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I study the effect of a non-Abelian gauge potential on a Weyl semimetal phase appearing in a particular 3D tight-binding
model of fermions. The lattice I consider is characterized by a C3 rotational symmetry and by staggered π/2 magnetic
fluxes on the triangular plaquettes in its horizontal planes. The energy spectrum is characterized by both single Weyl points
with linear energy dispersions in all three momenta directions, and double Weyl points with quadratic energy dispersions
in two directions and linear dispersion along the axis of the rotational symmetry.

1 Introduction

The study of topological phases of matter are at the fo-
cus of both theoretical and experimental studies. Most of
the efforts have been devoted to the study of topological
insulators and superconductors, which are gapped energy
systems that can display non-local, topological features,
which are robust against local noise and perturbations. The
main robust features are usually related to the existence of
gapless boundary states protected by the symmetries of the
system1. These protections were believed to be based on
the presence of an energy gap in the band structure but
in the most recent years, it was proven that also gapless
systems can display similar features. The simplest and
first examples were Weyl semimetals2, which are based
on the massless fermions called Weyl fermions, that Her-
mann Weyl derived from the Dirac equation in 19293.
The 3D Weyl semimetal contains zero-energy bulk modes
with linear dispersion in all three momenta directions,
called Weyl nodes, and their stability against perturbations
gives rise to protected gapless surface modes called Fermi
arcs4. The Weyl nodes also carry topological features cor-
responding to monopoles of the Berry flux.
Weyl semimetals are not the only possible semimetallic
phase of matter with topological features as there are sev-
eral proposals to create more exotic topological materials.
Some of the proposals suggests topological materials char-
acterized by multiple Weyl points, which have quadratic or
even higher dispersion relations with multiple monopoles
of the Berry flux5.
The Weyl nodes were obtained in solid states systems by
breaking the spatial inversion symmetry in several com-
pounds such as tantalum arsenide6–8 and niobium ar-
senide9. The appearance of gapless Fermi arcs have also
been observed in tantalum arsenide through photoemission

measurements8. Experimental realizations of Weyl nodes
have also been found in photonic crystals with gyriod
geomtry, where the inversion symmetry was broken by
drilling holes with an additional element10. The breaking
of time-reversal symmetry to obtain Weyl nodes has not
been done experimentally but several proposals have been
made11,12.
The study of topological phases of matter is not only lim-
ited to solid state systems as the example of the photonic
crystals showed. One of the other platforms to implement
systems with topological features is with ultracold gases
trapped in optical lattices and it gives an environment prac-
tically free from disorder, where the interactions among
particles can be controlled with good accuracy. Recent
experiments in the ultra cold atom platform demonstrated
the possibility of engineering large magnetic fluxes, for ex-
ample through laser-assisted tunneling13,14 and spin-orbit
couplings15–17 .
In this paper I will make a proposal to obtain Weyl nodes
with linear dispersions, called single Weyl points, and
quadratic dispersions, called double Weyl points, in a 3D
triangular lattice with π/2-flux and non-Abelian gauge
potential. I will study a tight-binding model of two-
component fermions with nearest-neighbor hoppings. In
Section 2 I discuss the properties of a system with π/2-
fluxes implemented by an Abelian gauge potential. In Sec-
tion 3 I add a non-Abelian gauge potential, which resem-
bles a spin-orbit coupling, to the system. In Section 4 I
study and discuss the band structure and Weyl points (Sec-
tion 4.1) and the symmetries of the system (Section 4.2).
Finally, Section 5 is an overview of the possible future de-
velopments of the models, which include the analysis of
its Fermi arcs and the experimental techniques to observe
its band structures.
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2 Triangular Lattice with staggered π/2-
fluxes

Experiments have shown that it is possible to tune stag-
gered magnetic fluxes in a triangular lattice with artificial
gauge fields18. It is therefore reasonable to consider the
theoretical analysis of a lattice model of fermions in a 3D
stack of overlapping horizontal triangular lattices to get
Weyl semimetals.
The x-y plane of the triangular lattice is shown in Figure 1.
The lattice vectors~a are given by:
~a1 = ax̂ , ~a2 = a

