Statistical Secrecy and Multi-Bit Commitments
DOI:
https://doi.org/10.7146/brics.v3i45.20047Resumé
We present and compare definitions of the notion of "statistically
hiding" protocols, and we propose a novel statistically hiding commitment
scheme. Informally, a protocol statistically hides a secret if a
computationally unlimited adversary who conducts the protocol with
the owner of the secret learns almost nothing about it. One definition
is based on the L1-norm distance between probability distributions,
the other on information theory. We prove that the two definitions are
essentially equivalent. For completeness, we also show that statistical
counterparts of definitions of computational secrecy are essentially
equivalent to our main definitions. Commitment schemes are an important
cryptologic primitive. Their purpose is to commit one party to a certain value,
while hiding this value from the other party until some later time.
We present a statistically
hiding commitment scheme allowing commitment to many
bits. The commitment and reveal protocols of this scheme are constant
round, and the size of a commitment is independent of the number of
bits committed to. This also holds for the total communication complexity,
except of course for the bits needed to send the secret when it
is revealed. The proof of the hiding property exploits the equivalence
of the two definitions.
Index terms -- Cryptology, Shannon theory, unconditional security,
statistically hiding, multi-bit commitment, similarity of ensembles
of distributions, zero-knowledge, protocols.
Downloads
Publiceret
Citation/Eksport
Nummer
Sektion
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).