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PARALLEL DISTRIBUTEO PROCESSING1 

Kim Plunkett 

Whatis PDP? 

Parallel Oistributed Processing (POP) is a recent development in cognitive 
science modelling research that assumes that individual components of hu­
man information processing are highly interactive and that knowledge of 
events, concepts and language is represented diffusely in the cognitive sy­
stem. This distributed feature distinguishes POP from other »connectionist« 
models which make use of localist representations, e.g. a single node in a 
network standing for an entire concept. The POP approach developed out of 
the explicit concern of some cognitive scientists that cognitive models should 
not be restricted to describing aspects of human behaviour that are idealised 
abstractions of competence. Rather, a unified model of cognition, stradd­
ling the traditional competence/performance distinction, has emerged as a 
worthwhile and realistic research endeavour. Cognitive scientists, working 
from a POP perspective, have begun to construct models of human cognition 
that show promise that their ambitious goals might be achieved. To date, suc­
cesses range from simulations at the low end of cognition that model speech 
perception or interpret the different configurations of a necker cube to 
higher order cognitive skills like sentence processing or language learning. 
All these models emphasise the context sensitivity of cognitive processes 
and they all share the assumption that complex behaviours can emerge from 
the interaction of relatively simple constituents and their environment. 

The characteristics of these systems include; a tendency to account for the 
details of human behaviour within a single framework that does not require 
ad hoc assumptions to account for apparent exceptional behaviours; a ro­
bustness in performance to distortions in the input stimuli or knowledge 
base itself; a capacity to learn or organise representations of the environ­
ment to which they are exposed - prototypical representations emerge as a 
natura! outcome of the learning process; flexibility in responding in an ap­
propriate manner to situations never experienced before. All these charac­
teristics can be attributed to the parallel, distributed 11.rchitecture of the sy­
stems used to implement the models. Typically, POP models differ from tra­
ditional symbolic accounts of human behaviour in their rejection of the need 
for rule-based processes. Instead, POP models offer micro-structural ac­
counts. Rule-based accounts are considered by connectionists as convenient 
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approximations to a system that is considcrably more complex. For exam­
ple, it is argued that categorial rule-systems cannot capture the fine-grained 
structure of human behaviour in a natura! way. 

A POP system's potential for learning is rooted in its high sensitivity to va­
riations in patterns of stimulation and to the structure of the environment to 
which it is exposed. By manipulating the pattern of connections between its 
component parts, a network is able to exploit new patterns of stimulation 
from the cnvironment to create new input/output functions and hence de­
monstrate new behaviour. All this is achievcd with a minimum amount of 
pre-wiring, i.e. the network organises itself often constructing subtle inter­
nal representations of the environment that it is processing. For example, 
thc construction of prototypical representations of environments to which it 
has never been exposed is a powerful property of such a system. In contrast, 
many current cognitivist models of learning are highly nativist in their ap­
proach, typically relegating learning to the process of choosing between a 
pre-defined set of symbolic parameters that are innately given. 

Graceful degradation, i.e. robustness of behaviour in the face of inade­
quate stimulation or internal damage, is achieved as a result of the distri­
buted representation of knowledge. Many nodes in a network contribute to 
the representation of any given faet or proposition. One cannot point to the 
local representation of a concept as one can in a conventional semantic net­
work. The global distribution of activity in the network has to be considered 
when evaluating its knowledge state. POP networks are robust in that the 
overall pattern of activity in a network often remains stable in the face of per­
, tubation. Similarly, the propensity of POP networks to respond appropri­
ately to new environments reflects the conservative, assimilative nature of 
their global representations. New patterns of stimulation are judged against 
old experiences. Networks modify their behaviour by accommodating to the 
parallel influence of new sources of information that are simultaneously im­
pinging on the system. It is helpful to view a network as a multi-dimensional 
state space or energy landscape. The precise contours of the landscape vary 
with the environment in which the network finds itself. Adaptation in the 
network can be likened to the process of gradient descent. Final behaviour 
is determined by the parameters corresponding to the lowest level or valley 
in the energy landscape. Since the landscape varies from one environment 
to another, output behaviour will accommodate accordingly. 

Historical Roots 

POP models demonstrate many characteristics that are desirable in simula­
tions of human cognition. Though individual properties can be found in 
other approaches, it is rare to find a single system embracing so many impor­
tant features. Proponents of the POP approach regard the parsimony of 
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their models as heralding a new era in the study of cognition. However, Pa­
rallel Distributed Processing builds upon a long tradition of scientific end­
eavour which dates back at least as far as the British Empiricist David 
Hume. Many of the ideas embodied in the POP approach can be found in 
writings of William James. 

The amount of activity at any given point in the brain-cortex is the sum of the 
tendencies of all other points to discharge into it, such tendencies being propor­
tional (I) to the number of times the excitement of each other point may have 
accompanied that of the point in question; (2) to the intensity of such excite­
ments; and (3) to the absence of any rival point functionally disconnected with 
the first point, into which the discharges might be diverted. (James, 1892, 
p. 265). 

Theoretical developments that laid the foundations for many of today's mo­
dels were already underway in the forties and fifties (Hebb, 1949; McCulloch 
& Pitts, 1943; Rosenblatt, 1959). Yet POP has emerged as a new perspective 
only within the last six or seven years (Hinton & Anderson, 1981; Rumelhart 
& McClelland, 1986a). To understand the relationship between POP and 
earlier, related approaches, it is necessary to review some of the core con­
cepts of PD P. This brief review will also serve as an introduction to the more 
sophisticated simulations described below. 

The heart of a parallel distributed processing system is a neural network. 
A neural network consists of a collection of units connected to each other by 
a set of pathways. Figure one illustrates an example of a simple network de­
signed to solve the logical OR problem (see below). 

Toreshold = 1 

Figure One 

The circles represent the units or constitutive nodes of the network and the 
solid lines indicate the pattern of connectivity between the units. Units take 
on a variety of activation values that can depend on some function of the net 
input to a unit from other units, the previous state of the unit itself and input 
from the external environment. The activation value of a unit determines its 
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output. A variety of functions of the activation value are typically used to de­
termine the output from a unit: A squashing function constrains the output 
within certain limits: A threshold function determines which of a limited set 
of outputs will be produced: A linear function simply passes on the activa­
tion value itself. Networks may be homogeneous in that all units use the 
same output function or they may be heterogeneous in the output functions 
used. Note that it is unusual to find homogeneous nets of linear units. The 
range of tasks that such networks can perform is limited and they tend to be 
unstablc (activation values have a potential to explode to enormously high 
values in linear systems). On the other hand, the input function that maps 
the net input to a unit onto its activation value is typically linear. 

