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EXPERT SYSTEMS! 
WHO KNOWS? 

Flemming Vestergaard 

It is the purpose of this article to discuss in very simple, perhaps even simpli­
stic, terms some issues related to the representation of knowledge in so 
called expert systems. As is well known the AI (Artificial Intelligence) busi­
ness is haunted by often quite unrealistic claims and visions of possible ap­
plications; practitioners as well as non-practitioners contribute to this. This 
is one good reason to stick to simple terms and questions when discussing a 
subject as »knowledge representation in expert systems«. Therefore, I will 
not discuss, say, theoretical issues in frame-like representations, neither will 
I discuss whether it is inferencing techniques or knowledge representation 
techniques that may eventually fulfil some of AI's promises (cf. Lenat & 
Feigenbaum, 1987). 

The subjects here are the embodiment of knowledge in expert systems, 
with a main focus on the »explicitness« of this embodiment and on the arti­
culation ofthe knowledge in expert systems. Both issues are illustrated with 
simple examples. Instead of discussing subtleties, I will aim at illustrating 
what expert systems are all about in a somewhat more practical context. 
There will be a claim, however, that expert systems may indeed embody 
knowledge in ways markedly different from those of conventional systems 
(taken to be anything but AI systems) and that these ways of embodying 
knowledge may share important characteristics with the ways knowledge is 
represented in the human cognitive system. But note that there is nothing 
dramatic in this statement, it implies neither that machines may be like 
humans nor that humans may be machines ( and by the way, I will not discuss 
topics in that vein). 

There are six sections. As an introduction there is a brief discussion of 
what is understood by »expert system« in the present context, and rule based 
systems are illustrated with a detailed example of an extremely simple sy­
stem. Next, I take a look at a few problems in more complex systems where 
rule based representations do not suffice. Then some concepts (an excerpt 
from a larger set) useful when describing knowledge are introduced, and the 
concept of domains of knowledge is discussed in terms of the psychology of 
memory. Finally, some concluding remarks. 
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1. Expert Systems 

There are two main approaches to the definition of expert systems (here­
after ES). One identifies, essentially, ESs by the tasks they perform: ESs are 
systems performing tasks requiring, in pre-system time, a human expert or 
expert advising. It is an obvious shortcoming of this approach that a com­
puter guide to an amateur astronomer's Schmidt-Cassegrain telescope could 
reasonably be considered an ES, as could desktop publishing systems, et 
cetera. I will stick to the other main approach which is more concerned with 
how the system works. Generally, an ES has a knowledge base consisting of 
rules and facts and an inference engine which matches rules against facts 
and, when matches are found, fires the rules, i.e., performs the actions sti­
pulated in the rules, such as asserting new facts that may make other rules 
match the updated faet base. Rules have the form »IF <something> THEN 
<something>«, and a rule whose IF- or condition-part matches the faet 
base is said to be applicable. At any time a number of rutes may be applic­
able, this set of applicable rules is often called the conflict set, and the infe­
rence engine must select one to be applied (fired) fromthisset (according to 
a so-called conflict resolution strategy which may be hardwired or program­
mable or even rute based). In this view an ES is characterized by the way it 
performs certain tasks - not by the nature of these tasks - and by the way 
knowledge is represented.1 

Consider the foliowing fragment of a potentially useful system: 
Rule-836 

IF there is no coffee 
and someone wants coffee 

THEN get some coffee 

This depicts the general form of a rute: It has an if- or conditions-part and a 
then- or action-part; these will in what follows be called the left-hand-side 
(LHS) and right-hand-side (RHS) respectively. 

Say, that the current state of the system containing rule-836 is such that the 
foliowing facts are given (possibly among a number of other facts): 

there is no coffee 

kurt wants some coffee 



400 Flemming Vestergaard 

In this case rule-836 is applicable, and if applied (fired) it asserts the new faet 

get some coffee 

which in turn may make one or more other rules applicable. Residing in a ro­
bot this intelligent system would, supposedly, trigger a coffee making beha­
vior, perhaps implemented by means of aset of rules. Depending on the rule 
set and the current situation (i.e., the current contents of the faet base) this 
behavior may involve calling the plumber to have water installed, to buy 
some coffee, or simply to fetch the coffee pot in the kitchen. Or, the coffee­
making behavior may not be triggered at all if, for instance, some other be­
havior is also called for and it has, say, a higher priority than coffee making. 

Consider now a typical example of a LISP function definition: 

(defun recursivejactorial (n) 
(if 

(=n 0) 
I 
(* n (recursive-factorial (]- n))))) 

LISP novices are generally assumed to define this function which quite ele­
gantly implements the common definition of n ! . (Non-integer and negative 
arguments are not handled properly, however). Providing large arguments 
to the above function may cause problems due to stack overflow, and one 
may be tempted to define the function differently, for example as follows: 

(defun iterative-factorial (n) 
(do 

((x I (]+ x)) 
(f 1 (* fx))) 

( (> x n) f))) ; fis returned 

Ina sense the two definitions do the same job. It could also be argued, and 
reasonably so, that the latter definition is somewhat more obscure than the 
former one, or otherwise stated that the former definition is the more expli­
cit one, as compared to the text book definition of n!. This touches upon one 
of the main virtues often stressed with respect to ESs, namely that they re­
present or embody knowledge in a more explicit way than do conventional 
systems. An example would be the above rule-836 which can be considered 
a fair ly straightforward and quite explicit representation of a piece of useful 
knowledge. 

