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SUMMARY. The purpose of this paper is lo analyze the concept of automatic stabilization
tn various model formulations. It is found that in static models a positive relationship
extsts between the size of the lax rates and the normally used measures of automatic
stabilization. When it comes to dynamic formulations, however, the concept of automatic
stabilization has several dimensions, and whether high marginal tax rates have a stabiliz-
wng influence on the development of income will depend on the lag siructure of both the tax
Junction and other economic relationships. Consequently the policy implications of the con-
ditions derived in various sections cannot be worked out, until we know more about lag
structures of the Danish economy.

Introduction

It is frequently argued that the growth of the public sector in relation to
the private sector and the increased reliance on income dependent taxes - as
opposed to for instance property taxes - have increased built-in flexibility! and
subscquently also the dampening effect, which the public sector may have on
autonomous changes in income and activity.

Some economists? have even argued that due to a considerable time lag3
discretionary fiscal policy cannot be relied upon for stabilization and may in
fact accentuate the cyclical fluctuations in income. Instead, fiscal policy

1. For any tax this concept is defined as dT/dY; i.c. the automatic change in tax revenue, when
income or activity changes and the tax structure remains unchanged, The concept is further discussed
in section IIT,

2. Se¢ Fricdman (1g48).

3. For a diseretionary fiscal tax change the following lags are usually encountered: (a) Recognition
lag, (&) reaction lag, (¢) revenue effect lag, (d) adjustment lag for private demand, (e) adjustment
lag for private output. An automatic stabilizer depends upon (¢}, (4) and (¢), but not of course on
(e} and ().

I am indebted to J. Gelting, S. Hylleberg, G. Thorlund Jepsen, J. Vibe-Pedersen, C. Va-
strup and E. Yndgaard for comments on an earlier draft of this paper.
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should be confined to those automatic changes in the budget that follow from
changes in income, possibly strengthened by automatic changes in the tax rates?.

Other economists have contended that automatic fiscal stabilizers can
only reduce the secondary effects of an autonomous change in income, but
cannot by themselves bring the economy back to full employment. In addition,
a high degree of built-in-flexibility is a “mixed blessing” in that not only does
it reduce the contractive effects of a decrease in income, but it also makes it
more difficult to get an expansion started. The latter aspect has in recent
years been interpreted as “fiscal drag”®, which implies that in order to secure
full employment growth it is necessary to expand government expenditures or
reduce tax rates, unless expansion in private consumption or private invest-
ment can be relied upon.

Finally, some economists have argued that a high degree of built-in flexi-
bility may have a destabilizing influence if we consider other endogenous
variables than total real income or if we apply a dynamic model.

Before discussing the various measures of automatic stabilization we should
like to point out that some arbitrariness is bound to occur when a distinction
is made between automatic and discretionary changes in the budget. On the
revenue side a distinction is relatively easy, given the tax laws and the inter-
pretation of the laws, and the same applies to transfer payments on the expen-
diture side. However, when it comes to other expenditures, a distinction is less
clear. Thus, in many countries public expenditures increase automatically
with the general price level, and even for real expenditures one might say that
some of them tend to follow an increased demand for public goods automati-
cally, thus leaving very little for discretionary policiesS.

In the following we shall be somewhat traditional in that mainly auto-
matic changes in net taxes (tax revenue - transfer payments) are taken into
account, but in the section on growth we shall also allow for automatic changes
in real expenditures.

As a starting point for discussing some of the problems mentioned above
we take the traditional Musgrave-Miller measure? which we subsequently

4. The socalled "formula flexibility”. See Musgrave {1959, p. 512). For a specific formula see Tanzi
{1g66),

&. This term was first used in the Ecomomic Report of the President, January, 1962, U.S. Government
Printing Office, Washington 1962, It refers to the automatic tendency towards a budget surplus at
full employment, when the economy grows. This effect was an impertant argument for the Ame-
rican tax change in 1964, and we shall discuss the concept further in section II1. B.

6. See Bent Hansen (1569, pp. 18-19).

7. See Musgrave and Miller {1948).

5
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extend to more complicated static models and to dynamic models in which
both short run cyclical movements and long run growth are considered. The
scope of the following is somewhat limited in that monetary effects of changes
in the budget are not taken into account, and neither do we consider cffects of
revenue changes on the supply of labour.

I. Measures of automatic stabilization in a small static model

A, Musgrave and Milier
Let us consider the following models for a closed economy®:

() C=a+b(Y—T) and (2) C=a+b(f—T)

I =T I =1

G =G GC=0C
T=T T = f(%, q)

Y =C4+T+G Y=C+14-6G

where: 1 = income, € = consumption, / = investments, G = government
expenditures, and T = net direct taxes. All variables are measured
in real terms.

In (1) all variables except ¥ and C are exogenous, whereas in (2) Tis also
an endogenous variable.
Substituting into the equation for ¥ and differentiating totally we obtain:
da 4 dG + dI— bdT
1—4
and? (r.1)
¥, — da+ 4G + dl—bf'(q)dg
1—5(1—=1(1))

According to Musgrave and Miller automatic stabilization can now be
defined as the proportion of income changes which is prevented due to income
dependent taxes:

om0 by (T

dh  1—b(1—f(¥)) 1—b(l—epy- T|T)

where ep y is the elasticity of tax revenue with respect to income.

d¥y =

8. Throughout the paper we disregard the crror terms and the effects that various tax structures
might have on the error terms; cf. Bent Hansen (1969, p. 23). Initially we also disregard wage- and
price changes.

