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Ebbe Hendon, Hans Jergen Jacobsen, and Birgitte Sloth

Institute of Economics, University of Copenhagen

SUMMARY: We present a bounded rationality model of the thinking done by players
before acting in a one shot game, the method of fictitious play. Mixed strategy equili-
bria can be interpreted as the expectation of an ouiside observer concerning the play-
ers’ actions rather than as actual randomizations.

1. Introduction

Game theory deals with strategic situations, i.e., with situations where the actions of
several players have consequences for the joint outcome. The applications to economic
theory are evidently enormous. But game theory is marred by basic and conceptual
problems. This paper is a contribution to the solution of one of these problems.

For simplicity we deal with the simple case of 2 X 2 strategic form games, i.e.,
games where two players each have two possible (pure) strategies. Such a game can be
illustrated as the game G, of Figure 1, where player 1 has the strategies U and D, and
player 2 has the strategies L and R. The entries in the matrix are the outcomes in terms
of utility combinations arising from different strategy combinations. 1f, for example,
player | chooses U/ and player 2 chooses L then an cutcome occurs in which player |
has utility 2 and player 2 utility 1. The game is only played once, and the players must
choose their strategies without communication, and without knowing the other player’s
strategy. Players are assumed to be individually rational: For any theory they hold on
the other player, they will seek to maximize utility.

The problem of game theory is to predict or explain what will be played in strategic
situations; in particular a game theorist should be able to give some prediction for the
game . What will be played here?

The without competition most prominent solution concept in game theory 1s the
concept of a Nash eguilibritm. A Nash equilibrium is a strategy combination where
cach player cannot gain from deviating given the other players’ strategies. In a Nash
equilibrium each player plays a best reply against the other players' strategy. It is easy
to see that G, has a unique Nash equilibrium, namely the strategy combination (U, L).

This paper reports some of the results of Hendon ef af. (1990). Ebbe Hendon and Hans Jergen Jacobsen
were supported by the Danish Social Sciences Rescarch Couneil.
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Figure 1. Gy~ A game with a unique Figure 2. G, — A game without existen-
Nash equilibrium in pure strategies. ce of Nash equilibrium in pure strate-

gies.

E.g., the strategy combination (D), R} is not a Nash equilibrium, since it is not best reply
for player 1 to play D if player 2 plays R.

Even though the outcome (U, L} may seem reasonable for G|, in general there are
serious conceptual problems with the concept of Nash equilibrium: Why, at all, should
players coordinate on a Nash equilibrium strategy profile? There are no straightfor-
ward answers to this question and recently a lot of research has been directed to the
foundations of Nash equilibrium. The analysis of fictitious play is one line in this re-
search. This analysis has, however, also provided one possible explanation of an older
game theoretic puzzle: The interpretation of a mixed strategy Nash equilibrium.

In games like G, there is no Nash equilibrium. This problem is usually solved by al-
lowing for mixed strategies, i.e., probability measures over the pure strategies of the
players. Then one further assumes that the payoffs satisfy the expected wiility hvpothe-
sis, so the utility to a player receiving some lottery over outcomes, is the expected va-
lue of the utilitics of the outcomes. With this extension any finite form game has an
equilibrium. For example, in G, the strategy combination where player | plays U with
probability ;? and D with probability é—, and player 2 plays L with pmbability%— and R
with pl'c:lhabilit:»,-"§ is a Nash equilibrium.

But mixed strategy Nash equilibria seem difficult to defend: In G, (g, :'Jr-) is a best
reply for player 2 given that player 1 plays ( % %], but 50 is L, R, and any other mixture
that player 2 can choose. Why should he choose exactly the only mixture, which makes
player 1 indifferent between his pure strategies? He has to do that for the players to end
up in a Nash equilibrium! So, what is a mixed strategy? Do we really predict that play-
ers flip coins in order to make the strategy of the opposing player optimal?

The concept of mixed strategies is rather controversial, and several critical points
can be raised. These points stem from the naive interpretation of a mixed strategy: A
player actieally randomizes according to the probabilities of the mixed strategy.
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The first objection is that the real situation modeled may not include a possibility to
randomize. Indeed, if it does, then the set of pure strategies of the players should inclu-
de the probability distributions from the beginning. From this point of view <, may in-
deed have no Nash equilibriurmn.

Secondly, while a randomization may seem easy to perform in the example above by
flipping a coin or throwing a dice, more complex probabilities (for instance involving
non-rational numbers) can hardly be constructed without considerable effort. This could
then decrease utility, and as such make it more attractive to choose a pure best reply.