In the following section rule based systems are illustrated with a smal! ES 
where all relevant knowledge in the system is represented quite explicitly in 
reasonably modular chunks. 
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2. A Simple Rule Based System 

Below rule based systems are illustrated with a small, but rather elegant ES. 
The system is a simple forward chaining system (i.e., a system that derives 
new facts on the basis of known facts); the initial facts known to the system 
are simple facts like »sigmund is father to anna« and the rules can all be con­
sidered straightforward definitions of kinship terms. 

An example of a rule: 

Grand-parent rule 

IF ?parent is parent to ?child 
and ?grand-parent is parent to ?parent 

TREN ?grand-parent is grand-parent to ?child 

Words with a leading ? are variables here. ?child and ?parent, for instance, 
will be matched against facts known to the system, and if the faet base con­
tains, say 

ed is parent to alan 

?parent will be bound to »ed« and ?child to »alan«, and the first part of the 
condition of the rule is satisfied. Note that the second part of the LHS also 
matches the faet, but that the LHS as a whole is not satisfied. If the faet base 
also contains 

douglas is parent to ed 

the LHS as a whole is satisfied, and the rule asserts 

douglas is grand-parent to alan 

Simple expert system shells exist that do not allow variable in rules in this 
sense. Such systems should not be considered in the context of serious ap­
plictions; perhaps they should not even be considered for simple or toy ESs, 
the foliowing example (which is extremely simple) would be awkward to 
implement in such a shell. The system expands on the above rule. 2 

The definition of the ES itself: 

( defes kinship) 

The initial facts have the form (father karl jenny), an arbitrary choice: 
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( deffacts kinship) 
(mother tytte claus) 
(mother tytte morten) 
(father jl.emming claus) 
(father flemming morten) 

(father tage flemming) 
(mother carla flemming) 
(father tage Lisbeth) 
(mother carla Lisbeth) 

(father jørgen tytte) 
(mother inger tytte) 
(father jørgen bitte) 
(mother inger bitte) 
(father jørgen gorm) 
(mother jørgen gorm) 

(mother bitte susanne) 
(father peter susanne)) 

Two rules that assert facts about the sex of parents: 

(defrule 
fathers-are-male 
(father ?f ??) 
(male ?f) 
:in kinship) 

(defrule 
mothers-are-female 
(mother ?m ??) 
(female ?m) 
:in kinship) 

A rule which may be seen as implementing the concept of parents as a gene­
ralization of father and mother: 

(defrule 
parent 
(or* 

(mother ?p ?c) 
(father ?p ?c)) 

(parent ?p ?c) 
:in kinship) 
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A (full) sister is (a) female, (b) has a father, (c) has a mother, (d) her father 
is father to someone else, and (e) her mother is mother to this same some­
one. Likewise for brothers. 

(deftule 
sister 
(and* 

(female ?s) 
(father ?f ?s) 
(mother ?m ?s) 
(father ?f ?x ~ ?s) 
(mother ?m ?x)) 

(sister ?s ?x) 
:in kinship) 

(deftule 
brother 
(and* 

(male ?b) 
(father ?f ?b) 
(mother ?m ?b) 
(mother ?m ?x ~ ?b) 
(father ?f ?x)) 

(brother ?b ?x) 
:in kinship) 

A grand-parent is a parent to a parent of a child. Note that it is useful to have 
the parent rule defined above. A grand-parent's sex is also of importance: 

(defrule 
grand-parent 
(and* 

(parent ?p ?c) 
(parent ?gp ?p)) 

(grand-parent ?gp ?c) 
:in kinship) 

(defrule 
grand-mother 
(and* 

(grand-parent ?g ?c) 
(female ?gp)) 

grand-mother ?gp ?c) 
:in kinship) 
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(defrule) 
grand-father 
(and* 
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(grand-parent ?gp ?c) 
(male ?gp)) 

(grand-father ?gp ?c) 
:in kinship) 

Obviously this small system could be easily enhanced to handle a number of 
generations, to ask for the sex of those for whom it cannot be inferred, et 
cetera. 

When this system - which is certainly a rule based system and which may 
be considered an expert system - is run it generates new facts on basis of the 
initial facts. For instance, it will be known that 

(sister bitte tytte) 
(grand-father tage claus) 

(grand-father jørgen claus) 

It will not be known that 

(sister lisbeth flemming) 

because there is no rule to in fer the sex of childless persons and the sister rule 
relies on sex. 