9. f*{¥) is the partial derivative of f(¥,q) w.r.t.? and JF7(g) the partial derivative w.r.t. the shift
parameter g. For the sake of convenience we let 47 equal £ (g) dg.
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Thus « is really a comparison of income multipliers, onc based on an
economic structure with endogenous taxes and a hypothetical one, where taxes
are assumed exogenouslo,

It may be argued that the above measure does not correspond to the defi-
nition, since the structural coefficients - in the above model only & - may
change with the change in taxes, and this effect has not been taken into ac-
countll 12, Alternatively, one might therefore take as a basis of comparison
the income multiplier for a system with proportional taxes (7 =1t- 1), as
this measure will be less affected by changes in the marginal propensity to
consume. This is done in:

B. Lusher

Using the same notation as above, but substituting a system with propor-
tional taxes for model (1), we obtain}3:
14 UA—bA—fT) ()bt

n 1—b(1—12)  1—b(1—f(1)

_ T (er,y — 1)
T 1—b(1—epny- TIT) | (3)

Il

]

In a system with proportional taxes, the tax elasticity er,3- == 1, and the
rate elasticity e;'(y),y = 0. According to the measure in (I.3), a tax system
will only be stabilizing if the revenue elasticity is > 1 or alternatively, if the
rate elasticity is > o. Lusher’s (1956) measure has the advantage that the
structural coefficients of the actual system are much closer to those of the
hypothetical system than in the Musgrave-Miller measure.

Cassidy (1g70) has also applied a proportional tax as a basis of comparison,
but from an entirely different point of view. Thus he argues that if in a linear

10. Rewriting the definition of « it is ¢say to see that it equals the relative reduction of the income
multiplier.

11. In empirical estimates of automatic stabilization the usual procedure has been to first derive
cstimates for all structural coefficients, assuming taxes endogenous, and subsequently to estimate
the same cocfficients, assuming taxes exogenous, This procedure will of course solve the problem
mentioned above, but a bias is introduced into the estimation when taxes incorretcly are assumoed
EXOEENIOUS, .

12, A similar problem may arise from the fact that the marginal propensity to consume varies cyclic-
ally, thus giving rise to asymmetric stabilization. See Eilbott (1966).

13. The relation between o and ff is: f = o — S VLG T 5
1-b (1-epy + T|Y)

51
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system we have a constant rate of growth of full employment real income,
government cxpenditures proportional to real income and no autonomous
elements in tax and cxpenditure functions, then a tax elasticity of 1 will be
neutral, as the equilibrium growth will not be disturbed by the presence of the
public sector. This definition, however, is relevant only under the rather strict
conditions stated above, since for any other development in income or speci-
fication of functions, an clasticity of 1 is not desirable. Consequently, if we
choose as reference base a tax system which either leaves a desirable position
unchanged or moves the system from an undesirable position towards a desi-
rable one, weshall have to change the basis, whenever there are changes in the
cconomic conditions, the economic structure, or the targets. This procedure
has the disadvantage that computation of automatic stahbilization becomes
rather laborious. On the other hand, it emphasizcs the fact that automatic
stabilization is a relative concept, which ought to be evaluated in relation to
the prevailing economic situation.

C. Brown

Brown (19535) has used the Musgrave-Miller concept in a slightly different
way, as he defines automatic stabilization as the difference between amounts
“of autonomous shifts in demand nccessary to sccurc a unit shift in output or
income” (p. 430) under respectively endogenous and exogenous taxes. Letting
dl denote autonomous changes in demand we then have:

dli = 1—14 and _
dly = 1— 41 — f'(¥)) obtaining for automaltic stabilization:
0 = dls— df, = L (T). (r4)

As pointed out by Brown, (r.4) will often make calculations casier, and p
will obviously vary positively with  and /(7). The limits are 1 and o as for
the Musgrave-Miller concept.

D, Pearse

Pearse (1961-62) has defined a measure which takes into account that
automatic stabilization can only affect the secondary effects of an autonomous
change in income. This is done by subtracting the primary change from both
the hypothetical and the actual income change, but otherwise relying on the
Musgrave-Miller mcasure. Assuming that the autonomous change occurs in
private investment, we thus obtain:
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s e—d A1) dl(1 —b(1 —[f(T))
” d1h — dI bdIj(1 — b)
_ ; - o
I —o(1—f(Y))
It is interesting to note that A = the automatic change in tax revenue, but

this interpretation is only valid, when the marginal propensity to consume is
assumed constant.

n
L

E. Bent Hansen

Bent Hansen (1959) has considered automatic stabilization in connection
with defining a measure of the total budget effect during a certain period.
Using the model explained above we obtain by subtracting 4> from d1;:

(dI + da + dG — bdT)|(1 — b) — (I + da + dG — bf"(g)dy)/

(1 — (1 — (1)) = b"(¥) dFaj(1 — b) (1.6)
as.an expression for automatic stabilization!4, 15, This measure depends posi-
tively on £ (¥), b, and d¥s, and it is important to note that the measure is
independent of the source of the income change.

In (1969) Bent Hansen defines d27 and dY: exclusive of df and dag, and
we then find the following expression for d¥; — d%%s:

(dG — bdT) (1 — &) — (4G — bf*(g) dq)}(1 — b (1 —f'(Y))
= 4f"(Y) (dI + da){(1 —b) (1 —&(1 —f'(X)) (.7)

According to Bent Hansen (196g, p. 24) this measure depends positively
on “how much extra-budgetary disturbance therc has actually been to dam-
pen”. However, in view of the equality given in (r.7) this conclusion does not
seem appropriate, and it furthermore seems more natural to define automatic
stabilization independent of the source of the disturbancelS.

Before analyzing the extended model below we consider automatic stabi-
lization in relation to a target level of income, ¥*. Thus if a certain 1'* is given
exogenously, and if for model (2) above we assume proportional taxes above
an exemption level (7 = ¢ + t¥), we get the following expressions for the

14. We let dT « f7{g) dg <f. footnote g.

15. The same expression can be derived from Lars Mathiesen's {(1961) definition of total and dis-
cretionary budget effects,

16, The economic structure may make the measure dependent upon the source of autonomous
change, but this is an entirely different probiem. For further discussion see 1w b,
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required levels of the instrument (T and ¢)!7 in respectively model (1) and
model (2):

T*=(a+1+CG—(1—8)1*/s and
o* =(a+T4CG—(1—b(1—1) T*)b (1.8)

For a given change in private investments the deviations from ¥* will
be respectively d11 = dIj(1 — b) and 473 — dIf(1 — b(1 — 1)), and if we
consider the necessary changes in the instruments to bring ¥ back to ¥*, it
may seem that more is required in model (1) than in model (2), since some
change in tax revenue has already occurred in (2). However, in both cases the
necessary change is df/b. This result is merely a reflection of the fact, that auto-
matic stabilization works both ways.

