A Model of Intuitionistic Affine Logic from Stable Domain Theory (Revised and Expanded Version)
DOI:
https://doi.org/10.7146/brics.v1i27.21639Abstract
Girard worked with the category of coherence spaces and continuous stable maps and observed that the functor that forgets the linearity of linear stable maps has a left adjoint. This fundamental observation gave rise to the discovery of Linear Logic. Since then, the category of coherence spaces and linear stable maps, with the comonad induced by the adjunction, has been considered a canonical model of Linear Logic. Now, the same phenomenon is present if we consider the category of pre dI domains and continuous stable maps, and the category of dI domains and linear stable maps; the functor that forgets the linearity has a left adjoint. This gives an alternative model of Intuitionistic Linear Logic. It turns out that this adjunction can be factored in two adjunctions yielding a model of Intuitionistic Affine Logic; the category of pre dI domains and affine stable functions. It is the goal of this paper to show that this category is actually a model of Intuitionistic Affine Logic, and to show that this category moreover has properties which make it possible to use it to model convergence/divergence behaviour and recursion.Downloads
Published
1994-09-03
How to Cite
Braüner, T. (1994). A Model of Intuitionistic Affine Logic from Stable Domain Theory (Revised and Expanded Version). BRICS Report Series, 1(27). https://doi.org/10.7146/brics.v1i27.21639
Issue
Section
Articles
License
Articles published in DAIMI PB are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.