As defined here the rules of the kinship ES fires pell-mell, at random in 
the sense that no specific sequence is defined; all rules that can fire does so, 
i.e., the system runs exhaustively. Rule firings can be controlled, and a speci­
fic goal could beset for the ES, but it would only dutter things in the present 
context. The faet that this system works properly without any specific con­
trol was the motivation for calling it »elegant« above. The same rules could 
be used in a backward chaining system with a goal such as (brother claus 
?m). 

In the next section somewhat more complex systems are addressed. Illu­
strations are, therefore, not as detailed as above, and the concern is more 
with how knowledge is embodied in the systems. 

3. Embodiment of Knowledge 

Above I have touched upon the notion of embodiment of knowledge. Ina 
rather straightforward sense knowledge is embodied in a host of man made 
objects. For instance, knowledge is embodied in complex mechanical de­
vices like diesel engines and gyroscopes, and knowledge is also embodied in 
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simple devices such as hammers and bottle openers. In a certain sense it is 
the embodied knowledge that essentially yields the usefulness of the de­
vices; oftenone can on the basis of a general understanding of the purpose 
of a device infer the purpose of specific details and in this sense gradually re­
veal the knowledge embodied (cf. Rubin, 1920). (This theme is heavily dis­
cussed in social phenomenology, and it is one aspect of this sens lourd (Mer­
leau-Ponty, 1959/61, cf. Schiitz, 1932, two recommendable books) or inert 
meaning pervading our world I am getting at with the notion of embodiment 
of knowledge, but it is out of the present scope to discuss how information 
and AI technology changes this important aspect of the social world. 

If a hammer embodies knowledge it is obviously the more so for practi­
cally any computerized system, being a function definition as above or a te­
lescope guide. Clearly, the knowledge embodied in a hammer does not pre­
serve much - if anything - of the characteristics of »hammering knowledge« 
as represented in the human cognitive system, but it could be reasonably 
argued that computer systems are potentially doser to this and, perhaps, 
that ESs may preserve some essential characteristics of human knowledge. 

Looking at the kinship ES described in the previous section, it has a 
feature making it markedly different from most programs: The knowledge 
embodied in it is quite explicitly represented; each rule is a definition of a 
kinship term - dependent on only a specific notation ( the rule language) and 
the choice of faet format - and »porting« the ES to other cultures would be 
a simple matter of revising definitions. In this system the rules are, further­
more, modular »chunks« of knowledge, an often acclaimed virtue of rule 
based systems. More often than not it is not that easy to build even small rule 
based systems, however; rules tend to interact or trail each other in ways 
much more intricate than in this example. 

Consider now some of what would be needed in order to enhance the 
knowledge base of a domestic robot able to make coffee properly. An ES at 
work here must have explicit knowledge about structure, for example: 

A coffee maker comprises of 

one heating element 
one water reservoir 
one water tube 
one coffee pot 
one heating plate 

etc. 

And the systemm would need rules such as 

Excess water rule 



406 Flemming Vestergaard 

IF water reservoir is not empty 
and coffee pot is full 
and flow in water tube > 0 

THEN water will flood the kitchen 

Additionally there would have to be some representation of the strategy to 
follow when making coffee. For instance, the robot should add coffee beans 
before turning on the machine, or when looking for faults it is appropriate 
to check the power supply before disassembling the machine. Concerning 
this latter aspect it is worth noting that ESs are potentially able to reason 
about their own knowledge: Due to the explicit representation of, e.g., rules 
a rule based system can reason about which rules to apply or not to apply in 
a given context (in principle, that is, some can, some cannot). 

One way to organize issues as the above is to distinguish between three 
layers of knowledge representation in ESs: 

MODEL LAYER: 
Knowledge about the object of reasoning. 
(For instance, the various partsofa coffee maker and their functional 
relations). 

OPERATOR LAYER: 
Knowledge about how to reason about the object, i.e., a represen­
tation of allowed or desired inferences with respect to the object. 
(Cf. the excess water rule above). 

STRATEGY LAYER: 
Knowledge about problem solving or reasoning strategy. 
(Generate and test one hypothesis at a time, or generate all hypo­
theses and select the n most promising, for example). 

Generally, a distinction like the above can be drawn with respect to any ES. 
But often there is no similar distinction to be found in the ES's represen­
tation of knowledge. A rule based system solving the problem of the farmer, 
the wolf, the goat, and the cabbage typically does not have any explicit re­
presentation of, among other things, the boat's capacity; this crucial piece of 
information is bidden, as it were, in the formulation of one or more rules 
(much as the meaning of n! is bidden in a function definition). Similarly, the 
kinship ES does not have any representaiton of the faet that there could be 
no more than one (biological) mother for any person; were the system rea­
soning about marriages some representation of »max number of wives« 
would obviously be needed. 