II. Extended static model
In general automatic stabilization depends upon three factors:
a. The endogenous variable being analyzed.

b. Theexogenous variable, causing the chan gesin the endogenous variable.
¢. The tax instrument considered.

Generalizing the Musgrave-Miller measure, we may write:
Sip = 1— D910z = fo (i, x5, )
fox; = f1 (o, x9)
where: Sy = automatic stabilization of the ’th endogenous variable with

respect to changes in the j’th exogenous variable, when # is
the instrument used18.

Ji = endogenous variable {
xj = exogenous variable j
Iy = tax instrument /

J1 and f2 will of course depend upon the economic structure, and as an illustra-
tion we shall consider the following linear model:

C =a+4 (Y —RP— Tp)/(1 4 t5) ¥ = income!?

120 = ¢ 4 n(RP— T,) C = consumption

17. We have selected ¢ as the instrument; alternatively we might have chesen &,

i8. This implies that other taxes are exogenous,

19. All variables are measuret in factor prices.

20. The formulation of this function implies that all production takes place in companies which are
subject to the corporate tax.
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RP =e¢ + fP I = investment

P =g+ kY RP = retained profits

Tp = h(Y— RP) P = profits

Te =t2 RP Ty = personal income tax
net of transfer payments

TP=10C T, = corporate income tax

Im =k4+m¥t T; = indirect taxes

Ex = Ex Im = imports

G =G Ex = exports

Y =CH+1+G+ Ex—Im G = government expendi-

tures on goods and
services.

A. Automatic stabilization of income (1)
The reduced form equation for ¥ will now be:

_et+c+ G+ Ex—k—(e+fo) (0(1—4) (1 + ta)*—n(l —&))

T
: 1—b6(1—a) (1 —fR) (1 + &) —afh(l — &) + m
(m.1)
whereas if all taxes were exogenous we would get:
j,.1=a+c+G+Ex—k—(e+fg}{b—n}_ (m.2)
1 —b(1 —fh) —nfh + m
Applying the Musgrave-Miller measure we then obtain:
_ 1_@_1_’2 _ bt + ta) (1 —fR) (1 + t3) 14 nfh to
dhh 1 —d(l—fh) (1 —t) (1 + ) 1—nfh(l —ta) + m
(1-3)

As appears, « is positive and depends upon all three taxes, but if we want
to analyze which tax is the more stabilizing, we can first define built-in flexibi-
lity and subsequently derive the effect of changes in built-in flexibility on e.
Defining built-in flexibility as the increase in tax revenue due to an autono-
mous increase in income, we have:

B = dTpldY = & (1 —fh)
Fo = dT /dY = tofh: (m.4)
Fy = dTifdY = (t5/(1 +13)) b (1 —fh) (1 —ta).

21. In formulating the consumption function, we have assumed no money illusion. If certain parts
of consumption are exempt from the indireet tax, {3 is a weighted average, which depends upon the
proportion being exempt,
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£; will of course be affected by both the tax rates and the coefficients of
the structure, but if we confine ourselves to the former, we can derive the
following relations between the degree of built-in flexibility and «:

ox _ O 21 _be(14 ) (1—b(1 —fh) —nfh + m)

— = s o o —=——=L =9
ol dhy ol he

Ga _dx 3 n(l—b(1—fh) — nfh + m) s

Fs 8ty OF, D2

7 3 I — b1 — FB) — nfh -

ii - .a_;c . ._33. e —--"..._(-.-._"{E]_..._{i:{ﬁ__‘._ﬂ =0 (H.ﬁ)
oFg fifa an D2

where D = 1 —- b(1 — fh) (1 - ) (1 + :3)'1—-—nﬂ:(l — ) 4+ m

Thus in terms of changes in the degree of built-in flexibility the indirect
tax has the strongest influcnce on «, whereas the relative importance of T,
and T, depends upon b(1 + f5)-1 compared with #.

If we alternatively wish to analyze the effects on the degree of automatic
stabilization of changes in the tax rates directly, we obtain:

9o _ U —S) (1 + &) (1 — b (1 — fh) — nft + m)

3& D2 -
oo _ afh(1—b(1—fh) —nfh 4 m) >0
dia D2 B

G _ 611 —fB) (1 =) (1 + 1) "2(1 — b (1 — k) —nfh +m) >0 (1.6)

diy Dz

For plausible values of the coefficients changes in #; are seen to have the
smallest effect whereas the relative importance of 4 and / depends upon
b(1—fh) (1 4 t3)-2 compared with nfh.

Speaking loosely the difference in ranking between (11.5) and (1.6) may
be explained by the fact that it takes a substantial change in f3 to change F;
by “one unit®22, and since = is positively affected by increases in f3, a “one
unit” change in F3 will have a rather large effect on «.

It is, perhaps, more interesting to note that the results in (11.6) arc the
reverse of what is often found for discretionary fiscal policy. Thus, it is well
known?3 that in order to obtain a certain reduction in total activity, ; and 4
must be changed by equal amounts, whereas the required tax revenue changes
are larger for T} than for T,. Hence, for discretionary policy, changes in f; are

22. This is esaily seen by partial differentiation of (1z.4).
23, Sec for instance Peacock and Shaw {1971, pp. 8g-go).
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in a sense more effective than changes in {1, but as seen from above the reverse
holds for automatic stabilization.

