An Expressively Complete Linear Time Temporal Logic for Mazurkiewicz Traces

  • P. S. Thiagarajan
  • Igor Walukiewicz

Abstract

A basic result concerning LTL, the propositional temporal logic of linear time, is that it is expressively complete; it is equal in expressive power to the first order theory of sequences. We present here a smooth extension of this result to the class of partial orders known as Mazurkiewicz traces. These partial orders arise in a variety of contexts in concurrency theory and they provide the conceptual basis for many of the partial order reduction methods that have been developed in connection with LTL-specifications.

We show that LTrL, our linear time temporal logic, is equal in expressive power to the first order theory of traces when interpreted over (finite and) infinite traces. This result fills a prominent gap in the existing logical theory of infinite traces. LTrL also provides a syntactic characterisation of the so-called trace consistent (robust) LTL-specifications. These are specifications expressed as LTL formulas that do not distinguish between different linearisations of the same trace and hence are amenable to partial order reduction methods.

Published
1996-12-02
How to Cite
Thiagarajan, P., & Walukiewicz, I. (1996). An Expressively Complete Linear Time Temporal Logic for Mazurkiewicz Traces. BRICS Report Series, 3(62). https://doi.org/10.7146/brics.v3i62.18563