Topological Completeness for Higher-Order Logic
DOI:
https://doi.org/10.7146/brics.v4i21.18947Resumé
Using recent results in topos theory, two systems of higher-order logic are shown to be complete with respect to sheaf models over topological spaces - so-called "topological semantics". The first is classical higher order logic, with relational quantification of finitely high type; the second system is a predicative fragment thereof with quantification over functions between types, but not over arbitrary relations. The second theorem applies to intuitionistic as well as classical logic.Downloads
Publiceret
1997-01-21
Citation/Eksport
Awodey, S., & Butz, C. (1997). Topological Completeness for Higher-Order Logic. BRICS Report Series, 4(21). https://doi.org/10.7146/brics.v4i21.18947
Nummer
Sektion
Artikler
Licens
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).