Experiments with ZF Set Theory in HOL and Isabelle
DOI:
https://doi.org/10.7146/brics.v2i37.19940Resumé
Most general purpose proof assistants support versions oftyped higher order logic. Experience has shown that these logics are capable
of representing most of the mathematical models needed in Computer
Science. However, perhaps there exist applications where ZF-style
set theory is more natural, or even necessary. Examples may include
Scott's classical inverse-limit construction of a model of the untyped lambda-calculus
(D_inf) and the semantics of parts of the Z specification notation.
This paper compares the representation and use of ZF set theory within
both HOL and Isabelle. The main case study is the construction of D_inf.
The advantages and disadvantages of higher-order set theory versus first-order
set theory are explored experimentally. This study also provides a
comparison of the proof infrastructure of HOL and Isabelle.
Downloads
Publiceret
1995-06-07
Citation/Eksport
Agerholm, S., & Gordon, M. (1995). Experiments with ZF Set Theory in HOL and Isabelle. BRICS Report Series, 2(37). https://doi.org/10.7146/brics.v2i37.19940
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).