For all taxes we find that automatic stabilization depends positively on
built-in flexibility and marginal tax rates. In the above model we have as-
sumed no money illusion, but if we alternatively formulate the consumption
function as:

C(1 +ts) = a + b(¥ — RP — T)

it is easy to show that the stabilizing effect of the indirect tax will increase. On
the other hand, if we have “positive” money illusion - i.e. C is a positive func-
tion of #3 - the indirect tax will be destabilizing. This, however, does not seem
very likely, so we shall not consider this case any further.

B. Automatic stabilization of ¥ for various exogenous variables

In the results derived above we have not specified which exogenous
variable is changing, but it is easy to sce that the results will hold for changes
in a, ¢, G, Ex and k. This similarity, however, is due to the rather simple
structure of the model. In large scale econometric models?4 it has been found
that automatic stabilization very much depends on where the change takes
place, and this again implies that « cannot be measured uniquely. In that case
it seems most relevant to define « in relation to the exogenous component
that has caused most of the changes and to evaluate the tax structurc accor-
dingly.

C. Automatic stabilization of other endogenous variables

Endogenous variables, which depend on income, normally will be stabili-
zed, when income is stabilized. Thus, if imports are a positive function of
income, the balance of payment will change less when autonomous demand
for domestic products is shifting. If, on the other hand, the autonomous shifts
occur in demand for foreign products or in exports, the changes in the balance
of payment are accentuated, when taxes are endogenous, since income 1s now
restrained in bringing the economy towards balance of payment equilibrium?s.

If prices are a positive function of nominal income, endogenous taxes will
also reduce price movements, but this effect may be counterbalanced by the
fact that private demand and government expenditures are influenced by

24. See Balopouloes (1g67), Goldberger (1970), and Chalmers and Fischel (1g67).
a5. For derivation of a similar result from a somewhat diffcrent approach, sce N. Kaldor (1g6a,

p. 48).
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price movements. Let us consider this problem in terms of the following simple
model:

C=aP+b(F—T)

I =17
G=G+c¢P
P :g—l—fir
T=t¥
Y¥=C+I+6

where P denotes the level of prices and all variables are stated in nominal
terms. We have assumed that investors are subject to money illusion - whereas
consumers are not -, that the level of prices is determined partly autonomously
and partly by income, and that the level of government expenditures is adju-
sted for price movements.

Solving for P we obtain:

P=(fT+G)+e(l—b(1— (1 —b(1—f —fla+a). (@)

For exogenous taxes, we derive:

Po=(fT4+ G—bT) + e(1 — )1 — b—fla + c)), (m.8)
if G is adjusted for price changes, and
Pr= (flI4+G—3¥T) + ¢(1—8)/(1 — b —fa) (m.9)

if G is not adjusted for price changes.

Computing the Musgrave-Miller measure for changes in ¢, we get re-
spectively:

oy = 1 —dP{dPy = bif{a + ¢)[(1 — ) (1 —&(1 —¢t) — fla +¢)) (m10)
and

ag = 1 — dP[dPy = f(tab—c(1 — b))f(1 — &) (1 — (1 —¢)

—Jfla + 8)) (m.11)

o is clearly positive, whereas «s may be negative - and the public sector
thus destabilizing - if the adjustment factor for G is large and the tax rate small.
With respect to the latter, two influences scem to be present under inflation.
Thus most transfer payments vary directly with the level of prices causing a
reduction in #, whereas the income tax schedule when based on nominal in-
come produces an increase in ¢, if the tax schedule is progressive?6,27,

26. For further evaluation of automatic stabilization under inflation see Gelting (1966, pp. 126-28).
27. A higher marginal tax rate, on the other hand, may give rise to demand for higher wages and
subsequently higher prices, The effect of this destabilizing influence of a higher ¢ can be worked out
by making the autonomous element in the price equation a function of 1.
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Brown (1g55) and Waldorf (1967) have analyzed built-in flexibility and
the effect on price movements, using a stricter criterion than the one applied
above. Thus they require, that the level of real taxes must increase, when
prices rise, and this requirement leads - not surprisingly - to the conclusion
that for autonomous changes in prices, the tax must be progressive in order to
stabilize price movements.

III. Dynamic Models

When time is introduced into the model either through an explicit time
variable or through lagged relationships, a number of problems arise, and as
will appear from below, the interpretation of automatic stabilization becomes
some what ambiguous. We shall analyze these problems in both short term
models and under long term growth?28.

A. Short Term Models

Some of the problems mentioned above can be shown in the following very
simple model for a closed economy, where for the sake of simplicity we only
consider a personal income tax:

Ct =a+b(Yi—Tg) +e¢(Yea— Tea) c<<bh <1
I} =01

T,g =1"f|:

Gy =G

Yo =Ce+ 11 + Gy
By substitution we get a first order difference equation in 1

Ye(l—b(1—1)) — L a(¢(l—r) +0) =a+G (1r.1)

The particular solution will be:

Yp =@+ G 1 —b(l—1r)—c(l—1)—0) (mr.2)
and the homogenous solution is:

T = A((c(1 —7) + D[(1 —b(1 — )", (m.3)
yielding a general solution:

Yoy =¥n + 2p.

28. The analysis is incomplete, as we mainly study lags from the point of view of automatic stabili-
zation on the revenue side, Thus we do not at all deal with lags connected with discretionary
changes in expenditures and revenues.
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In order to determine the coefficient A we need an initial condition, which
we may specifv as 77, = ¥y, and the complete solution, will then be:

T:rl“’ . ) t:_:.+G ] (c(l —r) + v
! ’ I——|f¢5+r:](l—rj—-—: (1—51——1’}'

i BTy =)

If, on the other hand, we assumc taxes exogenous, we get the following
complete solution:

7= (r,—4tE=C+9 7) {+__ et C— (bt T

1 e J\1—8) T 1= ——»

(111,
| —b—c—o 5)
The last term in the above cquations is the long term equilibrium for 7,
and if we apply the Musgrave-Miller measure to the long run situation, we
obtain:
(1—(b+¢) (1—1r)—2) r(b+c)

e 1— - e (m6)
(Il —b—c—uv) l——b—i—::){lu—r

This expression can be interpreted as the relative reduction in the long
run multiplier. « is positive, if the denominator is positive, and this again
depends upon the stability of the long run equilibrium?2®, However, as appears,
the endogenous income tax will increase the likelihood of having the stability
condition satisfied.

