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X-ray Reflection Tomography (XRT) is a tool for imaging of buried layers and interfaces in multilayer thin-films. The 
method combines X-ray reflectivity and computerized tomography to determine spatially dependent reflectivity curves.1–3 

Simulations of X-ray reflection tomography experiments make it possible to asses to which accuracy properties can be de-
termined and evaluate various reconstruction methods.2 It is thus important that such simulations mimic real experiments. 
In this paper it is shown that a Monte Carlo approach can be used to simulate XRT experiments and test reconstruction 
techniques. This approach takes into account the statistical properties of an experimental X-ray setup and allows for 
simulation of diverse experimental configurations. The currently used analytical simulations based on projections do not 
include such statistics and are limited in scope. The Monte Carlo approach will facilitate further development of the 
applications of XRT.

1 Introduction

X-ray reflectivity is an outstanding tool for non-destructive
determination of the structure of thin multilayer structures.
The main advantage is that the reflected intensity depends
on features of the layer thickness at nanoscale. These mul-
tilayer thin films are used e.g. for energy storage, in pho-
tonics and in many semiconductor devices such as batter-
ies, LEDs, MEMS, superlattices, etc. Deposition tech-
niques allow the multilayer materials to be tailor-made
with layer thicknesses at the atomic scale. To analyze and
asses the quality of such materials a technique with sensi-
tivity at a scale of similar length is required.4

Reflectivity is measured by the intensity of specular reflec-
tion as a function of wavevector transfer (Q). This is done
by keeping the X-ray energy constant and varying the inci-
dent angle close to grazing incidence as shown in Figure 1.
Q is a vector equal to the difference between the vector
describing the incoming wave and the scattered wave, for
measurements of specular reflection only the magnitude of
Q is of interest:4

Q =
4π

λ
sin(θ) (1)

Up to a certain angle i.e. the critical angle, X-rays ex-
perience total external reflection because the index of re-
fraction in the X-ray regime is lower in solids than in air.
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Beyond this angle the reflectivity is determined by Kies-
sig fringes caused by interference of the scattered X-rays
from the different interfaces in the sample.4,5 As a func-
tion of Q, the reflectivity depends on electron density, the
layer thickness and roughness of interfaces between layers.
The measured reflectivity curve can thus be used to deter-
mine all these multilayer properties. For normal X-ray re-
flectivity (XRR), however, only the average reflectivity is
recorded so the determined properties are also averages of
the illuminated portion of the sample.6

Fig. 1 XRT setup: A sinogram at constant Q is created by
keeping the incident angle θ constant while changing the
in-plane angle φ .

1.1 Parratt’s recursive method

To calculate the reflectivity as a function of Q for a given
multilayer structure, the kinematical approximation or Par-
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ratt’s recursive method is usually applied. While being
easier to use the kinematical approximation is only valid at
a high Q and fails completely near and below the critical
wavevector. Since reflectivity in this case is measured from
below and past the critical wavevector, Parratt’s recursive
method is required. This method uses the refractive index
and the Fresnel relation to determine the reflectivity from
a single interface. The reflectivity is then calculated from
the bottom interface and up. Since there are no reflections
from below the bottom interface, the reflected intensity can
be determined as a function of the intensity reaching this
interface, the refractive index of the materials at this in-
terface and Q. The reflectivity of the next layer can now
be determined, since the reflectivity of the layer below is
known. This can be continued recursively until the reflec-
tivity of the entire multilayer structure is known.4,7

Fig. 2 Sinogram at Q = 0.0976 Å−1 generated from 90
measurements in McXtrace. It was used to reconstruct the
spatially dependent reflectivity at this Q-value, as shown on
Figure 4.

1.2 X-ray reflection tomography

X-ray reflection tomography (XRT) combines many
reflectivity measurements from various sample orien-
tations by applying computerized tomography.1–3 This
enables determination of the spatial dependence of the
reflectivity curve.1 X-ray reflectivity is typically measured
at incident angles of a few milliradians, thus the height of
the reflected beam along the Q-vector is in the 10 - 100
µm range for typical sample sizes. This is too small to
separate intensity from different parts of the sample along
the direction of X-ray propagation. The measured intensity
is thus the sum of all reflected intensities along the prop-
agation direction. With a collimated beam, the width of
the reflected beam running parallel to the sample surface
is equal to the width of the illuminated area of the sample.

By measuring the reflectivity with a collimated monochro-
matic beam at different in-plane angles (φ ), it is possible
to combine the results into a sinogram of the sample at
constant Q as shown in Figure 2. By using computerized
tomography on the sinogram, it has been shown that the
spatially dependent reflectivity can be determined at con-
stant Q.1 By measuring sinograms at different incident an-
gles, the entire spatially resolved reflectivity curves can be
determined. By applying XRT in this manner it has been
shown that the tomography can be reconstructed and used
to determine heterogeneous layer thickness locally. This is
done by fitting analytical solutions from Parratt’s recursive
method to the measured reflectivity curves.1

A spatially dependent reconstruction from a sinogram can
be achieved by the methods listed below.