Fora number of reasons a common format for the three layers are not de-
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sirable in complex applications (in »classical« rule based systems only rule 
format is available, however). But the distinctions are not necessarily distinc­
tions of form. The three foliowing rule fragments illustrate this. 

Adder-definition rule (Model Layer) 

IF inputl = x 
and input2 = y 

THEN output = x + y 

Defective-adder rule (Operator Layer) 

IF inputl = x 
and input2 = y 
and output = x * y 

THEN adder defect 

Apply-proper-rule (Strategy Layer) 

IF known = inputl, input2, output 

THEN apply defective-adder 

The first rule defines a property of certain objects, called adders, the system 
is supposed to reason about; the second rule identifies one (weird) way such 
an object may be defect; and the third rule defines when to try a specific rule. 
(The meaning of a rule like the third one is to make sure that a rule such as 
defective-adder is only tried if there is sufficient information about an adder 
to actually test the LHS of the rule. Rul es like this can be used to con tro I rule 
firings, or for performance reasons). 

The operator and strategy layers are distinguished from each other be­
cause they refer to basically different kinds of knowledge. The operator 
layer embodies what I will call entity knowledge, i.e. knowledge about struc­
ture or behavior of entities in a domain. The defective-adder rule above 
states that an adder yielding the produet of its inputs is defect. Similarly the 
adder-definition rule is a piece of entity knowledge. The model layer em­
bodies knowledge about the object as something distinguished from and in­
dependent of the reasoning about the object, whereas the operator layer 
contains knowledge about how to reason (which inferences to make) with re­
spect to a specific (kind of) object. The apply-proper-rule rule, on the other 
band, embodies what will be called control knowledge. Control knowledge 
such as if an adder is to be tested, the first thing to check is if the input values 
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are known, and if this is the case they should then be fed to a comparison 
with the output value, otherwise same other action could be taken (such as 
asking for the values). (Cf. section 4 below). 

Especially as regards the model layer rute based representations are not 
particularly adequate; it is also clear that representations in the form af 
simple facts will not do the job (for practical reasons, not because of any defi­
ciency in princip le). A number of ES building tools/systems support object 
oriented representations called, among other things, frames, classes, con­
cepts and schemas (there are differences between these, but they will not 
matter here). These systems are frequently called hybrid systems because of 
the dual knowledge representation, rule based and object based. 

It is common to hybrid systems that they allow definition of, say, the con­
cept of a water reservoir for the coffee maker above. A water reservoir is de­
fined, then, as a concept with attributed such as 

maximum water level 
current water level 
temperature 

etc. 

Additionally it is possible to attach functionality to concepts by defining 
methods ( a method is kind of an analogue to a procedure in a conventional 
programming language). And the systems support, furthermore, inheri­
tance among concepts, i.e., the inheritance from superordinate concepts of 
attributes and methods; the inheritance supported may be single (linear) or 
multiple (non-linear). In this case the water reservoir might inherit from 
more general concepts - a concept of coffee maker parts, a general container 
concept, or something similar - and reservoirs for specific makes of coffee 
machines may inherit from the present concept. When an adequate set ofre­
lated concepts are defined models of specific objects can be built by creating 
instances of the concepts. 

It should be fairly obvious that ESs do aften embody knowledge in a way 
that differs in important respects from the ways knowledge are embodied in 
mechanical devices and conventional computer systems. First, the know­
ledge embodied is so in an explicit way markedly different from function de­
finitions and hammers. Second, this allows for explicit representations also 
of control knowledge, i.e., knowledge about other pieces of knowledge. 
And third, a distinction can be drawn in ESs between the stock of knowledge 
and the application of this knowledge to specific problems. This last distinc­
tion can also be drawn with respect to human problem salving. 

It is not a problem to describe those aspects of a coffee maker relevant to 
finding simple faults in the device by means of facts, for example. But con­
sidering more complex objects - power plants, geological structures, orga-
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nisms, et cetera - the model Iayer of ESs cannot be handled without more ad­
vanced means for representing structure etc. 

Object oriented systems sometimes claim that they allow a direct mapping 
from natura!, real-world concepts to classes/concepts. This is normally not 
the case ( and never the case with systems without multiple inheritance), but 
they do support such a mapping to an extent not found elsewhere ( or only 
in specialized applications), and it is clear that these forms of representation 
can allow for model layer knowledge representations that are as direct and 
explicit as are the rules of the kinship ES. Hybrid systems thus have a poten­
tial for representing and embodying knowledge in ways that are powerful as 
well as attractive when compared to human knowledge representation. The 
strategy layer is the most problematic one, since it is not at all clear whether 
or when rule based, object based (i.e., control models), or hybrid represen­
tations are most appropriate. 

Summing up, I will say that ESs that rely on knowledge representations as 
described till this point do in faet embody knowledge in ways that are not 
match ed by conventional systems ( and not by hammers etc.). They do so not 
only because rule and object based representations are both powerful, and 
not only because they can be mixed - each for adequate purposes - in hybrid 
systems, but also because an ES has a potential for reasoning about how it 
represents knowledge itself. In the next section some concepts about know­
ledge itself are introduced; they pertain to ES knowledge embodiment, but 
also to human knowledge representation. 

