On the No-Counterexample Interpretation
DOI:
https://doi.org/10.7146/brics.v4i42.18968Resumé
In [15],[16] Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peanoarithmetic. In particular he proved, using a complicated epsilon-substitution method (due to
W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic (PA) one can find ordinal recursive functionals Phi_A of order type < epsilon_0 which realize the
Herbrand normal form A^H of A.
Subsequently more perspicuous proofs of this fact via functional interpretation (combined
with normalization) and cut-elimination were found. These proofs however do not carry out the n.c.i. as a local proof interpretation and don't respect the modus
ponens on the level of the n.c.i. of formulas A and A -> B. Closely related to this phenomenon is the fact that both proofs do not establish the condition (delta) and - at
least not constructively - (gamma) which are part of the definition of an `interpretation of a
formal system' as formulated in [15].
In this paper we determine the complexity of the n.c.i. of the modus ponens rule for
(i) PA-provable sentences,
(ii) for arbitrary sentences A;B in L(PA) uniformly in functionals satisfying the n.c.i. of (prenex normal forms of) A and A -> B; and
(iii) for arbitrary A;B in L(PA) pointwise in given alpha(< epsilon_0)-recursive functionals satisfying the n.c.i. of A and A -> B.
This yields in particular perspicuous proofs of new uniform versions of the conditions ( gamma), (delta).
Finally we discuss a variant of the concept of an interpretation presented in [17] and
show that it is incomparable with the concept studied in [15],[16]. In particular we show
that the n.c.i. of PA_n by alpha(= 1) is an interpretation in the sense of [17] but not in the sense of [15] since it violates the condition (delta).
Downloads
Publiceret
1997-06-12
Citation/Eksport
Kohlenbach, U. (1997). On the No-Counterexample Interpretation. BRICS Report Series, 4(42). https://doi.org/10.7146/brics.v4i42.18968
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).