1.2.1 Filtered back projection
Reconstruction can be obtained through filtered back pro-
jection (FBP) since the Fourier transform of projections
in real space is equal to slices of the Fourier space. By
combining multiple slices and applying a high-pass filter
the real space tomography of the sample can be recon-
structed.2–4 The FBP method has the advantage that it is
computationally efficient, but the required use of a high-
pass filter results in increased noise. This noise increase is
troublesome if the reflectivity in a small area of the sam-
ple is to be determined, such as by micro X-ray reflectivity
(µXR).

1.2.2 Algebraic reconstruction techniques
Algebraic reconstructions techniques (ART) are based on
solving the inverse problem of the system of linear equa-
tion given by:

A~x =~b (2)

Where~x is the spatially dependent reflectivity of the sam-
ple. ~b contains the observed intensities in the form of a
vector representation of the sinogram. A describes the
dependence of observations on the reflectivity of the sam-
ple. The components of A are so-called line-pixel coeffi-
cients, which describe how an X-ray beam interacts with
the sample before hitting the detector. To determine ~x it
is necessary to calculate an approximation of the inverse
of A. A can be calculated analytically, but determining
the inverse of A is not a straightforward task for systems
using detectors operating with thousands of pixels. ART
methods are thus more demanding to compute than FBP
but allow for more corrections, such as constraining the
reflectivity so it doesn’t use unrealistic values.8,9 ART is
especially useful when only limited data are available to
reconstruct the tomography.
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Fig. 3 Map of the heterogeneous multilayer phantom used in
simulations. The map assigns each position a reflectivity curve
corresponding to the multilayer structure, this means reflectivity
is a function of x, y and Q. A map with sharp edges was chosen
because these tend to be harder to reconstruct. The circles to the
left side of the map have a diameter of 200µm, 100µm, 50µm
and 20µm (from the top). They have been included to explore
the achievable resolution.

2 Simulations

Simulations were based on simulating a XRT experimental
setup with Monte Carlo algorithms. The Monte Carlo
methods allow for simulation of systems with statistics
corresponding to realistic experiments if the probability
distributions of these systems are known. McXtrace10

is a Monte Carlo environment for simulating X-ray
experiments by using a ray-tracing technique where every
single photon is created with position and wavelength
based on the probability distribution of the source. The
propagation of each photon is determined by calculating
how it interacts with the components it passes.10 For
the purpose of using McXtrace for XRT simulations,
the author has created a new heterogeneous multilayer
component. McXtrace already included a homogeneous
multilayer component that determined the specularly
reflected intensity from kinematic calculations or from
a reflectivity curve.10 The new component mapped
different positions on the sample to different reflectivity
curves. This was done by initially reading an input map
file by extending the embedded C-code in McXtrace.
Whenever a photon hit the sample the impact position
was used to determine which reflectivity curve to use.
Subsequently, the existing multilayer component was
called by using McXtrace’s meta-language, but with the
reflectivity curve corresponding to the position on the map.

To determine whether the simulations correlated with
real experiments, the materials from ”Interface-sensitive
imaging by an image reconstruction aided X-ray reflec-
tivity technique”1 were simulated in a synchrotron setup

matching the one used in the experiment. The simulated
multilayer was a Si substrate with an Au layer of varying
thickness underneath a layer of Ti. The exact layout
of the multilayers of the sample is shown in Figure 3.
Reflectivity curves of the simulated multilayer structures
were first simulated in GenX11, then the reflectivity
curves were used as input for McXtrace. The simulated
reflectivity curves are shown in Figure 5. The Parratt
recursion formula was used in GenX since the kinematic
approach does not take into refraction account, which is
needed for total external reflection.4

A complete reflectivity tomography dataset was recorded
by measuring sinograms with in-plane angle increments
of 2◦ from 2◦ to 180◦. Only a half circle was measured
since the angles from 182◦ to 360◦ would be essentially
the same measurements with mirrored results. For each of
these 90 measurements in a sinogram, 108 photons were
simulated. 90 sinograms were simulated at incident angles
varying linearly from 0.108◦ to 0.464◦, corresponding
to a Q from 0.0308 Å−1 to 0.1317 Å−1 at 16 keV. This
means that the angle of total external reflection for Au
is within the simulated angles as it is at Q = 0.08 Å−1.4

The simulated setup was an X-ray beam from a wiggler
monochromized to 16 keV with an energy resolution of
10−4 keV.1 This small energy interval was necessary
to assume measurement of the reflectivity from each
reconstruction was done at constant Q. A reconstruction
was made for each of the 90 sinograms since each sino-
gram had a single corresponding Q value. This made it
straightforward to compare the simulated reflectivity with
that from the analytical solution in GenX.