4. Some Distinctions Concerning Knowledge 

In this section a few concepts concerning knowledge are introduced in order 
to allow fora characterization of how ES knowledge embodiment may be in 
at least one important respect similar to human knowledge and different 
from the embodiment of knowledge in conventional systems. 

Knowledge can be seen as an ensemble of knowledge stock and know­
Iedge application. (Where I would say that problem solving is the applica­
tion of knowledge to specific problems). An example in order to clarify what 
is meant by this distinction: A person possesses a stock comprising of the 
multiplication table from 2 to 10, and when multiplying 47 and 69 he applies 
this stock. However, the stock does not constitute all of his multiplication 
knowledge; it is not part of the multiplication table from 2 to 10, that it can 
be applied to to the problem »47 * 69 = ?« or »78654 * 2/5 = ?«. 

The stock provides the context for interpretation of problems; this implies 
that problem solvers may interpret identical problems differently. This is 
quite obviously so in the context of human cognition, but it is also clear, from 
the simple illustrations given in previous sections, that ESs also may inter­
pret problems differently. The stock determines what the knowledge can be 
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about; it determines how the problem is actually interpreted: Having de­
fined the concept of a pump, pumps may be represented, and the definition 
of the concept, such as the attributed defined for pumps, determines how a 
specific pump can be interpreted, e.g. if the number of revolutions per mi­
nute can be known or not. The application of knowledge, on the other hand, 
determines what the knowledge can be used for: Quite simply, number ofre­
volutions per minute may be known for pumps, but if there is no rule refer­
ring to this feature, this part of the knowledge stock will not be applied to 
any problem solving. 

With respect to knowledge stock as well as application it is possible to di­
stinguish between object and form. The object of the stock, then, is seen as 
the ensemble of entities that can be represented in the stock of knowledge, 
and the object of the knowledge application is the problem as interpreted in 
the context of the knowledge stock. The form of the stock concerns the type 
of relations realized in the stock, and the form of the application of know­
ledge is the manner of applying the stock of knowledge to the problem. 

An example: I for my part has a stock of the alphabet in sequence, 

a, b, ... , y, z. 

In order toget the relative position of, say, »m« in this sequence I have to un­
ravel the subsequence »k, 1, m, ... «, while any librarian is able to access the 
relative position directly. That is, while the librarian and I may rightly be said 
to possess the same stock of knowledge concerning the alphabet, the form 
of the stock varies, causing considerable differences in problem solving be­
havior ( and, in this case, problem solving performance). The object of know­
ledge application is the problem as interpreted in the context of the know­
ledge stock. The object varies with the stock, then, and for instance the 
object of knowledge application is not the same for the librarian and I, even 
if the problem (like the present one) is easily identified out of context, as it 
were. Quite similarly the possibilities of accessing the information stored in 
the multiplication table influence application via the interpretation of the 
problem. 

The form of knowledge application is the manner of applying the stock to 
the problem. What is hinted at here can, again, be illustrated with the alpha­
bet problem. Faced with a number of subproblems such as finding the rela­
tive positions of »m«, »n« and »o«, I may apply my (somewhat deficient) 
stock of knowledge like this: 

»k, 1, M, ... « «k, l, m, N, ... « »k, 1, m, n, 0, ... « 

Or I may be as smart as to note that »m, n, o« is a subsequence of the alpha­
bet allowing fora more efficient solution to the problem. In contrast the li­
brarian may simply access the relative positions of each letter directly, per-
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haps without noting that they form a subsequence. In the context ofESs con­
cepts such as »reasoning mode« and »control of knowledge« aften refer to 
the form of knowledge application. 

In the previous sections I have talked about entity and control knowledge. 
By entity knowledge is simply meant knowledge whose object is the entities 
in a certain area. Whereas control knowledge (sometimes referred to as 
»meta-knowledge«) is knowledge whose object is the form of stock and ap­
plication within an area. Control knowledge is defined as knowledge about 
the form of knowledge, that is, control knowledge is knowledge about how 
entities are represented in the knowledge stock and/or about how the stock 
is applied to problems; note that control knowledge is not only knowledge 
about knowledge application but also knowledge about the stock (this is not 
commonplace, but it is naturally when the knowledge stock, as it is here, is 
seen as heavily influencing problem salving because the problem to which 
knowledge is applied is interpreted in the context ofthe stock). Note that we 
are talking about control knowledge, not about control reasoning; control 
knowledge, like any other knowledge, comprises of a stock as welll as know­
ledge application. Control knowledge is simply same other knowledge ap­
plicable to a given problem; it is not something very special. And note finally, 
that no hindrance is stipulated for having knowledge about knowledge about 
the form of some entity knowledge, i.e. control konwledge about control 
knowledge. 