Units communicate with each other by passing their output values to the 
other units in the system with which they are connected. Connections areal­
most always unidirectional. The input/output functions of the units, toge­
ther with their pattern of connectivity, define the architecture of the net­
work. Units can excite or inhibit each other. Each connection may have a po­
sitive or negative real value that determines the degree and direction of influ­
ence of the source unit on the target unit. Target units may receive inputs 
from a large number of source units. The strength of the connection between 
two units is called the weight of the connection. The produet of the output va­
lue of the source unit and the weight value between the source unit and the 
target unit determines the contribution of the source unit to the net input to 
the target unit. If the produet is negative then the sourcc unit inhibits the tar­
get unit. If the produet is positive then the source unit excites the target unit. 
Some systems treat excitatory input and inhibitory input independently 
from one another (Grossberg, 1980). However, all the models described in 
this paper treat the two types of input homogeneously. A zero weight be­
tween two units is functionally equivalent to a Jack of connection between 
those units in most systems. 

The overall behaviour of the network is determined by the set of weights 
that define the pattern of connectivity of the system, and by the input of the 
system. The set ofweight values embodies the knowledge ofthe system with 
respect to a given set of environmental stimuli. In figure one, the numbers 
on the solid lines represent the weights of the connections between the va­
rious pairs of units. The system consists of two inputs and a single output 
unit. The input units are linear and simply pass on the values received from 
the environment to the output unit. The output unit is a linear threshold unit 
i.e. if the activation value reaches or exceeds a given value, in this case »1«, 
then it outputs »1«, otherwise it outputs »O«. Logical OR can be represented 
by the foliowing truth table: 



LOGI CAL »OR« 

input 
0 0 
0 1 
1 0 
1 1 

output 
0 
1 
1 
1 
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LOGICAL »AND« 

input 
0 0 
0 1 
1 0 
1 1 

output 
0 
0 
0 
1 
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A similar network to that depicted in figure one can represent the boolean 
function Logical AND. The only change that needs to be made is that the 
threshold of the output unit must be changed to »2«. 

Networks like these have been investigated since the forties (McCulloch 
and Pitts, 1943) and are typical, though simplified, versions of the neural 
nets that originally sparked off interest in the area. Larger nets with greater 
numbers of input and output units can represent more complicated input/ 
output algorithms. However, their mode of operation is essentially identical 
to the network described above; input patterns are mapped onto aset of out­
put units via weighted connections. The activation values of the output units, 
together with their threshold values, determine the resultant pattern of out­
put activity. It is also possible to make networks like these Iearn, i.e. given 
an input and a desired output it is possible to manipulate the value of the 
weights automatically so that the required input/output function is achieved. 
The learning algorithm originally used by Rosenblatt (1962) is called the Per­
ceptron Learning Rule. According to this rule, the weights between two 
units are modified if the desired output differs from the actual output. The 
desired output is determined by a »teacher« signal. The activation value is 
determined by the propagation of the input signal through the network. The 
actual output on each output unit is then compared to the target specified for 
· that unit in the teacher signal. If there is a mismatch between these two valu­
es, then all the weighted connections feeding into the given output unit are 
adjusted according to the following rule: 

A w. = < t - o ) i . = o i . 
I p p PI p pi 

where å W; specifies the change in weight on the connection from input unit 
to output unit p, tP specifies the teacher signal for output unit p, op specifies 
the actual signal on output unit p, and ipi is the output from input unit i. The 
change in threshold on the output unit is given by the foliowing rule: 

L\ e = - <t -o > = -6 p p p 

This procedure is guaranteed to find a set of weights that produces the cor­
rect input/output mappings, provided such aset of weights exists. The Percep­
tron Learning procedure can be applied to a surprisingly wide range of pro-
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blems and is still used in many influential models. However, as Minsky and 
Papert (1969) pointed out, perceptrons are still quite limited in the class of 
input/output mappings they can learn. 

In particular, perceptrons are unable to solve the Exclusive OR problem. 
The truth table for Exclusive OR is given below: 

EXCLUSIVE »OR« 

input output 
0 0 0 
0 1 1 
1 0 I 
1 1 0 

Exclusive OR demands a non-linear partitioning of the problem space (fi­
gure two). 

AND OR 

(0, 1) (1, 1) 

(0, 0) (1, 0) 

FigureTwo 
Geometric representations of the three problems 

It is possible for networks to team a non-linear partitioning only when there 
is an intermediate level of inhibitory units between the input and output 
units. The Perceptron Learning rule provides only for the adjustment of 
weights directly connecting the input and output units. Therefore, percep­
trons cannot perform non-linear classifications. Since it is known that the 
class of problems to which Exclusive OR belongs is common in computer 
science, the demise of neural net models based on the Perceptron Learning 
procedure followed swiftly on the publication of Minsky and Papert's book. 
Like spreading excitation in semantic nets, neural network research in gene­
ral went out of fashion. For many years, the dominant symbolic approach to 
computational psychology reigned supreme. 

Though neural net research receded into the background in the late sixties 
and seventies, the effects of Minsky and Papert's critique were as much so-
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ciological as scientific (Papert, 1988). Perceptrons represent only a small 
class of possible network architectures and learning procedures and it was to 
this small class of networks alone that Minsky and Papert's comments were 
addressed. However, Minsky and Papert's critique was mistakenly inter­
preted as applying to neural nets in general and funding for most neural net 
projects dried up. Nevertheless, during the dark years, a small group ofre­
searchers continued to investigate the properties of different neural nets and 
extend their domain of application. J.A. Anderson (1977), Grossburg 
(1976) and Kohonen (1977) are notable contributors amongst this group. 
Many of the princip les and insights embodied in POP research today are due 
to the sustained efforts of this small group of researchers. 

As some cognitive scientists became increasingly dissatisfied with the 
achievements of the traditional symbolic approach to computational psycho­
logy, it was recognised that neural nets possessed precisely the kind of pro­
perties which traditional symbolic models seem to Jack. Furthermore, cogni­
tive scientists began to recognise that various mathematical tools could help 
extend the generality of the Perceptron Learning procedure to a greater va­
riety of problems, including Exclusive OR. For example, Rumelhart, Hin­
ton and Williams (1986) describe a learning algorithm called Back Propaga­
tion (also known as the Generalised Delta-rule), which specifies a proce­
dure for manipulating the weigbts in a multi-layered network. Back propaga­
tion can be used to solve the Exclusive OR problem. Figure tbree depicts an 
example of a network tbat implements tbe Exclusive OR truth table above. 

= 1 

Figure Three 
A network for solving Exclusive OR 

Notice tbat the network in figure three contains a layer of units between tbe 
two input units and the single output unit. Any units in a network that are 
not exposed to the external environment but only to other units in tbe net­
work are called hidden units. Back propagation2 provides a metbod for ad­
justing the tbresbold values of tbese bidden units as well as tbe weigbted con­
nections between bidden units and visible units (visible units receive input di­
rectly from the environment or send output directly to tbe environment). 
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Recent work with networks using the back propagation algorithm has shown 
that bidden units often organise themselves in a way that reflects the struc­
ture of the problem at band. For example, Hinton (1986) describes a back 
propagation network designed to learn kinship relationships. Hidden units 
in this network organise themselves to represent the salient dimensions in 
kinship relationships, such as gender and generation. Sometimes, the repre­
sentations discovered by hidden units parallel human interpretations of a 
problem. At other times, the hidden units discover partitions of problem 
space not obvious to humans. For example, a back propagation network dis­
covered a novel solution to the Exclusive OR problem. Hidden units have 
also been used to filter out the redundancies in an input signal, compressing 
the information for Iater retrieval (Ackley, Hinton & Sejnowski, 1985). The 
ability of bidden units to extract and represent regularities of the environ­
ment to which they are exposed has triggered a controversial discussion of 
the nature of representation in neural nets. Hidden units have no referential 
function, and yet they seem to share some properties with the symbolic enti­
ties embodied in traditional rule-based accounts of cognition. 