Thirdly, as stated above, it appears strange that a player should choose a particular
mixed strategy in order to guarantee equilibrium. This is, however, not a critique re-
stricted to mixed strategies, but applies whenever a player has several possible best re-
plies in equilibrium. So this critique should rightly be directed against the Nash equili-
brium concept.

Students of game theory are then easily led to suspect that the introduction of mixed
strategies is a mathematical trick, a mere technical device introduced to ensure existen-
ce of Nash equilibrium!.

To sum up, it is undoubtedly the case, that many people in applied as well as theo-
retical game theory are skeptical towards the use of mixed strategies. The present paper
provides one possible justification for the use of mixed strategies, highly inspired by
Binmore (1988).

We aim at showing how a reasonable modeling of the preplay thought process per-
formed by players may indeed lead to the use of mixed strategy equilibrium as a pre-
diction of the play of the game. We think of the method of fictitious play, originally
from Brown (1951), viewed as a bounded rationality model of preplay thinking.

Initially, before any reasoning has taken place, each player holds a theory of what
will be played in the game. This theory is a probability distribution over the pure strate-
gies of each player of the game, including himself, and thus has the structure of a
combination of mixed strategies. It is assumed that this initial theory is common to all
players, a serious but widely used assumption. It seems reasonable that each player
would test his theory by asking: If this were the theory held by all players, what would
they play? Individual rationality implies that they would all play a best reply, and this
combination of best replies can then be compared to the theory. If there is a difference
this is a motivation for changing the theory. It seems reasonable to change it in the di-
rection of the best reply. We will assume that the former theory is changed to a new,
which is a simple average of the former theory and the combination of best replies to
this theory. The procedure is repeated for the new theory and so on. In this way, the

I. This suspicion may be further nutured by the common folklore among some Danish cconomists, that
the contributions of mathematical economists to economics at times lack intuition and relevance!
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theory is gradually adjusted by in each round changing it in the direction of a best reply
to itself. As the number of rounds increase, the currently held theory will be based on
more reasoning, which should imply that the weight put on it, when adjusting it to-
wards a best reply, should be increased. The resulting sequence of theories is then exa-
mined. In case it converges, the convergence point is our prediction of the players’ be-
havior. A detailed argument for this use is given in section 4.

While this model is very specific and primitive, forcing us to adopt a modest view
on the general applicability of the results, it does however seem to have a core of reaso-
nableness to it as a model of preplay reasoning. In particular we have not presupposed
Nash equilibrium in the construction.

2. Notation and Preliminaries

Consider games with two players, | and 2, where each player has two available pure
strategies, U/ and D for player 1, and L, R for player 2. The payoff functions #, and u,
assign a payoff to each player for each combination of pure strategies.

Let x& [0,1] denote the mixed strategy of 1, where he uses U with probability x and
D with probability | — x, and let similarly y& [0,1] denote the mixed strategy of player
2 where she uses L with probability y. So, a combination of mixed strategies is a pair
z = (x, y) €10,1] x [0,1]. The set of mixed strategy combinations is denoted by Z. As-
suming that the preferences of each player i satisfy the expected utility hypothesis, we
extend the domain of ¥; to Z by:

ui(x, y) :=xy w(U, L) + x(1-y) u(U, R) + (1-x)y u; (D, L) + (1 —x) (1-y) u(D, R).

Let B,(y} denote the set of best replies of | against y, i.e., the set of mixed strategies
which maximize 1% utility given the theory y on the action of 2:

By (y) := arg max u,(x’, y),
x' €10,11

and define 8,(x) similarly. As an example consider the game G,. We can calculate B,
to the following: If y > % then the unique best reply of 1 is pure strategy U, correspond-
ing tox = 1. For y <2, D is the best reply. For y = % both U and D as well as any
mixed strategy are best replies. We can thus write down B, as follows:

1Ly >2/3
B, ()=110,1],y=273
0, y <213

Construct the vector best reply correspondence B, by 8(x. ) == B, (v} X B,(x).
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A Nash equilibrium is a mixed strategy combination z*, such that each player uses a
best reply given the mixed strategies of the other player, i.e., z*& B(z*). Interpreting
mixed strategies as expectations, a Nash equilibrium is a consistent set of theories on
the players.

3. Fictitious Play

For the definition of fictitious play we need a specific tie-breaking rule to take care
of situations with multiple best replies: Either there is a unique best reply or there is a
tie; both pure strategies as well as all convex combinations of these are best replies. A
tie-breaking rule for player 1 is thus a function b, such that b,(y) € B,(y) for all y. An
example of tie-breaking rule is 5] defined by:

1Lif By (v =11l
1) =9 12,if B, () =[0,1]- ()
0,if B, (v) =10l

That is, in case of a tie, b} assigns equal probability to the optimal pure strategies.

