On the Finitary Bisimulation
DOI:
https://doi.org/10.7146/brics.v2i59.19960Resumé
The finitely observable, or finitary, part of bisimulation is a key tool in establishing full abstraction results for denotational semantics for process algebras with respect to bisimulation-based preorders. A bisimulation-like characterization of this relation for arbitrary transition systems is given, relying on Abramsky's characterization in terms of the finitary domain logic. More informative behavioural, observation-independent characterizations of the finitary bisimulation are also offered for several interesting classes of transition systems. These include transition systems with countable action sets, those that have bounded convergent sort and the sort-finite ones. The result for sort-finite transition systems sharpens a previous behavioural characterization of the finitary bisimulation for this class of structures given by Abramsky.
AMS Subject Classification (1991): 68Q10 (Modes of computation), 68Q55
(Semantics), 03B70 (Logic of Programming), 68Q90 (Transition nets).
Keywords and Phrases: Concurrency, labelled transition systems with divergence,
bisimulation preorder, finitary relations, domain logic for transition systems.
Downloads
Publiceret
Citation/Eksport
Nummer
Sektion
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).