5. Domains 

Often the set of problems to which an ES can be applied, i.e., the areas 
where it is knowledgeable or manifests expertise, is called a domain (and 
what has here been called entity knowledge is often called domain know­
ledge, then). Similarly, one can talk about domains of knowledge or exper­
tise with respect to human experts, and one often does. In this setting it is 
rather natural to investigate how human and machine domains may map into 
each other. This is not a simple thing, however, since one must both have a 
general concept of domains and an understanding of how they may be orga­
nized in machines as well as humans. Below a few issues relevant in this con­
text are discussed. First some observations about domains in general. 

Quite commonly a domain is characterized by its object, i.e., what the do­
main is about. This is probably adequate in many contexts; this or that ES or 
person knows a lot about gas fired boilers but only little or nothing about 
chess and vegetables. However, there is a pitfall here, since domains cannot 
possibly find their definition in sets of real world entities - and this is same­
times what is actually implied when a domain is characterized by what it is 
about. Domains of knowledge reside within the realm of cognition (human 
or machine) and the definition of what is a domain must also be in the scope 
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of cognition. Certainly, knowledge is knowledge about something, know­
Iedge has an object, but this does not imply that a domain of knowledge can 
be identified by pointing to the non-cognitive entities encompassed by the 
domain. The chef's expert knowledge cannot be defined by enumerating 
vegetables, fish, dishes, et cetera. Tomatoes are neither kinds nor pieces of 
knowledge. 

Take another look at this. Let D be a domain defined by a set of entities, 
Dl be Pl 's knowledge about D, and D2 P2's knowledge about D. We would 
say - were domains defined by non-cognitive entities - that Pl as well as P2 
has knowledge about D, provided that neither D 1 nor D2 is empty. This may 
indeed seem quite reasonable. But note that we would have to assume this 
quite irrespective of how Pl and P2 contualizes D. The consequence of this 
is rather absurd, for instance a botanist's and a chef's knowledge about 
vegetables would be made equivalent in quite a misleading way. 

Furthermore, domains are - as they can be interpreted in the context of 
human cognition - not static structures or organizations of knowledge. Orga­
nizations of knowledge are something realized in specific contexts, that is, 
domains should rather be understood as transient organizations of know­
ledge. One aspect ofthis is that knowledgecommon to several domains (i.e., 
subdomains), e.g., practically any person's knowledge about multiplication, 
should be seen as being part of a number of domains, and it is not naturally 
to conceive of this subdomain as being duplicated in a number of static struc­
tures. Rather, it is a domain which is sametimes realized as a subdomain of 
one or another domain, sametimes not. 

In human cognition domains can be identified in several ways, e.g., on the 
basis of conceptual structure. I shall take here a more basic or elementary 
approach and spend a few words on the definition of domains on the basis 
of the psychology of memory. 

It is natura), in my view, to think of domains of knowledge as sets of lang­
term memory (LTM) entries tending to be retrieved together. And the point, 
then, is to define what is meant by the phrase »tending to be retrieved to­
gether.«3 

Memory is partitioned into unitized items. An item is an »object« or 
»chunk« in memory which may be sampled during a memory search. Items 
are the elements of memory, but they are not elementary in the sense of 
being simple and uncomplicated; an item may be a complex information 
structure and items may overlap. Retrieval from LTM is cue dependent and 
probabilistic. The basis of retrieval is a probe cue ( or aset of cues) which de­
termines what may be retrieved. A given set of cues has some chance ofre­
trieving any item in LTM. Successive uses of the same probe may result in re­
trieval of different items. 

Retrieval is based on the strengths of associative relationships between 
probe cues and memory items. These strengths are described in a retrieval 
structure, which is a matrix of retrieval strengths of each cue to each item. 
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The retrieval structure is dependent on the cue set; the strength between any 
given cue, Ci, in a cue set and a specifik item, li, varies with the cue set. 
During a memory search individual strengths in the retrieval structure are 
combined into a single activation fora given item. The implication ofthis is 
that multiple cues allow focussing of the memory search. Note that this is an 
important way for items to tend to be retrieved together. 

There is a distinction between sampling of items and recovery of an item 
in memory retrieval. Sampling of an item means that it is activated above a 
specifik threshold; this activation is a condition for recovery, which means 
that the item is entered into short-term memory. Items may be sampled 
during a memory search, but only one of them recovered. There is a strong 
tendency that items are sampled from the most dense region of the intersec­
tion of the associative fields of separate cues. Or more simply stated, mul­
tiple cues increase sampling probability and may override a higher strength 
on one cue. Probability of recovery rises as cue-to-item strength rises. That 
is, the probability that an item which is sampled is also recovered increases 
if there is at least one very high strength (as compared with the other 
strengths in the matrix) relating a cue and the item in the retrieval structure. 
(These items are those that »come to mind« immediately, those that are »the 
first I think of when ... «). The stengths relating recently sampled items to 
cues tend to rise, that is, recent sampling will increase probability of sampl­
ing as well as probability of recovery for the item in question. One important 
consequence of this tendency is that items related to a given context, such as 
a specific task, are likely to be retrieved in successive memory searches. Con­
versely a context shift, as imposed by, e.g., an external interruption of a task, 
decreases the probability of sampling and recovering items belonging to the 
original context. 