Another important refinement in neural network architectures has been 
the development of the Boltzmann machine. The Boltzmann machine be­
longs to a class of constraints satisfaction networks that are capable of tinding 
solutions to problems which require the simultaneous fulfilment of a select­
ed set of criteria. For example, the process of language comprehension may 
be reviewed as a constraint satisfaction problem in which the various compo­
nent parts of a sentence must be integrated to obtain a coherent interpreta­
tion (McClelland & Kawamoto, 1986). These criteria may be mutually sup­
portive or they may be in competition with each other. In the former case, 
interactive constraint satisfaction networks quickly converge on a hest solu­
tion. However, if the criteria are in competition with each other, a network 
may possess a variety of final stable states. Some of these stat es ( often called 
local minima) may underestimate the potential of the network to solve the 
problem at band. Boltzmann learning is a technique for avoiding these local 
minima (see tigure four) and tinding the best possible solution to the pro­
blem in a given network. 

A 

Figure Four B 
Local minimum (A) in an energy landscape 
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Boltzmann learning is a stochastic process inspired by statistical mecha­
nics. Just as misaligned crystals or metal can be realigned by a gradual pro­
cess of heating and cooling called annealing, so can a network be made to 
explore the energy landscape of a given problem space until it finds a best 
possible solution. This process is called simulated annealing. As we shall see 
in the next section, constraint satisfaction networks are particularly useful 
for simulating psychological phenomena that involve the disambiguation of 
situations that demand interpretation under the control of contextual deter­
minants. In contrast to feed-forward, back propagation networks, con­
straint satisfaction networks are typically more highly interconnected. Such 
networks need not have an obvious layered-structure and many units may be 
visible to the environment. 

More recently, network architectures have been introduced that attempt 
to integrate time as a dynamic dimension in the representations embodied 
within a network. These networks involve the use of recurrent connections 
(units that feedback on themselves). Recurrent connections permit anet­
work to maintain an image of its previous states. Since these recurrent con­
nections can themselves be manipulated by a variety of learning algorithms, 
such networks can develop a capacity to predict or control future events. For 
example, Jordan (1986) describes a system which attempts to deal with the 
classical problem of serial ord er in behaviour (Lashley, 1951) through the pa­
rallel, distributed implementation of a planning structure. Similarly, Elman 
(1988) showshow a recurrent network can be used to capture some syntactic 
properties of sentences without the explicit specification of grammatical ru­
les. The problem of serial order in behaviour was impressively resolved by 
symbolic accounts of cognition (Miller, Galanter & Pribram, 1960). Connec­
tionist accounts of this problem are needed if POP is to be regarded as ase­
rious alternative to the classical symbolic approach. In the final section of 
this article, we will return to a comparative evaluation of connectionist and 
symbolic contributions to our understanding of cognition. In the next sec­
tion, we turn to a presentation of some concrete examples of connectionist 
simulations of psychological phenomena. 

Connectionist simulations 

In this section, I shall briefly review three connectionist simulations. Each si­
mulation uses a different network architecture and addresses a different 
type of psychological phenomenon. The first model describes a simulation of 
the learning of past tense forms of verbs by young children. The heart of this 
model is a simple perceptron learning system. The second model showshow 
a constraint satisfaction network can be used to simulate the different inter­
pretationsofa knecker cube. Finally, a recurrent network that is able to reco­
ver lexical classes from word-order is described. 
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Learning the past tense of verbs 

A founding assumption of research in child language is that children, like 
adults, use language productively. That is, after the initial phases oflearning, 
language usage cannot simply result from mimicking what is heard in the in­
put, but rather children acquire the ability to generate syntactic and morpho­
logical combinations that they could never have heard befare (Ervin, 1964; 
Berko, 1958). From most current perspectives, linguistic knowledge is fram­
ed in terms of general principles, i.e. »rules«, which govern the productive 
and (sometimes) interestingly innovative usage of language. The goal for the 
acquisitionist has been to work through the various domains of language, 
outlining how and when children come to master the systems of rul es govern­
ing the production and comprehension of novel forms and utterances. How­
ever, current perspectives also acknowledge that certain pockets of linguistic 
knowledge do not appear to be rule-governed in the same sense. For examp­
le, about 150 or so of the most frequently used verbs in English fall outside 
the domain of the regular past tense rule, »add-ed« to the stem. Irregular, or 
strong verbs (Pinker and Prince, 1988), do not form their past tenses by ap­
plying a suffixation process, but rather are memorised as separate lexical en­
tries. These verbs can be grouped into three general categories according to 
the relationship they exhibit to their present tense form: 3 (a) identity map­
ping (orno marking - doing nothing to the stem, e.g., hit - -> hit); (b) vo­
wel change (changing the vowel, e.g., come - -> came); (c) arbitrary (there 
is no obvious structural relationship between the present and past tense 
form, e.g., go - -> went). 

Across acquisition, the faet that two different types of verbs coexist in the 
lexicon, one group using a general rule and others not, sometimes presents 
problems for the language learner. In both naturalistic and experimental 
contexts, children frequently exploit the regularities of the past tense sy­
stem, applying a general rule to the irregular »exceptions« to the rule (e.g., 
Bybee and Slobin, 1982; Kuczaj, 1977). Children will produce errors such as 
»goed« or »sitted« in which the regular »add-ed« ending is applied to verb 
stems which, in the adult grammar, are not subject to this procedure. In ad­
dition, several researchers have noted that the time course in the acquisition 
of these rul es ( and their exceptions) suggests that children will get worse in 
their production of forms befare they get better. That is, children make mis­
takes on some types of past tense forms (e.g., comed) after they have been 
using the forms correctly (e.g., came). After some extended period of over­
application of the general rule to irregular verbs, children reorganise their 
lexical categorisations and settle into the correct set or irregular stems and 
corresponding past tense forms, using both regular and irregular verbs in the 
past tense. This characterisation of the acquisition of morphological regula­
rities (and irregularities) has been described as a »U-shaped« developmental 
course in which children pass through two stages befare attaining adult com-
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petence in handling the past tense in English (Pinker & Prince, 1988). 
Because these erroneous forms are present only infrequently in the input 

to children, their timely avoidance of »exceptions« has been taken as the 
most convincing piece of behavioural evidence that language learning invol­
ves the process of recognising and organising linguistic knowledge into a co­
herent system of general rules. Why else would children produce erroneous 
forms such as the overgeneralisations of the »add-ed« rule? Acquisiton, 
then, involves the construction of a system of generalised statements about 
the structure of the lexicon, and the accompanying lists of exceptions to 
those general rules. Traditionally, the notion of a »rule« has provided lin­
guists and psychologists with an elegant means to neatly package what child­
ren and adults »know« about the intricacies and complexities of language 
while at the same time accounting for productive language use. As noted re­
cently by Pinker and Prince (1988), 

»{language}researchers who could agree on little else have all agreed on one 
thing: that linguistic knowl<;dge is couched in the form of rules and princip/es« 
(pg. 74). 

lndeed, invoking rules serves to elevate language learning above the level of 
rotc imitation and allows linguists »to factor a complex phenomena into 
simpler components that fced representations into one another« (Ibid. pg. 
84). 