For all arguments given below the specific choice of tie-breaking rule is irrelevant.
Denote by & = (b,, b,) a vector of tie-breaking rules. So, this is a function b: Z — Z, as-
signing to each theory a particular combination of best replies.

Fictitious play furthermore rests on a common, initial theory =l y“). Players
use b(z°) to update z° by calculating a simple average of z” and b(z%);

1101 300
Z ._;2': +'2'b(- ).

Now, z' is the current theory. Players then use the best reply b(z') to update z', but
are assumed to increase the weight on the current theory z', reflecting the fact that it is
based on one more step of reasoning than was z°, so

e a0 T gy 1 g
z': 3_+3!7{..) L+3b(z,}+3b.rz).

1
3
In general z" is defined from b and 2° by:

= 5 ¥ | ]_ ¥ -1 2
I +1+.5' bE") (2)

or equivalently,

S\_‘; b="). (3)
={}



FICTITIOUS PLAY AND THE INTERPRETATION OF MIXED STRATEGY EQUILIBRIA 303

X X

0 N A el IR

T

e \V/

¥ 00y 23 0?
Figure 3. The function z — b'(z), Figure 4. The function z — b°(z),
giving the dynamics of G,. giving the dynamics of G,.

This construction is called ﬁcﬁn‘oﬁs play, and the associated sequence of theories
(z*} the fictitious play sequence generated by z° and b.
Note from (2) that

S 1 l
X _ 5] _— 5] _ ’.T-l
-z Tre lbfz™') -z ]S—HS (1,1).

So, b(z*!) — z*! is the direction in which the theory changes in step s. Futhermore
we see that |L—+s is an upper bound on the change of any one coordinate in step s, i.e., that
the changes in the theory become increasingly smaller?.

We now offer a geometric impression of fictitious play. Figure 3 illustrates Z; the set
of mixed strategy combinations. Choosing x along the vertical and y along the horizon-
tal axis makes the comners of Z correspond to the matrix of pure strategies: The upper-
right corner of Z is the combination (x, ¥) = (1,0), corresponding to the pure strategy
combination (U, R), and so on. Figure 3 is constructed for the game G,. The arrows
point from mixed strategy combinations z, to vector best replies bo(z) . For G, the best
reply correspondences take the form

[ x> 1/2
B, (=1l Byx)={0,1],x=1/2,
0, x< 142

X 1
2. Since ¥,

=] | Er

— % as ¥y — =, the decreasing step size does not imply convergenee of the sequence.
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1.0

230

Figure 5. The fictitious play sequence (z°),., of G, generated by 2 = (L.2) and b.

For the particular tie-breaking rule of (1) we then get 5: Z — Z given by:

(L1, x> 1/2
bx, y) = H,%J,x =1/2.
(1,01, x < 1/2

From Figure 3 it is obvious that from any initial theory, corresponding to an element
of the quadrant, the fictitious play sequence ultimately converges to the point (x, y) =
(1,1), corresponding to the unique Nash equilibrium (U, L) of G,.

For the game G, the situation is rather more complicated. Figure 4 shows the dy-
namics. Figure 5 shows the first 250 steps of the particular fictitious play sequence
generated by the initial theory 2° = ( 1, 1) and the tic-breaking rule 4°. This gives an

idea how the sequence converges to ( 15‘ %}, the unique Nash equilibrium of G,.
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For the games G, and G, we have argued that 1) fictitious play converges and 2) the
convergence point is a Nash equilibrium. Results on fictitious play fall into these two
categories, convergence results and characterization results. It can in fact be shown that
for any 2 x 2 game fictitious play converges for all choices of initial theory and tie-
breaking rule, see Hendon et.al. (1990, 19914). By an example due to Shapley (1964),
fictitious play does not always converge. We do however have

THEOREM. For any finite n-person game: If a fictitious play sequence (z°) converges
to z*, then z* is a Nash equilibrium.

PrROOF3. z* is a Nash equilibrium if every player i uses a best reply. The (possibly)
mixed strategy z¥ of player i is best reply, if and only if all pure strategies s; used with
positive probability are best replies. So, consider a pure strategy s; with z*¥ (s;) > 0.