For a short run analysis, however, a study of the long run equilibrium is
not particularly interesting, as it may never be reached, and we therefore turn
to the first term in equation (ur.4), which will determine the time path of the
system if an cquilibrium situation is disturbed. This term consists of two parts,
of which the first is the initial deviation from equilibrium and can be i interpre-
ted as a scale factor. The second part determines both the actual time path
and the time required for reaching the new equilibrium. When comparing
equations (mr4) and (m.5), we find that endogenous taxes have reduced
both the initial disturbance39 - and thus the scale factor - and the adjustment
time, the latter because r will reduce the numerator and increase the denomi-
nator in the exponential part. In addition, endogenous taxes will increase the

2g. In general the measurcs derived for automatic stabilization in the static model will correspond
to long run autematic stabilization in a dynamic model, Cf, Balopoulas (1967, p. 243).

30. Thus the static Musgrave-Miller measure is applicable for evaluating the "scale effect”, as it is
determined by the multipliers, See also Thalberg (1971, p. 307).
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likelihood of obtaining a stable solution, for which the condition is that the
base of the exponential expression is absolutely < 1.

For other models, howcver, the situation is less clear. Thus, when it comes
to higher order difference equations, it is not unlikely that we may have to
compare systems, of which one is characterized by initially rather violent
fluctuations, but a rapid adjustment time, and the other by a smooth movement
towards the new equilibrium, but a rather long adjustment time. A possible
way out may be to integrate over time the absolute deviations from equi-
librium, but a priori it is difficult to judge, which system is the more sta-
bilizing.

In the following we shall analyze a few examples where the emphasis will
be on various tax structures, whereas the specification of the other relations is
constrained by the fact that difference equations of order higher than two are
rather difficult to evaluate without simulations or empirical measures3l.

1. Let us initially consider a model consisting of the following equations:

C: = a+b(li—Ti)

I; = I TB
T2 = fffr_l — T:_I}
G, =¢G

Yi =Ci4+ 1+ Gt
Solving the system for ¥, we get the solution33:

fy_ @+OU+n V[ rl—2))
JV‘_(._T" .1—:5—:94,—?'(1—3})( l—b—ar)
. {@+0 (1 +7 -

As appears, a high tax rate34 will reduce the scale effect - and thus reduce
the amplitude of the oscillations - but it will increase the adjustment time and

31. The method used 1s similar to that applied by Smyth (1963) and Gertz (1g971).

32. This formulation resembles a tax system, which Denmark had until 1g67.

33. See appendix 11,

24, When tax revenue in peried ! is a function of income in period {—1 we have to define built-in
flexibility in terms of a certain time period, I ¢ and +—1 refer to years, and the time period is 1
year, built-in flexibility in the above model will be o, whereas it 15 r for a time period of 2 years,
If the time period is g years built-in flexibility is < r, since we now have to take T;_; into account, and
in the long run the built-in flexibility will be r{{1 +r), which is less than r,

In the following we shall use built-in flexibility and marginal tax rate interchangeably.
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the likelihood of getting antidamped oscillations, which occur when r(r — o)/
(1 —&—2) > 135,

If, on the other hand, the tax function had been T = r¥;_; the complete
solution of ¥ would have been:

. = t
¥, = fa._____‘z..f'i_g.... )[_ . ‘5’__) € e+ G (1.8)
. 1l —b—op L by l—b—u 1—&—o 4 br
Thus a high tax rate will reduce the scale effect, but it will still have a
destabilizing influence on the adjustment path3s, although the influence of 7
is somewhat reduced, as 4 is in most cases less than 1 — . These results, how-
ever, very much depends on the lag structure specified for the other equations.

2. Next, let us consider the following model:

Co =a+b(F—Ty) + (i — Tra)

Iy = o(¥i1—Yip)

T, = r¥e

Gy = G

Y: = Ci+ 1, + G,
which yields the following equation for 7

Yi(l—b)—(+v—tNta+ @+l 2=a+G (mr.g)

As we now have a second order difference equation, we shall confine
ourselves to analyzing the roots, as analysis of the complete solution gets rather
complicated.

Solving the above equation we find complex roots and fluctuations if
(¢ +v—br)2 < 4(e +¢) (1 —8), and the fluctuations are damped for
(v 4 er}/(1 — &) << 1. If the roots are real, a stable solution is obtained37 for
(¢—71 (b +¢))/(1 — &) < 1. Hence we find, that a high degree of built-in
flexibility will increase the likelihood of getting a fluctuating adjustment path
and of getting antidamped fluctuations, implying that a new equilibrium may
not be reached. On the other hand, when the roots are real and the adjustment
path smooth, a high degree of built-in flexibility will make the system converge
faster to a new equilibrium.

35. It is interesting to note that Thalberg (1971, p. 300) comes to the same conclusion; viz. that there
tends to be explosive fluctuations in ¥, when the lag in the tax function is longer than the lag in the
consumption function.

36. Thus a high r will increase the likelihood of getting antidamped oscillations,

37- We can assume both roots positive, since for most cases br—c¢—p < 0,0 +erz= oand 1—b > o,
For further explanation of the method used for deriving the above conditions see app. 1.
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3. Let us now change the tax function to38
Ty =nli+ sl n >

whereas the other functions from case 2. are retained.