Fixed 
Encoding 
Network 

Pattern Associator 
Modifiable Connections 

Decoding/Binding 
Network 
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representation 
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representation 
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representation 
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Recently, work within the POP perspective has promoted reevaluations of 
the constructs and processes guiding language acquisition. In an attempt to 
illustrate the applicability of parallel systems to traditionally rule-based do­
mains, Rumelhart & McClelland (1986b) set out to capture several of the 
»facts« of the acquisition of the English past tense; in particular, that child­
ren overgeneralise the »add-ed« suffix to irregular verbs and that develop­
ment of this system proceeds along a »U-shaped« course. The goal of this 
work was to suggest how an account of language processing and acquisition 
might be able to avoid the reliance on symbol-manipulating, rule-governed 
processcs, while still capturing these phenomena of acquisition. Rumelhart 
and McClelland's past tense simulation contains three major components. 
(See figure five). 

First, an encoding devide takes the present tense stems of English verbs, 
symbolised as binary characters, and converts each stem into a distributed 
representation of context sensitive phonological features called Wickel­
features. Output from the encoding device consists of a vector of activation 
across the set of output units ( 460 in all). 4 Secondly, a single-layered, pattern 
association network maps the set of Wickelfeatures, which it takes as input, 
onto aset of output units. The activity on these output units constitute the 
Wickelfeature representation of the past tense form of the verb that was ori­
ginally presented to the simulator in its present tense form. The task of the 
pattern association network is to learn to map eorrectly input to output vec­
tors through adjusting the set of weights which connect the input and output 
units. The ad justment of the weights is achieved by using the error signal ob­
tained from comparing the actual output ofthe network with the desired out­
put stipulated by a teacher signal. The weights conneeting the input and out­
put units of the network are then adjusted using the Perceptron Learning 
rule. This second component of the simulator is entirely responsible for the 
Iearning that is required to map present tense stems of verbs onto their cor­
responding past tense forms. This mechanism, then, can be seen to be the 
foundation for the overgeneralisations reported by Rumelhart & McCiel­
land. Thc third component of the simulator takes as its input the vcctor re­
presenting the activity of the output units of the pattern associator. Its func­
tion is to generate the set of Wickelphones that best fit the output vector des­
cription. In principle, the decoder provides a Wickelphone description of 
the past tense form of the verb that was originally provided in the Wickel­
phone representation of the present tense stem to the encoder. Several re­
searchers as well as Rumelhart & McClelland themselves have acknowled­
ged several difficulties with this type of decoding process (Pinker & Prince, 
1988). Tue usefulness of Wickelfeatures as a technique for encoding lin­
guistic information in networks of this types is not crucial for the issues dis­
cussed in this paper, and the reader is referred to the original source for de­
tails. 
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The results of the Rumelhart & McClelland simulation are important for 
several reasons. First, within some reasonable limits, the learning curves and 
overgeneralisations created by the simulation resemble many of the errors 
and stages of development that children are reported to make in the acquisi­
tion of past tense verb forms . 
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Figure six shows the »U-shaped« dip for irregular verbs during the early sta­
ges of learning. This regression represents the stage of learning in which irre­
gular verbs are treated as though they are regulars. Even more impressively, 
Rumelhart & McClelland's simulation provides distinct learning curves for 
the different classes of irregulars which closely map the types and relative 
timing of errors made by young children. For example Kuczaj (1977) reports 
that past tense errors of the form »ated« occur later in development than er­
rors which simply »add-ed« to the present tense stem (»eated«). Rumelhart 
& McClelland's simulator is also delayed in producing these former types of 
error. 

The excitement engendered in the cognitive science community by Ru­
melhart & McClelland's simulation was partly to do with the accuracy with 
which it seemed to be able to mimic young children's behaviour. More im­
portantly, however, the simulation showed how one might construct a devel­
opmental model that could acquire linguistic knowledge without assuming 
much nativist baggage. In particular, the simulation does not rely on rules in 
any obvious way. Furthermore, the simulation embodied an account of the 
process of morphological reorganisation which is assumed to be crucial to 
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the achievement of mature linguistic skills (Bowerman, 1982). The model 
achieves this bt playing off the learning properties of the pattern association 
network against the structural relationships implicit in the information it 
must process, i.e. the regularities of English verb morphology. 

The past tense simulation has been severely criticised. In addition to their 
criticism of the Wickelfeature representation used by Rumelhart & McClel­
land, Pinker & Prince (1988) question the input assumptions of the simula­
tion and point out that the U-shaped developmental curve followed by the si­
mulator is an artifact of the discontinuity in vocabulary size and structure to 
which the model is exposed. For example, the performance dip for irregular 
verbs (figure six) occurs just after the proportion of regular to irregular 
transformations in the training set has been greatly increased. However, 
Plunkett & Marchman (in press) show that »U-shaped« learning can be 
achieved with continuous input to a back propagation network, provided cer­
tain realistic assumptions are made about the relative frequencies of the different 
classes of verbs. Furthermore, the Plunkett & Marchman simulation provi­
des information as to the conditions under which such a network acts as if it 
is learning a set of rutes and the conditions when behaviour is less categori­
cal. Despite the qualms of classical symbol theorists, the POP approach still 
holds out the promise of an alternative developmental account for acquisi­
tion and the potential for a new approach to language processing. 

lnterpreting the Necker cube 

Constructivist accounts of human perception often cite the shifting interpre­
tations of the necker cube as testifying to the top-down nature of cognitive 
processes. The necker cube can be interpreted in different ways because wc 
are able to project distinct orientation models onto one and the same stimu­
lus set. On this view, the interpretation of a necker cube is contingent upon 
the construction of an internat representation. More recently (Feldman, 
1981 and Rumelhart, Smolensky, McClelland & Hinton, 1986), connec­
tionists have shown how the orientation of a necker cube can be computed 
through the interaction of mental models and bottom-up visual information 
in a constraint satisfaction network. Figure 7 provides a summary of some of 
the constraints involved in perceiving the necker cube. 