The original synchrotron experiment was performed
by using a detector with a pixel size of 6.45 µm and
a beam with a horizontal divergence of 0.02 mrad.1

Simulation of the experiment with McXtrace was per-
formed by assuming a collimated beam. Subsequently,
the reconstructions were compared with a reconstruction
from a simulation using a fan beam with a horizontal
divergence of 0.02 mrad in McXtrace. The purpose of
this was to show that using a collimated beam was a good
assumption. The fan beam was approximated as an infinite
number of point-sources with a horizontal divergence
given by a Gaussian with an uncertainty of 0.02 mrad. The
exact beam and divergence profile depend on the source
and optics used in the experimental setup. However, just
like in the original experiment, it was assumed that there
was no vertical divergence.

The reconstructions were achieved by means of both
filtered back projection (FBP) and a sub-class of the
algebraic reconstruction technique (ART) termed simul-

UCPH Nano-Science, 2018, 2, 201809 7pp | 3UCPH Nano-Science, 2018



Fig. 4 Reconstructions of the phantom at Q = 0.0976 Å−1 using FBP or SIRT with 10, 30 or 90 equally spaced projections. The
reconstructions performed by means of SIRT show improved signal to noise ratio and fewer artifacts when compared with the
reconstructions performed with FBP. The reflectivity curves for Figure 5 are the values at the three red dots in the image of the SIRT
reconstruction from 90 projections. Note the pixel size is 6.45 µm, but the red dots are considerably larger to make them visible.

taneous iterative reconstruction technique (SIRT). SIRT
is a method that updates every iteration by multiplying
the error in the previous iteration with the sums of the
columns and rows of A simultaneously.

~xk+1 =~xk +ωk ·D−1 ·AT ·M−1 · (~b−A ·~xk) (3)

ωk is a scalar, D and M are dependent on the ART method
used. For SIRT, D is a diagonal matrix with the sum of
each column of A as the diagonal elements, and M is a
diagonal matrix with the sum of each row of A as the
diagonal elements. For each iteration the artifacts from
reconstruction are reduced, but noise from the measure-
ments also becomes more significant. The optimal number
of iterations to use is dependent on the tomography, the
experimental setup, the nature of the noise and the exact
reconstruction algorithm used. A good stopping rule will
terminate the reconstruction when a minimum in noise is
obtained.8,12–16 Determining a stopping rule is a challeng-
ing task so a trial and error approach was used to select
150 iterations in the reconstructions: at this number of it-
erations the exact amount of iterations made minute dif-
ference.

3 Results and Discussion

To compare the effect on reconstruction quality from the
number of projections in each sinogram, the phantom was
reconstructed from 10, 30 and the full 90 projections,
as shown in Figure 4. All reconstructed phantoms show
the patterns from the map. For the full number of pro-
jections the reconstruction produces a clear match with
the original map of the sample. It is thus shown that the
simulated photons have successfully interacted with the
heterogeneous sample. The pixel size is 6.45 µm, but
a multilayer structure needs to extend to a larger area
before the reflectivity matches the original reflectivity
curve. Pixels in the center of the circles with a diameter of
200 µm match the reflectivity curves corresponding to the
multilayer structure. The structure of the smaller circles
was observable only as irregularities in the reflectivity of
the surrounding structure. To create better reconstructions,
the number of projections or the pixel density of the detec-
tor could be increased. Both of these would lead to more
measurements, which would produce a reconstruction in a
better quality.
To show that the method can be used to test reconstruc-
tion techniques, the reconstructions from the different
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Fig. 5 The reconstructed reflectivities in single pixels of sidelength 6.45 µm show a high degree of correlation with original
reflectivity curves. The position of the three pixels can be seen in Figure 4. All the reflectivity data from McXtrace has been
multiplied with the same value to obtain the same reflectivity as for GenX for Q = 0.0308 Å−1. A similar value could also be obtained
by extrapolating the curves to Q = 0. This is justified because the reflectivity should always approach 1 as Q approaches 0. The critical
angle of Au is clearly visible as a high reflectivity until Q = 0.08 Å−1. At low reflectivity the uncertainty from artifacts in the
reconstruction and the limited photon count in the Monte Carlo method dominates.

amount of projections were compared. As expected,
missing information caused the greatest effect on the FBP
reconstructions, as can be seen in the number of artifacts.
Especially the thinner 112 Å layer of Au becomes hard to
distinguish since areas with higher contrast create artifacts
with more intensity.