It must be the case that s; was a best reply infinitely often during the fictitious play
sequence (z*). Otherwise, there would only be a finite number of steps at which s; was
used with positive probability, and then z¥ (s;) = 0 from (2), contradicting z* (s;) = 0.
So, there is a subsequence (z*) of (z*), such that s; is a best reply s; € B (z*) forall s*.

Consider the set of theories S¢s;) for which the pure strategy s; is a best reply. By
continuity of the utility function u;, S(s;) is closed. Since z* is in 5¢(s;) for all s, and z*'
converges to z*, we must have z* in Sfs; ), i.e., 5; is a best reply against z*. From the
above then z* € B.(z*). O

This result gives foundation for the Nash equilibrium concept in games where ficti-
tious play converges. In games where fictitious play does not converge, the concept of
rationalizabiliry, Pearce (1984), is supported, see Hendon et.al. (1990).

Further results on fictitious play may be found in Robinson (1951), Thorlund-Peter-
sen (1990), Milgrom and Roberts (1991), Krishna (1991), Monderer and Shapley
(1991) and Hendon et.al. (1990, 19916).

4. The Interpretation of Convergence Points

Assume that each player does his preplay iterations mechanically. He cannot conti-
nue forever, and each step takes some (small) amount of time. At some point the player
has to act. At this point the player has updated for some (large) number of steps o and
holds a theory z”. By individual rationality the player will then play a best reply to zv.

To be specific, assume that all stopping stages 0, 1, ..., s-1 up to some maximal
number s of iterations are equally likely, each having probability 1/s. Given these as-
sumptions the expected action of player i will be:
3. Although we use the notation introduced for 2 X 2 games, the proof is valid for any finite #-person
game.
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5 1 !
eli=c X biz). (4)

From (3) then tzi= 04+ H i tly:

(3) then we get z; Tos 21 Tas e?, or equivalently
l1+5

eJT = I z;'f__z?'

Increasing the maximal number of iterations, we can investigate expected behavior
of i by studying the sequence {ef J. From the calculations above it is clear that x: con-
verges to {x“.“ ') if and only if e: converges to zr_*. Then a convergence point zl_‘of‘ (z:_v )
can be interpreted as the expected action of player i (the best prediction of an outside
observer not knowing the stage at which i is asked to play) as the maximal number of
iterations goes to infinity.

This yields a nice interpretation of mixed strategies. If z* = (x* y*) has some players
using mixed strategies, we need not assume that actual randormizations are carried out.
Rather the mixture signifies the following: As shown above, x* is the proportion of
steps in which the strategy U of player 1 is the best reply (assuming that the set of steps
in which ties occur is of measure zero), and if the reasoning of player i stops at some
random step, with all steps being equally likely, x* is the probability that I/ is chosen.

Note that when making his move, player { will typically play a pure strategy. Figure
5, which show convergence to the mixed strategy equilibrium of G,, illustrates this
point. There is no randomization at the individual level. It is only due to the lack of
knowledge as to which step the opposing players have reached, that the probability di-
stribution over pure strategies arises. According to this interpretation, a mixed strategy
equilibrium is a statistical prediction of the outcome of the game.
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5. Concluding Remarks

Fudenberg and Kreps (1991) raises a critique against the use of fictitious play for
interpreting mixed strategy equilibria. Consider the game G, of figure 6.

For a symmetric initial theory like (x, »°) = (£, 1), the fictitious play sequence will
evolve in the following way: For a number of steps the best replies of 1 and 2 will be D
and L respectively. Through the updating x* is decreased and y* is increased until at
some stage both players simultaneously switch to I/ and R respectively. The theories
will ultimately converge to (x*, y*) = {%, %), a mixed strategy Nash equilibrium of G;.
But the sequence will everywhere exhibit the best replies (D, L) or (U R). So, the stra-
tegies used for updating will be coordinated in the “bad” outcomes.

While we find the critique valid for the use of fictitious play as a model of learning
in a repeated game, where the updating strategies are actually played in each round, we
find it less convincing for the interpretation of fictitious play as a preplay thought pro-
cess, since each player thinks independently of the others. With uncorrelated stopping
stages, the prediction will indeed be the product of the marginal distributions.

To sum up we have presented a bounded rationality model of the thought process of
players such that mixed strategy equilibria arise naturally as the expectation concerning
the players’ actions rather than expressing actual random actions. In particular the mix-
ed strategy of player i is not only the expectation of other players, but also the predic-
tion of i’s action made by an outside observer. In this interpretation both pure and mix-
ed strategy equilibria are predictions of the outcome of the game, for the mixed strate-
gy case given as a non-trivial probability distribution over pure strategy combinations.
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