The bottom part of the figure illustrates the necker cube itself whilst the top 
part of the figure illustrates two interconnected networks, each representing 
alternative interpretations of the necker cube. Each unit in the network re­
presents a hypothesis about the correct interpretation of a vertex of a necker 
cube. For example, the unit in the lower left-hand part of the network repre­
sents the hypothesis that the lower left-hand vertex of the drawing is a front 
lower left (FLL) vertex. The upper right-hand unit of the network re presents 
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Figure Seven 

the hypothesis that the upper right-hand vertex of the necker cube repre­
sents a front upper right (FUR) vertex. Notice that both these interpreta­
tions are inconsistent. Normally, only one of those vertices can occupy con­
currently the frontal plane of the cube at a time. Figure 7 also illustrates the 
different types of constraints operating in the network. Since each vertex can 
have only one interpretation, alternative interpretations of the same vertex 
are connected by inhibitory weights (BUL - - -> FUL). Similarly, since the 
same interpretation cannot be given to more than one vertex, units represen­
ting the same interpretation are mutually inhibiting (BLL - - -> BLL). 
Thirdly, units that represent Iocally consistent interpretations are mutually 
exciting (FUL - - -> FLL). Without these excitatory and inhibitory con­
straints, it is extremely unlikely that the network will find a solution cor­
responding to the correct interpretation of the necker cube (all the units in 
one sub-network turned on and all the units in the other sub-network turned 
off). In faet, without any constraints whatsoever, there are in principle 216 

possible configurations of the network. However, once constraints are intro­
duced to the system, the likehood of many of these states occurring is con­
siderably reduced. Hopfield (1982) has shown that the behaviour of con­
straint satisfaction networks can be characterised as a process of hill-climb­
ing5 on a goodness contour. Since many of the units in a constraint satisfaction 
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network, like the one depicted in Figure 7 above, are in competition with 
each other, it is possible to evaluate any given configuration of the network 
as having a particular goodness of flt. Goodness of fit depends essentially on 
the extent to which each unit satisfies the constraints imposed upon it by 
other units, the likehood of an individual unit turning on itself (bias), and fi­
nally direct evidence from the input that suggests a given unit should turn on. 
We can summarise the goodness of fit in a constraint satisfaction network for 
all units in the network in the foliowing equation: 

Goodness = 1·· W" a· a· ~- input· a· + l· bias· a· IJ IJ I J + kl I I I I I 

where Wij represents the weight connecting unit j to unit i, and »a« repre­
sents the activation of a given unit. 

Given this equation and an algorithm that stipulates an updating proce­
dure for the units in a network, one can describe an energy landscape or 
goodness contour that corresponds to the various configurations of the net­
work. In this way, local computational operations, in which each unit adjusts 
its activation up or down on the basis of its net input, serve to allow the net­
work to converge towards states that maximise a global measure of goodness 
or degree of constraint satisfaction. For example, assume that a network like 
that depicted in figure 7, with the stipulated set of excitatory and inhibitory 
connections, is provided with a set of randomly assigned biases on each of 
the 16 units. A bias determines the probability that a given unit will turn on 
or off. If the network is allowed to run for a succession of discrete times 
steps, the activation values of each ofthe units will ad just themselves in such 
a way as to relax into a stable global state or maximum goodness of fit for the 
network. 

goodoess I 
(0,8) 

(8,0) 

(0,0) 

Figure Eight 
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Figure 8 depicts a goodness contour for the possible configurations of the 
necker cube network. We may interpret this picture as a visual conceptuali­
sation of the possible states of the network. The low point (0,0) corner, cor­
responds to the start state in which no units are turned on. The peaks on the 
left and right correspond to the standard interpretations of the necker cube. 
These goodness peaks are the states to which the network will most often be 
attracted in the relaxation process. The choice between interpretations is de­
termined by the position on the goodness contour at which the network 
starts and the particular sequence of updates that is chosen for the units in 
the network. Thus, it is possible to push the network to a particular interpre­
tation of the necker cube by giving a large bias to one or more of the units. 
For example, notice that the goodness contour in figure 8 contains a number 
of smaller peaks. These peaks represent impossible interpretations of the 
necker cube such as that depicted in figure 9 in which two surfaces are inter­
preted as being foremost. 

Figure Nine 
Three interpretations of the necker cube 

Since these peaks represent local maxima on the goodness contour, the hill­
clim bing process halts and the network remains in this stable, though impos­
sible, state. 

Dynamic accounts of the interpretative process show us how a single ambi­
guous source of information can be resolved into a definite single solution. 
The goodness or energy landscape provides a global pi et ure of the characte­
ristics of any given constraint satisfaction network. The process of hill­
climbing describes the process of change and conflict resolution within the 
network. Note how the energy landscape is molded by reference to stable 
states of the network. We may conceptualise these stable states, visualised as 
peaks in the landscape, as default configurations which the network will 
move towards in the absence of any conflicting information. Thus, constraint 
satisfaction networks can be seen to implement representational entities of-

: ten referred to in the literature as frames (Minsky, 1975) or scripts (Schank & 
Abelson, 1977). The mutual constraints within a network and the environ­
ment ( external input) in which the network finds itself internet to mold a dy-
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namic, context sensitive energy landscape. Global maxima in this landscape 
correspond to prototypical resolutions of the constraint satisfaction pro­
blem. Local maxima correspond to intermediate solutions, reflecting com­
petition between constraints. However, local maxima need not represent im­
possible solutions as in the case of the necker cube. They may equally well 
represent unorthodox but acceptable configurations of a given frame or 
script. In this fashion, the continuous nature of the energy landscape pro­
vides a foundation for the non-categorial forms of behaviour typical of these 
networks. Furthermore, stable configurations are achieved on the basis of lo­
cal computations. No symbolic executive supervises the relaxation process. 

Discovering lexical classes from word-order 

The determination of word-order in an utterance is known to reflect a va­
riety of constraints such as syntactic structure, selectional restrictions, sub­
categorisation and discourse considerations. Traditionally, psycholinguistic 
accounts oflanguage production and comprehension have invoked symbolic 
processing systems to express the abstract structural relationships between 
words in an utterance. For example, in the sixties, psycholinguistics was do­
minated by the view that language processing involved some psychological 
implementation of transformational grammar (Fodor, Bever & Garrett, 
1974).Although this approach turned out to be incorrect, the procedurally 
oriented theories (e.g. Miller & Johnson-Laird, 1976) which took over, are 
still symbolically based. lndeed, it has been argued (Fodor & Pylyshyn, 
1988) that a symbolic level of representation is a necessary foundation for 
psycholinguistic processing. On this view, neural nets are capable of captur­
ing only the most trivial structural relationships found between the words in 
an utterance. Neural nets fait in precisely the same way that Markov gram­
mars failed to provide an account of linguistic structure earlier this century. 
As a first attempt to answer this challenge, Elman (1988) used a recurrent 
network to simulate word-order prediction. As we shall see, his network was 
able to assign lexical items to their correct grammatical category and to pre­
dict appropriate category orderings in the output from the network. 