The reflectivity at individual positions (micro X-ray
reflectivity, µXR) was determined by plotting the reflec-
tivity as a function of Q.6 This is compared with the
initial reflectivity curves in Figure 5. It is evident from the
reconstruction that it is possible to determine which of the
three multilayer structures the chosen pixels belong to.

To get a quantitative overview of the differences be-
tween the qualities of the reconstructions, Mander’s
overlap coefficient (MOC) was calculated. The purpose
was to show that using SIRT with 150 iterations delivered
a good reconstruction as shown in Figure 6. Another
purpose was to show that the quality of the SIRT recon-
struction was superior to that of the FBP. MOC is given

by:17

r =
∑i s1i · s2i√

∑i(s1i)2 ·∑i(s2i)2
(4)

s1i was the reflectivity value of a pixel on the map as
determined from the reflectivity curve corresponding to
the material assigned to that position on the map. s2i was a
weighted average of the reflectivities in the reconstruction
that shared position with the map pixel. The weights were
equal to the amount of overlap. A weighted average was
required because the reconstructions might not have the
same pixel position or size as the map.
The reflectivity of all pixels for all 90 incident angles θ

were summed up and compared using MOC. A MOC of 1
means the reconstructions correlate perfectly with the map
and the reflectivity curves, whereas a MOC of 0 means
there is no correlation.17 This was possible because the
perfect result was known in the form of the reflectivity
curves of the materials from GenX. The map used as input
for McXtrace then assigned these materials to known
positions. This was an advantage of using simulation since
a reconstruction from experiment would require another
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type of experiment with higher precision to determine
the quality of a reconstruction. Using all 90 projections,
the SIRT reconstruction with 150 iterations had a MOC
of 0.993 whereas the reconstruction using FBP had
0.953. Comparison between SIRT and FBP for a different
number of projections is shown in Figure 7. The SIRT
reconstruction from a beam with a horizontal divergence
of 0.02 mrad also had a MOC of 0.993, which shows that
a collimated beam produced a good approximation.

Fig. 6 SIRT reconstruction quality as a function of iterations
shows that at 150 iterations the change in quality per iteration is
minimal. MOC begins decreasing after approximately 150
iterations, which is why this number of iterations was chosen.
MOC is calculated at every 5 iterations using all 90 projections.

Fig. 7 MOC as a function of the number of equally spaced
projections used in the reconstruction. SIRT is clearly the better
match to the original reflectivity curves, especially with a small
number of projections. Oscillatory behavior occurs because
some directions are more important than others for calculating
the best reconstruction. MOC is calculated at every 5 equally
spaced projections.

McXtrace returns errors on the detector intensities

from the necessary use of a limited number of photons.
Reconstruction of these errors using SIRT gave an esti-
mate of errors arising from the Monte Carlo approach.
This resulted in an uncertainty in the µXR curves in the
order of 10−2 decreasing to 10−4 as Q is increased. This
together with the artifacts from the reconstruction and the
bandwidth of the beam is the source of any uncertainties
in the µXR curves. Error bars are omitted since the exact
contribution from artifacts is undetermined and depends
on the positions as well as the exact reconstruction
algorithm used. In real experiments uncertainty also arises
from dispersion of the beam, which affects the incident
angle and thus the magnitude of Q for the interaction. The
lateral size of the evanescent wave means that a photon
hitting the sample in a heterogeneous area will interact
with several multilayer structures. This effect was not
included in the simulations since only one reflectivity
curve was used for any one photon. The effect of diffuse
scattering from rough interfaces to other areas of the
detector was not included in the simulations. However,
diffuse scattering contributes significantly less than
specular reflection. The reconstructed reflectivity curves
for areas with low reflectivity might be affected by diffuse
scattering from other areas of the sample.

4 Conclusions

Based on the full reflectivity dataset it has been shown
that the Monte Carlo approach produces results which can
be used to test reconstruction techniques. Since the opti-
mal result is known, it is possible to calculate measures
to quantitatively evaluate the reconstruction quality. The
reconstruction has shown that there is a contrast between
different areas and that it is possible to determine where
the thickness of a layer changes. The µXR curves show
that it is possible to determine the reflectivity as a func-
tion of both position and wavevector transfer. This means
that the tomography of the phantom can be determined and
it shows that the simulations return the expected results.
The use of Monte Carlo simulations produce more realis-
tic noise, and it is possible to add more factors, as deemed
necessary. By using the McXtrace environment, it is pos-
sible to change the source characteristics, the optics and
the detector. This can be achieved by using the already
included components or by adding new ones.

4.1 Outlook

During the continued development of these simulations it
will be important that the noise generated corresponds to
real experimental noise. That way, the simulations can be
used to determine optimal experimental setups and recon-
struction techniques and to get an idea of the image quality
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to be expected from these experiments. When this is con-
sidered, it will be a stepping stone towards creating opti-
mal XRT experiments on lab-source experimental setups.
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