developed by S. Feferman. The elimination process in [10] actually can be used to eliminate even this uniform weak K¨onig's lemma provided that PRA^omega only has a quantifier-free rule of extensionality QF-ER instead of the full axioms (E) of extensionality for all finite types. In this paper we show that in the presence of (E), UWKL is much stronger than WKL: whereas WKL remains to be Pi^0_2 -conservative over PRA, PRA^omega +(E)+UWKL contains (and is conservative over) full Peano arithmetic PA.
Downloads
Publiceret
1999-01-11
Citation/Eksport
Kohlenbach, U. (1999). On the Uniform Weak König’s Lemma. BRICS Report Series, 6(11). https://doi.org/10.7146/brics.v6i11.20068
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).