Earlier in this paper, we saw that recurrent networks can maintain an image 
of their previous states and so develop the capacity to predict future events. 
The architecture of the recurrent network used by Elman is shown in figure 
10. Notice that figure 10, like the network for solving Exclusive OR, contains 
a layer of hidden units. Thus, the network possesses the capacity to extract 
regularities from the input patterns and construct internat representations 
thereof. In addition to the layer of hidden units, Elman's network contains 
a set of context units. The hidden units and the context units are equal in 
number. However, the context units can only communicate with the hidden 
layer. The weights cconnecting the hidden units to the context units are fixed 
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and constitute a one-to-one mapping. In effect, on every time-step the con­
text units establish a copy of the previous states of the hid den units. The con­
text units are connected to the hidden units in a one-to-many mapping. The 
dotted line connecting the context units to the hidden units indicates that the 
weights are adjustable. The context units display an image of the previous 
states ofthe hidden units to the hidden units themselves. In this way, Elman's 
recurrent network goes beyond the finite state Markov grammar. The recur­
rent connections, through the context units, provide the system with an inde­
finitely embedded representation ofprevious states ofthe network. The con­
text units aet as a contextual memory for the network. 

The task which Elman gives the network is fairly straightforward. A word 
is presented to the input units. In response, the network must predict which 
word, taken from a previously constructed list, will be presented next to the 
input units. The network shows that it can predict the next word in the list by 
generating the word on the output units. During the training phase, a teach­
er signal provides feedback to the network. Errors are propagated back­
wards through the network using the Generalised Delta rule. The previously 
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constructed list consists of sequences of sentences generated by a simple 
phrase structure grammar. The list contains 10,000 two- or three-word sen­
tences. Each word is represented by a unique random binary string. Thus, if 
the first sentence present ed to the network is »woman smash plate«, the first 
two responses ofthe network should be »smash« and »plate«. Elman trained 
the network for five complete passes through the data set. He discovered 
that the absolute level ofpredictive performance was not very good, indicat­
ing that the network had failed to memorise the sequence of words. How­
ever, after the training phase, the connections in the network were frozen 
and the individual words used in the grammar presented to the input units, 

Figure Eleven 

bread 
---> cookie 
•··> sandwich 

•··> eat 
•··> smash 

1------1 -- > chase 
••• > like 

•·-> move 
•··> break 
--> smell 

--> see 
--> sleep 

hook 

think 
exist 

•··> car 
•··> rock 

t------1 •·· > dragon 
-·> !ion 

•··> monster 

--> cat 
-·> dog 

•··> mouse 

---> boy 
•··> man 



Parallel distributed processing 327 

one at a time. Instead of recording the output from the network, Elman re­
corded the activity across the hidden units (represented as a vector) for each 
unique word in each of its sentential contexts. The hidden unit activations 
produced by a given word (in all its contexts) were averaged to yield a single 
50-bit vector for each of the 35 unique words in the input stream. These inter­
nal representations were then subjected to a hierarchical clustering analysis. 

Figure 11 shows the resulting tree; this tree reflects the similarity structure 
of the internal representations of these lexical items as perceived by the net­
work. Lexical items which have similar properties are grouped together lo­
wer in thc tree, and clusters of similar words which resemble other classes 
are connected higher in the tree. It is clear that the similarity structure de­
picted in the tree diagram reflects our human intuitions about grammatical 
similarity between the words which the network knows about. Thus, verbs 
are grouped together on one branch of the tree whilst nouns have been 
grouped together on another branch. Although the network has been told 
nothing about the semantics of the nouns presented, the cluster analysis re­
veals that the network has discovered appropriate semantic classifications of 
the words. For example, inanimate objects are distinguished from animate 
objects and humans are distinguished from small animals. Elman notes, 
»that this hierachy is implicit in the similarity structure of the representa­
tions, and not an explicit function of the architecture. The network does not 
have available any of the symbolic apparatus of semantic networks or tree 
structures.« (pg. 20). He also goes on to point out that the apparent semantic 
knowledge of the network is an illusory. The network has no knowledge of 
the meaning of words since each word is represented by a random binary 
string. It is simply the case that the network is able to classify the different 
words on the basis of their very similar behaviour with regard to serial order. 
However, one can imagine real language le arners making use of the cues pro­
vided by word-order to make intelligent guesses about the meanings of novel 
words. This simulation suggests how distributional information in the input 
might be exploited by the learner without couching this knowledge in terms 
of explicit rules. 

Elman admits that the structural relationships implicitly represented in 
the network in this simulation do not reflect a full-blown grammar of Eng­
lish ! However, in a la ter set of simulations and using a si mil ar network archi­
tecture, Elman addresses the problem of pronominal reference. For exam­
ple, consider the foliowing sentences: 

a) If Leo; wants, he; will attend the meeting. 
b) If he; wants, Leo; will attend the meeting. 
c) Leo; will attend the meeting if he; wants. 
d) He; will attend the meeting if Leo i wants. 
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Subscripts indicate acceptable coreference. Within Government and Bind­
ing Theory (Chomsky, 1982) coreference between a pronoun and a noun in 
a sentence is permitted if and only if there is a structural relationship called 
c-command holding between two linguistic symbols. C-command is defined 
entirely in terms of symbolic predicates. However, Elman is able to show 
that a network can decipher the reference of a pronoun in a sentence without 
ever being told about the structural relationship c-command. Indeed, it has 
been argued (Kuno, 1987) that c-command cannot account for much of the 
data on pronominal reference. Elman suggests that this failure may well be 
due to the symbolic, categorical nature of the mechanism embodied in the 
c-command rule. POP networks may provide a better framework for dcaling 
with the fluid dynamics of pronominal reference. 

POP and Symbol Processing 

Irnagine a neural net with a pyramidal structure; a large number of input 
units; a smaller number of hidden units; a single output unit. Using a back 
propagation algorithm, the network is trained to respond appropriately with 
the truth values of propositions, encoded as binary input, presented to the 
input units. Thus, the network when presented with the proposition »dogs 
have fur« responds with true (i.e. »1«) whereas when presented with the pro­
position »dogs have fins« it responds with false (i.e. »O«). This network 
would seem to be able to evaluate the truth values of propositions. It might 
even be able to evaluate some propositions which it has never becn exposed 
to before (Ramsey & Stich, 1988). Clearly, the network has acquired some 
knowledge about the world. Contrast this network with a more traditional 
semantic network, where the elementsofa proposition are represented as 
monadic nodes and propositions are represented by the activation of the cor­
rect set of constituent nodes. Typicallly, the nodes in a semantic network are 
assumed to have an intentional, symbolic relationship to the objects for 
which they stand in the real world. Similarly, the structure of the representa­
tion of a proposition in such anet is assumed to directly reflect the structure 
of the state of affairs in the world which the proposition describes. So in the 
case of the proposition »dogs have fur«, the discrete nodes »dog« and »fur« 
connected by a property »isa« link maps isomorphically onto a state of af­
fairs in the world. In the back propagation network, propositions are not 
represented in the same discrete fashion. Rather, any given proposition is 
represented by the global pattern of activity throughout the network. Know­
ledge in the network is »represented« by the complete matrix of weights that 
defines the architecture of the network. In general, it is not possible to point 
at a discrete location in the network that can be said to represent the propo­
sition. Similarly, the addition of new propositions to the two types of net­
work involve distinct processes. In the case of a semantic network, it is pos-
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sible to add some extra nodes and links without disturbing the pre-existing 
system. However, in the back propagation network, learning a proposition 
will involve, in general, the ad justment of the complete set of weights defin­
ing the network architecture. For reasons like these, PDP nets are often said 
to provide sub-symbolic representations of given knowledge domains, in con­
trast to the symbolic representations of say semantic networks (Smolensky, 
1988a). 

