Optimal Time-Space Trade-Offs for Non-Comparison-Based Sorting
DOI:
https://doi.org/10.7146/brics.v8i2.20456Abstract
We study the fundamental problem of sorting n integers of w bits on a unit-cost RAM with word size w, and in particular consider the time-space trade-off (product of time and space in bits) for this problem. For comparison-based algorithms, the time-space complexity is known to be Theta(n^2). A result of Beame shows that the lower bound also holds for non-comparison-based algorithms, but no algorithm has met this for time below the comparison-based
Omega(n lg n) lower bound.
We show that if sorting within some time bound T~ is possible, then time T = O(T~ + n lg* n) can be achieved with high probability using space S = O(n^2/T + w), which is optimal. Given a deterministic priority queue using amortized
time t(n) per operation and space n^O(1), we provide a deterministic
algorithm sorting in time T = O(n (t(n) + lg* n)) with S = O(n^2/T+w). Both results require that w <= n^(1-Omega(1)).
Using existing priority queues and sorting algorithms, this implies
that we can deterministically sort time-space optimally in time Theta(T) for T >= n(lg lg n)^2, and with high probability for T >= n lg lg n.
Our results imply that recent lower bounds for deciding element distinctness in o(n lg n) time are nearly tight.
Downloads
Published
How to Cite
Issue
Section
License
Articles published in DAIMI PB are licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.