Solving for ¥ we obtain:

.T;I:I -—fl(] —?‘1]) —_— fr;_l(f:(l - rl} — bro + ?.-‘:I 4+ Tg_g(ﬁ?’g 4+ 1)

=a+G (m.10)

which will yield complex roots if (e(1 — r1) — bra + v)2 << 4(¢cr2 + v)
(1 — & (1 — r1)). The roots will furthemore yield antidamped fluctuations for
(erg + 2){(1 — 6 (1 — 1)) > 1. From these conditions we observe that r; will
have a stabilizing influence, whereas a high ra will be destabilizing. Thus, lags
in the tax structure will tend to accentuate autonomous disturbances, and this
effect would be even stronger, if we also took monetary effects into account.

When the roots are real, and we have a smooth adjustment path, the sta-
bility condition is39 1 — ¢ — b > — (b 4 ¢) (11 + r2), and we find that a high
degree of built-in flexibility will increase the probability of convergence,
regardless of whether taxes are lagged or unlagged.

4. Let us finally consider a case where consumption is assumed a distributed
lag function of disposable income:

Co=a+b(MYi—T)+ 22(¥ea—Tea) + ...
coe+ (Y p— Tipga) +--2)
oo
where 0 < A << 1 and >’ A4 = 1. By a Koyck-transformation this function

=1
can be reduced to:

Ce=a(l— 1) + 64 (¥e— T¢) + ACea

In order to avoid third order equations we assume the following equation
for respectively investment and taxes:

Ig‘m = al’;_;
Tt = TT‘;

48. The argument behind this formulation is that the tax payments occuring in year ¢ for institutional
reasons are determined by both present and past income, Consequently we also have to assume that
consumption is determined by tax payments and not by tax liabilities. Another implication of the
formulation is that ry and rg do not refer to actual tax rates.

49. We can again assume both roots positive, of, app. 1.

40. An investment function based on the capital stock adjustment principle can be dealt with as the
distributed lag consumption function, if the model is supplemented with a function for the capital stock
(K = &y + R
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Solving for ¥ we then getdl:

(=281 —1)—Yia(A 4+ 2) + ¥iovd = (a + G) (1 — ) (IIL.11)
and the roots are complex if (4 4 v)% < 2 (1 — 2b (1 — ), but yield damped
fluctuations for #Af(1 — &2 (1 —r)) < 1. Hence, a high tax rate will increase
the likelihood of a fluctuating but damped adjustment path, _

For real roots and a smooth adjustment path, we get convergence for
(1 —4) (1=-2) —&i(1 — ) > 0, and a high tax rate is seen to stabilize the
adjustment.

The above four cases should only be considered illustrations of the appropriate
analysis of automatic stabilization in dynamic short term models, and conse-
quently the conclusions we have arrived at are very tentative. However, under
the present Danish personal income tax system, a high degree of built-in
flexibility seems to have a stabilizing influence on the adjustment path, espe-
cially if there are no lags in tax payments. It should be kept in mind, however,
that the models used are extremely simple, and that any realistic model would
lead to difference equations of order higher than two, which are too complica-
ted to discuss when the structural coefficients are unknown.

B. Long term growth :

A number of economists42 have discussed the effects of discretionary fiscal
policy on the equilibrium rate of growth and on deviations from this equilibri-
um. This discussion, however, is not the subject of the following sections, where
we merely analyze the stabilizing or destabilizing effects of a given tax and
cxpenditure structure. .

These effects are often thought of in terms of “fiscal drag”, which con-
ceptually corresponds to the automatic budget reaction. Thus, if government
expenditures are constant, “fiscal drag” will correspond to the automatic in-
crease in tax revenue, when full employment income increases, and it is there-
forc equivalent to Pearse’s static measure of automatic stabilization43, 44,

41. Sce appendix 11.

42. See for instance: Kurihara (1956), Gurley (1953) and Musgrave (1959, ch. 20).

43. "Fiscal drag” should be distinguised from *fiscal leverage” (ef. Musgrave (164)), which refers
to dG-5f7(g) dg — i.e. the impact of a discretionary change in the budget — and from "changes
in full employment budget surplus”, which most often refers to dG—f" (g) dg; i.e. the "unweighted”
budget change at full employment, when discretionary changes occur. £(1,4) denotes the tax func-
tion (cf. p. 3) and b the marginal propensity to spend. .
44. Note that "fiscal drag” is independent of the source of the income change; cf. Bent Hansen (1969,
pp- 23-24).
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Despite this resemblance, it does not seem appropriate to interpret automatic
stabilization in a long run growth model exclusively as “fiscal drag”. Whether
a “fiscal drag” occurs will depend on the tax function compared with the
government expenditure function?, and whether the postulated contractive
effect occurs depends upon the development in private expenditures compared
with the government budget. In addition, however, it is of interest to analyze
to what extent the existence of endogenous taxes may dampen possible devia-
tions from the equilibrium path, and this problem is entirely different from
that of “fiscal drag”. Both questions will be dealt with in terms of a modified
Harrod-Domar model and a neoclassical model.

Harrod-Domar model. The former has also been used by Peacock and Shaw4é
and is specified as follows:

Co = b(Ti1— Te)

Ig = Gfg
Gy =gfs
Tz=fft

Assuming that p% of G is invested, and that the capital output ratio is
1/g the annual increase in productive capacity is gd¥¢_1 where d=c¢+ pg,
and the equilibrium rate of growth is47:

My =b(1—n(1—(@+g)—1=gd (m.12)

For given values of b, ¢, g, and ¢ itis possible to find a tax rate that will
secure full capacity growth. Thus for b = 0.9, ¢ = 0.15, § = 0.1, p = 0.5, and
g = 0.40, the equilibrium tax rate is 0.1, and if that rate is adopted, the devel-
opment of income will be as shown in the second column of table 1, where
column 1 indicates growth in productive capacity. If r < 0.1, income will
grow faster than productive capacity, and if 7 = 0.1 income will grow less than
capacity, implying that we have 2 “fiscal drag”.