It is common place reasoning in folk-psychological theories (Stich, 1983) 
to assume that a person's beliefs often play an actively causa! role in their be­
haviour. Beliefs are construed as an individual's holding a propositional attitu­
de. Thus, in order for an individual to believe that »dogs have fur« they must 
be in possession of the propositional attitude »that p« where »p« is the pro­
position »dogs have fur«. Propositional attitudes have causa! powers in that 
they play a causa! role in the activation of other propositional attitudes (be­
liefs) and behaviour. The relationship between propositional attitudes is de­
termined by some function which maps the relation between propositions. 
Some philosophers (e.g. Stalnaker, 1987) suppose that propositional atti­
tudes are monadic entities and that the causa! power of any given proposi­
tional attitude is represented solely by its associative connectivity to other 
propositional attitudes. However, within the classical symbol processing tra­
dition (Fodor, 1987), propositional attitudes are assumed to have formal, in­
ternal structure. The constituents of propositional attitudes are themselves 
considered symbolic entities in much the same way as the nodes in a seman­
tic net. From this perspective, propositional attitudes have causa! powerwith 
respect to each other by virtue of their intern al structure and a set of formal 
rules for acting on that structure. The transition between belief states is gu­
ided by the activity of a formal, syntactic machine. The language of thought 
is thus built out of aset of intentional, semantic symbols, and a grammar for 
manipulating those symbols. 

Fundamental to the classical view of cognition is the existence of discrete 
symbolic entities that can be manipulated by aset of rules. Distributed re­
presentations of propositions Jack internal structure and are not sufficiently 
modular to permit rule-governed transformations. Fodor & Pylyshyn (1988) 
argue that this difference in architecture counts decisively against PDP ap­
proach. For example, consider the two sentences: 

1) John loves Mary. 
2) Mary loves John. 

In appropriate circumstances, we have no difficulty in identifying the two 
»Johns» as being one and the same person. This feature of cognitive infe­
rence can be easily accommodated within the symbolic tradition. The two 
occurrences of »John« are distinct tokens of the same mental symbol type. We 
appreciate the coreference of the tokens because they activate the same type 
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in our mental representations. Now consider the same two sentences repre­
sented in a back propagation network. As we saw above, propositions are 
represented in a distributed fashion throughout the network. In general, it 
is not possible to point at a local area of the network which represents the 
single proposition or part of a proposition. Sentences 1) and 2) will, therefo­
re, be represented by distinct, global patterns of activity througout the net­
work. How then, Fodor & Pylyshyn ask, are we to capture the obvious intui­
tion that one and the same person, John, is involved in each proposition 
when we cannot identify John's token representation and hence his semantic 
type? Fodor & Pylyshyn argue that parallel distributed representations can­
not provide an adequate account of semantic compositionality which is essen­
tial for understanding mental life. 

Ina similar vein, Fodor & Pylyshyn argue that POP models og human cog­
nition are unable to capture the universal systematicity inherent in cognitive 
inference. For example, given the logical expression »A&B«, one can de­
duce the corollaries »A« and »B«. To achieve this result, all you need to 
know is that there exist constituent symbols »A« and »B« and a simple trans­
formatical rute for manipulating the premise. Furthermore, the same sym­
bolic system can be easily extended to include the manipulation of such ex­
pressions as »A&B&C&O«. Fodor & Pylyshyn argue that the deductive po­
wers encapsulated by this simple manipulating system are not merely mat­
ters of empirical faet but are necessary properties of cognitive systems. Simi­
larly, they argue that any cognitive system that can perceive or learn the rela­
tion aRb, is equally likely to be able to learn the inverse relation hRa, not be­
cause of contingent faet but because of the nature of cognitive systems. 
Fodor & Pylyshyn point out that insofar as POP models are limited to re­
presenting empirical statistical regularities they fail to account for the ubiqu­
ity and necessity of many of the characteristics of cognitive systems. In essen­
ce, their claim is that the poverty of the stimulus precludes an explanation of 
mind based purely on empirical foundations. 

As Fodor & Pylyshyn openly acknowledge, the thrust of their critique of 
POP closely parallels the cognitivist's critique of behaviourism in the fifties 
(Chomsky, 1959). Indeed, POP has been heralded as born-again behaviou­
rism. There may well be some truth in this characterisation but that need not 
be such a damning indictement. In contrast to the impenetrable, modular ar­
chitectures ofthe classical symbolic account, POP systems, like behaviourist 
accounts, are firmly grounded in the environments in which they are design­
ed to opera te. For example, the specification of stimulus and response repre­
sentations are essential steps in simulations that use back propagation. By 
entrenching itself in the environment, a POP network is able to offer an ac­
count of learning which goes beyond radical behaviourism in that it attempts 
to provide an account of the internat organisation of the processes which per­
mit the wide range of stimulus/response functions observed in human be­
haviour. 
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Fodor & Pylyshyn's critique is substantial (as are those found in other ar­
ticles, published in the same special issue of Cognition) and needs to be an­
swered. However, it is likely that the issues will be resolved through empiri­
cal research rather than a priori philosophical argumentation. The issues 
here are complex. For instance, one's view as to what might count as a scien­
tific theory of the mind is likely to influence one's position in the ongoing de­
bate. Oennett ( 1988) characterises the classical symbolic tradition as seeking 
pure, universal, crystalline theories of the mind. He points out that evolu­
tion may not have been so kind to cognitive scientists. The mind might turn 
out to be more like a gadget, 

»an object that ane should not expect to be governed by »deep« mathematical 
laws but nevertheless a designed object, analysable in functional terms: ends 
and means, costs and benefits, elegant solutions on ane hand and on the other, 
shortcuts, jury rigs, and cheap ad hoc fixes« (Oennett, 1988, p. 286). 

No self-respecting cognitive scientist today believes that the newborn 
mind is a tabula rasa. Neither do POP researchers believe that a single POP 
network architecture is adequate to the task of supporting all the diverse 
forms of human cognition. lndeed, as we have seen above, connectionists 
are deeply involved in investigating the properties of different kinds of net­
works and discovering the diverse potential across networks for performing 
certain cognitive tasks. Nevertheless, the general characterisation of neural 
nets as being statistical inference machines seems correct. Thus, to the ex­
tent that explanations of the human cognitive system requires the postula­
tion of universal, platonic ideals, so will POP models of human cognition, 
unaided by symbolic mechanisms, fait in their attempt. 

