The Complexity of Identifying Large Equivalence Classes
DOI:
https://doi.org/10.7146/brics.v5i34.19440Resumé
We prove that at least (3k−4) / k(2k−3) n(n-1)/2 − O(k) equivalence tests and no
more than 2/k n(n-1)/2 + O(n)
equivalence tests are needed in the worst case to identify the equivalence classes with at least k members in set of n elements. The upper bound is an improvement by a factor 2 compared to known results. For k = 3 we give tighter bounds. Finally, for k > n/2 we prove that it is necessary and it suffices to make 2n − k − 1 equivalence tests which generalizes a known result for k = [(n+1)/2] .
Downloads
Publiceret
1998-06-04
Citation/Eksport
Binderup, P. G., Frandsen, G. S., Miltersen, P. B., & Skyum, S. (1998). The Complexity of Identifying Large Equivalence Classes. BRICS Report Series, 5(34). https://doi.org/10.7146/brics.v5i34.19440
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).