A psychologically reasonable account of what it means to be »tending to 
be retrieved together«, on the basis of the above, used in a definition of a do­
main of knowledge results, then, in saying that a domain is a region of a re­
trieval structure dense with high strengths. 

This can be expanded a little by taking what may be called inter-cue and 
inter-item connections into account. The retrieval structure determines re­
lations between cues and items. An inter-item connection exists when one 
item has the ability to cue another item. lnter-cue connections are of a some­
what different nature. Cues are conneced when they are conditioned by ( or, 
belongs to) a recurring situation or context. From the cognitive point of view 
inter-cue connections provide a link to the situation in which retrieval takes 
place, such as a job environment, a user interface, or whatever. 

Given these concepts the core of a domain can be understood as a region, 
dense with high strengths, of an intersection between connected items and 
connected cues in a retrieval structure. (And what may be termed the fringe 
of a domain would be those parts of the domain that do not belong to the 
core). This definition of domains fits reasonably well with more common 
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sense understandings of a domain as a tightly knitted Jump of knowledge. 
(But note that commonsense would probably not see cues as co-determiners 
of the domain, and note that cues are only defined in the scope of retrieval, 
i.e., they are not something outside the realm of cognition). 

Some consequences of conceiving domains of knowledge as here should 
be pointed out. First, barders of domains - their demarcations from other 
domains - are fuzzy. The main reason for this is that strengths are relative and 
retrieval probabilistic. An alternative way of looking upon this is to think of 
domain membership as a matter of degree. Second, strengths, in the re­
trieval structure do not alone determine domain membership. A high 
strength relating a cue and an item may fall outside a domain when no inter­
item or inter-cue connections are present. (In both cases the item in question 
may be considered more loosely connected to the domain). And third, do­
mains may overlap: That is, an item may be part of more than one domain 
and subdomains may be part of more than one superordinate domain. When 
domains overlap they are related to each other or connected; not only do 
they share items and cues, they may also, and for this reason, cue each other 
in a certain sense, i.e., being in one domain can facilitate access to related 
domains. 

One main thing to observe is that the concept of a domain is somewhat 
undermined, as compared with the common understanding of domains in 
AI (cf. the beginning of this section). Even if domains are identified as here 
- as dense regions of retrieval structures - there is no real basis for identifi­
cation and investigation of a singular domain. The reason is simply that 
domains of knowledge overlap and that what may be seen as a domain in one 
context is a subdomain in another. That is, knowledge is certainly organized, 
and organized in areas or domains, but they may all rightly be considered 
subdomains, in the sense that they are all inclined to be part of each other. 
To put this another way: An expert's knowledge can hardly be identified as 
one singular domain of knowledge, it is rather a composition of a number of 
domains; this composition, as well as each component, is transiently orga­
nized. Obviously, this state of affairs make it hard to provide a reasonable 
mapping from human domains of knowledge to machine implemented do­
mains (as it is at issue in what is mostly called knowledge acquisition). An im­
portant aspect here is that the sharp distinction in any ES between what is 
known and what is not has no correspondence in human knowledge organi­
zation. 

I shall not go into detail with how machine domains, such as the domains 
where ESs are expected to show expertise, differ in organization from 
human domains of knowledge as depicted here. There is a number of ob­
vious differences. Perhaps the only obvious identity is that machine domains 
can also be conceived of as relying on cue dependent retrieval in most cases; 
in contrast retrieval is generally not probabilistic on machines, and probably 
no one would like it to be ( outside the scope of simulation of human cog-
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nition). (For another perspective, see Slatter, 1987). 

This issue is of practical importance in industrial ES building. Tue major 
building systems provide means for defining universes of discourse ( as they 
are often called) or domains. But no system allows an organization of do­
mains which allows - to take what I think is the most important point here -
creation of an organization reflecting the relations between sub- and super­
domains identified above. Aspects of interaction with ESs are frequently dis­
cussed in the context of AI, and often the problems identified as well as the 
claims are rather unrealistic as seen in the context given here; but problems 
related to what has been discussed in this section do make it far beyond pre­
sent day technology (at least in industrial settings) to consider ES-man inter­
action as something potentially similar to the interaction between an expert 
adviser and a client. 

6. Concluding Remarks 

ESs promise - it is often assumed - to accept simple and transparent decla­
rations of knowledge and do something reasonable with them. Generally 
they do not keep this promise. This should be clear from the above discus­
sions, even if they do not illustrate the problems in systems as complex as 
those to be considered in the context of serious applications. 

It is also clear, however, that expert systems may indeed embody know­
ledge in forms that are more similar to knowledge as represented in the 
human cognitive system. Not that there has been any conclusive evidence for 
this in the present short introduction. The claim rests mainly on the foliow­
ing observations related to the above discussion. 