However, there are other ways of construing nations of compositionality 
and systematicity than those found in the classical symbolic approach. For ex-

' ample, Smolensky (1988b), in a reply to Fodor and Pylyshyn, argues that an 
increased understanding of the mathematics of neural networks is likely to 
bring about a new conceptualisation of compositionality within a distributed 
framework. For example, we saw in Elman's (1988) simulation a technique 
called cluster analysis which provides a similarity metric for comparing 
distinct states of the same network. Factorial and regression analyses are 
also contributing to this endeavour. Although distributed representations 
cannot solve the type/token problem by appealing to discrete categorial enti­
ties, similarity metrics may capture better our intuitions about »John« in sen­
tences 1) and 2) above. For though John may be one and the same person in 
the real world, whether he is doing the loving or being loved, it is a faet of our 
emotional lives that loving is not the same as being loved. Mental types must 
be malleable to the role they play in a representation. Oistributed pattems 
of activity are able to deal with this malleability better than discrete, symbo­
Iic categorisations. Once we give up the requirement that mental representa-
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tions be miniature models of our effective world, and once we acknowledge 
that contextualisation is an unavoidable given of all mental processing, so 
does the concept of an impenetrable, discrete mental symbol lose much of 
its appeal. Similarly, the systematicity in human reasoning is open to ques­
tion. Accounts of logical inconsistence in human reasoning abound in the li­
terature (Wason & Johnson-Laird, 1972). Human reasoning, with all its gaps 
and inconsistencies, may well turn out to be the produet of a statistical infe­
rence machine. PDP models of cognition provide cognitive scientists with an 
alternative framework in searching for answers to what are, at base, empiri­
cal questions. 

Concluding Remarks: Levels of Explanation 

PDP goes under other names. Connectionism and neural networks are often 
used interchangeably with each other and with the term PDP. However the 
terms are not precisely synonymous. Connectionism is the most inclusive 
term, intended to cover a wide range of network architectures and represen­
tational systems that use parallel processing. PDP is used to characterise 
that style of connectionism which emphasises the importance of distributed 
representations. However, localist approaches abound (Feldman, 1982). 
The term neural network is perhaps the most difficult to pin down. It is clear­
ly biologically oriented, but the term is often used in contexts which are in­
tended as cognitive descriptions. This raises the whole issue as to which level 
of explanation connectionist systems are directed. 

Connectionist models clearly have a neurological appeal. Parallel compu­
tations by units connected in a web ofweighted lines provides a crude but ef­
fective abstraction of the central nervous system. lndeed, POP'ers have 
themselves anointed their approach »brain-style processing«. Neural net si­
mulations are indeed providing neurophysiologists with insights into the dy­
namics of massively parallel systems. But are connectionists' systems con­
strained to providing models at the neurological level of explanation? The 
testimony of research reported in this article indicates that PDP models have 
a role to play at higher, functional levels of description and explanation. This 
is a controversial claim. As we have seen, many researchers working within 
the classical symbol manipulation approach to cognitive science argue that 
functional accounts of the cognitive level must be couched in terms of dis­
crete, categorical symbol processing systems. Furthermore, they argue that 
current POP models do not behave in the necessary symbolic fashion. Ac­
cording to this argument then, PDP models will not be able to provide expla­
nations and descriptions of the cognitive level. It is conceded, however, that 
POP models, appropriately hard-wired, may be able to implement the 
foundations of a cognitive system in much the same way that the hardware 
of a computer provides the necessary environment for symbolic program-
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roes (Pinker & Prince, 1988). Indeed, it is widely acknowledged that some­
thing like a POP system must provide the neurological foundations for the 
apparent symbolic mind. On this view a symbol processing machine sits on 
top of a POP implementation of the neurological system. It makes sense to 
talk about a two-level system because the symbolic machine operates ac­
cording to its own autonomous set of principles. 

The POP research community resists this relegation of their domain of 
explanation to the implementational level. One of the primary motivations 
for building POP models of cognitive processes was that symbolic appro­
aches seem to lack certain characteristics that are needed at precisely the 
cognitive level offunctioning. A compromise solution in which POP mecha­
nisms and symbol manipulating devices work side-by-side in an harmonious 
cognitive system, is currently coming into fashion. However, there is a dan­
ger in this approach. An advantage of POP systems is that they can learn. On 
the other hand, symbolic systems are notoriously impenetrable and modu­
lar. They typically embody universal principles which cannot be extracted 
unaided from the stimuli to which they are exposed. To the extent that we ac­
cept a tandem architecture of POP and symbolic systems we accept an a-de­
velopmental approach to human cognition. To be sure, the ncw-born mind 
comes equipped with a sophisticated set of constraints for processing its en­
vironment. However, wc must be careful to ensure that the competences 
endowed on the new-born mind by a symbol processing device do not exceed 
the facts of human development. Given that we are only just beginning to 
scratch the surface of the potential learning capacitites of POP systems, it 
would seem premature to compromise in favour of amore heterogeneous ac­
count. Parsimony requires a far more thorough investigation of the limits of 
the POP approach to cognition. 

FOOTNOTES 

I. Thanks to »Kognitionsforskningsgruppen« in Aarhus (Klaus Bærentsen, John Pau­
lin Hansen, Tove Klausen, Steen Folke Larsen, Gerda Linnemann, Uffe Seilman 
and Steen Wackerhausen) and Lars Hem for detailed eomments on the manuscript. 

2. Back propagation is a least-squares algorithm. The error (delta) on each output unit 
is prop3gatcd hack to each unit that feeds into the given output unit in proportion 
to the weight of the connection between the units. Thus, eaeh hidden unit collects 
weighted error signals from all the units it feeds into. The net sum of the weighted 
error signals for cach hiddcn unit determines the »delta« for that unit. This »delta« 
is then uscd as thc »error« signal to determine weights adjustments on the next layer 
down. Thc proccss i te rates hackwards through all levels of the network. Back propa­
gation is a rat her clumsy and computationally dcmanding learning algorithm. More 
cffectivc suhstitutcs arc alrcady availahlc and the future promises lcarning algo­
rithms that arc capablc of dynamic rc-configuring of thc network. 

3. Sevcral diffcrcnt classifications of thc irrcgular verhs in English exist. Thcse classifi­
cations differ in detail but all draw major distinctions bctwecn arbitrary, identity 
mapping and vowel change transformations as I do herc (Bybce & Slobin, 1982; Pin­
ker & Prince, 1988). 
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4. Since the details of the encoding process are not of di reet concern for the present ar­
ticle, the reader is referred to the original sourcc for further information (see also 
Pinker & Prince, 1988, and Bever, in press, for reviews and criticisms). 

5. Hill-climbing is simply the inverse of gradient-descent. The lowcst level of a valley 
in an energy landscape can represent a stable configuration ofthe network. Similar­
ly, a peak on a »goodncss« contour can re present the same stable set of parameters. 
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