As the concept of automatic stabilization deals with the response of the

45. Thus for the Danish economy there does not seem to be any problem of insufficient increase in
government expenditures!

46, See Peacock and Shaw (1971, pp. 125 ).

47. We have 1 = b{1—rYe1 + eXt + 2 or

¥ = b{i—n)Teaf(1——2) or
d¥ 11 = B(1—r)f{1—e—g) — 1
which in equilibrium must equal the growth in capacity.

6
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cconomy to autonomous changes, we shall next turn to the question of how
the existence of a public sector will affect this response. Let us assume that in
period 1 ¢ increases to 0.2 the other parameters remaining unchanged. This
change will increase the capacity rate of growth from 8% to 109, and we
find a development in capacity as shown in column 3. If the tax rate remains
unchanged at 0.1, income will grow as shown in column 4, and we notice an
increasing discrepancy between capacity and income.

An expression for automatic stabilization corresponding to the static
measure might be obtained by deriving the effect on the demand determined
rate of growth with and without the public sector. This will vield:

ey Omlde (1 —7)(1 —c—g)?

dnlde b(l —¢)2
(==t —(1—r) (1 —¢)2
= - y—r e (mr.13)

where #, and »g denote the demand determined rates of growth. If this expres-
sion is negative, the public sector will have a destabilizing influence, and
whether this occurs will clearly depend upon the tax rate in relation to g,
whereas the proportion of G that is spent on public investments does not have
any influence.

Alternatively - and in our opinion more satisfactory - we can make the
tax function more realistic by introducing a progressive rate structure and com-
pare the results of this change to either a system with proportional taxes or a
system with no public sector at all. Following Peacock and Shaw we shall in-
troduce a progressive structure by making the tax rate a function of the rate
of growth of income:

(1) re=ri_y + s(2, — Y1)
(2) re=ra+4s(a—7_s)

These formulations do not correspond completely to the actual determina-
tion of a progressive rate structure, but if we take lags into consideration, the
above formulations are quite realistic if T refers to tax payments and not to
tax liabilities, and they furthermore simplify the calculations48,

Starting with 7,_; = o.1 and assuming § = 0.0003 the two formulations
yield the results shown in respectively columns 5 and 6 in table 1. Peacock and

48. We might alternatively let tax revesue be a function of the rate of change in income. This is done
by Musgrave {1959, p. 512} to illustrate “formula flexibility™.
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Shaw only consider the second formulation of the progressive rate structure
and conclude that a progressive structure is destabilizing compared with a
proportional structure as it will overshoot the new equilibrium growth rate,
when changes in the economic structure oceur.

This conclusion, however, does not seem warranted, since a proportional
rate, which is an equilibrium rate before the change in ¢, overshoots to a much
greater extent than the progressive rate. In other words, with a proportional
tax rate a discretionary policy is required to bring the economy back to equili-
brium growth, whercas under a progressive structure, the deviations from
equilibrium growth are damped, although' the system will not automatically
be brought to the new equilibrium growth.

The first formulation of the progressive rate structure yields a desirable
dampening influence immediately after the change in ¢, but later on the
dampening is too strong, the deviations of ¥3™ from ¥5¢ becoming absolutely
larger than the deviations of 2™,

TABEL 1. Development in Capacity and Income

[ 2 3 4 5 6
Year ¥ m Yor Pgm ¥ym Yym
I 1000 1000 1000 1000 1000 1000
2 1080 1080 1100 1157 1113 1157
3 1166 - 1166 - 1210 1339 1080 1269
4 1259 1259 1331 1549 1104 1336
5 1360 1360 1464 1792 1005 1373

NoTE: ¥*¢ = productive capacity; ™ = demand determined income.

The two formulations of the progressive rate structure have the common
feature that they sooner or later will produce a “fiscal drag”, unless g also
changes with the rate of growth of income. In that sense a progressive rate
structure may be undesirable and destabilizing. If, however, we consider sta-
bilization in relation to the system’s response to autonomous changes, a
“lagged” progressive tax is morc stabilizing than a proportional rate structure
and consequently also more stabilizing than a system with no public sector.
As appears from the table the progressive tax will damp the deviations from
equilibrium growth and thus give the government more time for introducing
the appropriate discretionary changes. An “unlagged” progressive structure,
on the other hand, is destabilizing except for the first year, and it does not leave

6"
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much time for the authorities to introduce changes. Therefore, from the point
of view of stabilizing economic growth, a with-holding principle combined
with a strongly progressive structure seems unfortunate.

Neoclassical growth model. As pointed out by several authors there are many
possibilities for affecting growth rates in a Harrod-Domar model, but when it
comes to neoclassical models, the influence of fiscal policy is rather limited, as
the equilibrium growth rate is determined exogencously. However, with a given
rate of growth, it is still possible to affect the level of consumption through
fiscal interventions, and furthcrmore discretionary fiscal policy may shorten
the adjustment time??.

Furthermore, fiscal policy may still have an important influence on the
actual rate of growth, which probably is a much more relevant variable from a
policy point of view. Consequently, the practical use of the following section
may seem very limited, as we have only analyzed automatic stabilization
within a neoclassical equilibrium framework. The model used is as follows:

Y = ept K@ Lyt wherea + b =1
G =(1—9(T—Ty

G; =r.’ﬁ

Tt =r1;

G:I = mri}

Iié =Kia—Ki=c¢Vi—dEK,, wheree=s5(1l —71) +mm
Lt =€“"Lo

L and K denote respectively labour and capital, and I denotes net private
and public investment. The rest of the notation is explained in earlier sections.
As appears, we assume disembodied technical changes and a “natural budget
reaction”, since total tax revenue is spent on cither consumption or invest-
ments0,

The rates of growth of income and capital are respectively

¥iY¥ =p+a KK + bn and (L. 14)
E‘,I’chg—d, (mL15)

where g = the output/capital ratio, and 4 = the rate of depreciation.