Expert systems represent knowledge explicity. This form of represen­
tation is different from the way a desk top publishing system, for instance, 
represents or embodies its knowledge about publishing tasks. One conse­
quence of this explicit representation is that expert systems are potentially 
capable to reason about their own knowledge; most systems do not make use 
of this capability, but a number of them have the potential. This potential is 
not found in conventional systems, and it is a potential shared with human 
cognition. 

Another implication of the explicitness is that the so-called knowledge 
base of expert systems may be much more easily created and maintained 
than it is the case with conventional systems. One promise of expert systems 
is that those persons that actually possess the relevant knowledge enter the 
knowledge to the system themselves and in a form not too dissimilar to the 
form this knowledge has outside the expert system context - and even in a 
form more than remotely related to how the knowledge is represented in the 
human cognitive system. However, present day expert systems do not nor-
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mally keep this promise. Rule bases are notoriously difficult to keep con­
sistent and debug, for example, but in some respects there is some truth to 
the claim, especially in the context of object oriented representations as 
briefly described in section 3. 

In section 4 some concepts related to the description or categorization of 
knowledge were introduced. There was a distinction between knowledge 
stock and knowledge application, and there was a distinction between object 
and form with respect to both. These distinctions can also be identified when 
the concern is with expert system representations of knowledge. This is ba­
sically why that knowledge may resemble human knowledge in some re­
spects. 

Probably the mose decisive aspect making expert systems different from 
conventional systems is that it is possible to distinguish the knowledge em­
bodied in the system from the application of this knowledge to specific pro­
blems. In my view this mirrors an important aspect of human problem 
solving, and nothing similar is found in other systems. 

But note alsø that the issues discussed in section 5 point to problems in 
knowledge organization where no »solution« is near. It seems to me that 
there are features of human knowledge organization that are far from being 
mirrored in expert system knowledge representaiton, and these features 
seem to be important for manifesting expert behavior in the human sense. 

Finally, a few words of moderation. The preceding remarks should not be 
taken to mean that I share claims common in the AI business that ESs can 
be created by anyone knowledgeable in a domain, that they may outperform 
human experts in important aspects, and that they may solve problems 
hitherto intractable. I do not think that any of these claims are true. In par­
ticular, they are certainly not true when talking about present day industrial 
applications. I have pointed to some features of expert system that make 
them different from mechanical systems and conventional computer sy­
stems. But by and large it remains to be shown whether these differences 
make any important difference. 

NOTER 

1. There is no generally acccpted definition of ESs; and there is no generally accepted 
definition of Al. Many systems called expert systems do not contain rules at all; 
later I will also take a short look at represcntations that are not rules (rather amore 
complex kind of facts), but in the context of hybrid systems that also have a rule 
base. This should not be taken to imply that I find that rul es are in faet a decisive cha­
racteristic of systems that could be dubbed »expert«; but rules in some form are an 
important aspect of many (or evcn most) expert systems, and notably the »classics«. 
In this short introduction I consider only systems that are at least partly rule based, 
using the term »ES«. For instance, neural network systems may also rightly be con­
sidered expcrt systems, but they are beyond the scope. 
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2. In this example I will not use the arbitrary format for rules used hitherto. I will use 
the format of the ODIN/TOR system developed at Søren T. Lyngsø A/S, AI Divi­
sion. The use of this formats signals that the definitions given makeup an actually 
running system. Only the most basic part of the language is used, viz., »and*« mea­
ning »and«, »or*« meaning (inclusive) »or«, and »not*« meaning »not«. The syntax 
of the forms used in this article is as follows: 

( def es <name of es>) 

( deffacts <name of es> 
<list of facts>) 

Facts are lists, e.g., (this or that) or (this (or (that)) (may happen)). 

(defrule <name of rule> 
<LHS> 
<RHS> 
:in <name of es>) 

LHSs as well as RHSs are also lists, i.e., lists of patterns to match against the faet 
base. For example, 

(defrule 
ru/el 
(and* 

(or* 
(a b) 
(and* 

(c d) 
(there is no ?c))) 

(someone wants ?c)) 
(get some ?c) 
:in my-es) 

is a valid rule. 

Additionally »-« is used as a kind of negation: In a rule 

(<variable> - <variable or constant>) 

means that <variable> should not be bound to the value of <variable or constant>. 

ODIN/TOR (and other large shells or expert system building systems) provide 
languages much more powerful than what is depicted here, they allow for explicit 
con tro I of the reasoning proces, and, for instance, ODIN/TOR would also allow the 
example ES kinship to be a backward chaining system without redefinition of the 
rules. 

3. Here I will rely on the SAM/SAMS theory of memory retrieval ( Gillund & Shiffrin, 
1984; Raaijmakers & Shiffrin, 1981) for some points. This theory is fairly main­
stream, however. 
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