49. See Peacock and Shaw (1g91), and Cornwall (1963 and 1965).

50. Alternatively we might assume G constant or a positive function of . It makes no difference for
the results derived below, as long as the model has to satisfy the condition that total investments =
total savings.
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We therefore have 7, |Y =p 4 a(cg — d) + bn and for Ir"‘:j]’ = ﬁf',fK'
Y =p+afi¥+ bn=plb + n. (11.16)

Thus, the equilibrium rate of growth is given exogenously and cannot be
influenced by fiscal policy. If, however, an equilibrium situation is disturbed,
the fact that we have endogenous taxes may influence the time required for
returning to the equilibrium movement.

If we assume that the private propensity to save increases from say s, to
5151, the actual rate of growth will deviate positively from the equilibrium rate
of growth, but after some time the system will return to the equilibrium,
where the output/capital ratio is now lower and the per capita income higher.

As pointed out by R. Sato (1963), the adjustment time may be con-
siderable, and we shall follow his method in analyzing the factors influencing
the adjustment time. It is natural to consider the adjustment path for ¢, since
¢ is constant in equilibrium,. Consequently one can derive a difference equation
for ¢, and on the basis of this equation it is possible to compute the following
expression’®2 for the time required to obtain £ 9% of the total adjustment:

log(l + (so(l —7) + rm) kfsi(1 — 1) + rm) (1 —&))
P+ b(n + d)

Clearly, endogenous taxes affect adjustment time through the second term
in the numerator, and differentiating this term with respect to r, we obtain:

& = (L 17)

otgjor — 4L =N 1—so)m (1.18)
(1 (1 —7) + rm)?(1 — &)

Hence, we find that endogenous taxes will prolong the adjustment time,
and a high degree of built-in flexibility will in that sense be destabilizing. This
result may seem surprising, but can probably be explained by the fact that the
existence of endogenous taxes will increase total investments and consequently
the rate of growth of capltal durmg the disequilibrium pcrmd Since the latter
is characterized by .H' K > 7 ¥, the relative 1ncreasc in K |K implies that it
takes longer before K /K returns to the same level as 4 1x.

Concluding this section we note, that in a neoclassical growth model the
problem of “fiscal drag” is excluded by definition, as total savings always

51. We have also analyzed disturbances caused by changes in p, n and &, but in no casc did the tax
rate have any influence on the adjustment time,

52, Derivation of this result has been omitted due to lack of space, but is available upon request
from the author. The derivation follows very closely the method applied by R. Sato.
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equal total investments. But, of course, this observation is not very helpful in
a situation, where “fiscal drag” is a problem.

Conclusion

In this paper we have endeavoured to analyze how automatic stabilization
is defined and determined in various models with particular emphasis on the
influence of the tax structure. The static conclusion that automatic stabilization
is a positive function of marginal tax rates - or built-in flexibility - holds for
some of the dynamic formulations but not for others, and it becomes particular-
ly doubtful when we turn to long run growth in a neoclassical setting.

Since any realistic empirical model will contain lagged relationships, the
static measure is inappropriate, except for long run equilibrium changes. On
the other hand, the dynamic mecasures are not very useful either, as long as the
lag structure and the parameters of the model ar¢ unknown. Similarly, it
should be borne in mind that both the static and the dynamic measures are
relative in the sense, that whether they are “high enough” depends upon how
much there is to stabilize. This, as well as a more exact evaluation of the auto-
matic stabilization in a dynamic model, is only possible on the basis of empirical
measurements, which, however, are beyond the scope of this article.

APPENDIX |

In setting up the stability conditions for second order dilference equations we have
made use of figure 1%% below, which is derived from the following expression for the dif-
ference equation:

i +6Y ) +¢ly s =o.

In all the cases we have considered ¢ = o, implying that the roots have the same
sign, and b is either positive or negative. In the complex roots case the modulus = }/¢,
implying that ¢ <7 1 is a stability condition. Therefore, any combination of ¢ and b in
IIT and IV will yield a stable solution. In the real roots case we are to the left of the
parabola, but as ¢ > o a stable solution is confined to the areas I and I1. The condition
for being in onc of those arcas given that we have a real solution can be stated in one
cquation; viz. .

b ==y —y for <=0 and
b= 1 +¢ for b>=o0

53. See Baumaol (1970, pp. 219-24).
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This is due to the fact that the tangency between PQ and PR and the parabola oc-
curs in respectively (—z2,1) and (2,1). Therefore, if we know that we have a real solution
and that we are below PR or above Pf) , the condition ¢ <C 1 is automatically satisfied,

APPENDIX IT :
Eat
In cases 1, and 4 the derivation of the equation for ¥; cannot be obtained by simply
inserting in ¥y = Cp + It + Gy, as several of the endogenous variables are lagged. We
shall, therefore, show how the second order equation is derived for case 4. For easy
reference we repeat the model being used:

Cp =a(1—A) +bA (1 —Ty) +4C, (1)
Iy =Y, (2)
T, = r¥; (3)
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G =G (4)
Y, =C+I+G; (5)
Inserting (2) and (4) into (5) we get:
i =G +uly,y +G (a)
Inserting (3) into (1} we further have:
Ct = a(1t—A4) +b6A(1—r) Yy + ACy_, (b)
Introducing the lag operator £ and using matrix notation, (a) and (b) can be
written:
1 — Ey

s —1 | [x _[ GJ
—-bﬂ.(]—f},l—EﬁJ [CEJ T et —A4)

We can then find ¥y as Dy/D, where D = the determinant of the coefficient matrix, and
Dy = the determinant of the coefficient matrix with the first column replaced by
[G, a(s — A)]. Alternatively we can write D - ¥y = D,,, obtaining

(1—Ev—EA+E v —bA(1—1)) Yy = (e +G) (1 —21) or

(t—b(1—M Y~ + N Yy + Ao, = (2 + G) (1 — A)
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