(
1
2 x̂+

√
3

2 ŷ
)
, ~a3 = a

(
1
2 x̂−

√
3

2 ŷ
)
, ~a4 = aẑ

where a is the lattice constant and a = 1 for simplicity.
The first Brillouin zone of the triangular lattice is defined
by the reciprocal lattice vectors:~b1 = 2π

(
k̂x− 1√

3
k̂y

)
,

~b2 =
4
3

√
3 k̂y , ~b3 = 2π

(
k̂x +

1√
3
k̂y

)
and~b4 = 2π k̂z .

Fig. 1 The 2D x-y plane of the triangular lattice with hopping
amplitudes t and lattice vectors a1, a2 and a3 . The extension in
the third direction,~a4, is just an unitary vectors like~a1.

I introduce an Abelian gauge potential ~AAB, which leads to
induced fluxes with opposite sign for upwards and down-
wards pointing plaquettes in the triangular lattice18 as
shown in Figure 2. The flux in each plaquette is ob-
tained through Stoke’s theorem, which is the sum of the
three hopping phases θ j(~r) =

∫~r+~a j
~r

~AAB(~r
′
) ·d~r ′ equal to

±π/2. The gauge choice does not have any physical con-
sequences for the system, but the flux configuration shown
in Figure 2 is gauge invariant property and defines the
model.
The general tight-binding Hamiltonian for a system with
phases is given as:

H =−t ∑
~r, j

eiθ j(~r) c†
~r+~a j

c~r +h.c. (2.1)

where c† and c are creation and annihilation operators for
fermions on the lattice, t is the hopping amplitude, θ j(~r)
are the fluxes and ~a j are the lattice vectors ~a1, ~a2, ~a3 and
~a4.

Fig. 2 Illustration inspired by J. Struck et al18, which shows
the gauge field applied to the triangular lattice system. The
crosses correspond to inwards pointing gauge fluxes and dots
correspond to outwards. The hopping amplitudes J are
imaginary and the triangular lattice has the same lattice vectors
~a j as in Figure 1.

I choose the specific configuration of π/2-fluxes for this
model, so the triangular lattice gets imaginary hopping am-
plitude J = i t and hopping vectors a j as in Figure 1. The
gauge choice gives the system π/2 phases in the x-y plane
and z-direction and none of the vertical plaquettes have
fluxes. The system has C3 rotational symmetry around the
z-axis, which will be discussed in Section 4.2.

3 Non-Abelian gauge potential as spin-orbit
coupling

In the previous section I introduced staggered π/2 fluxes
in the system, which only has a single band, and there-
fore not sufficient to give Weyl points. I expand the model
with spin degree of freedom. In ultracold atom experi-
ments the two spin species are usually given by hyperfine
atomic species in current experiments19,20. Therefore to
study the Weyl cones I introduce a spin 1/2 degree of free-
dom, whose dynamics is dictated by a non-Abelian gauge
potential ~ANAB:

~ANAB = q(σx,σy,σz) (3.1)

where σ are Pauli matrices and the parameter q determines
the intensity of the non-Abelian term ~ANAB

20. The non-
Abelian gauge potential couple, in general, the spin and
the dynamics of the particles, like a spin-orbit coupling,
which is different from the usual spin-orbit coupling like
Rashba or Dresselhaus. The realization of this ”3D Weyl
spin-orbit coupling” has been proposed through suitable
laser schemes in ultra-cold atoms21,22 .
With the new gauge potential~A consisting of ~ANAB and ~AAB
the Hamiltonian can be written as:

H =−t ∑
~r, j,s,s′

U j
s,s′ c†

~r+~a j ,s
c~r,s′ +h.c. (3.2)
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where s and s′ label the spin states. The unitary operators
U are determined by the Abelian phases e iθ j(~r) , which
match the ones in Section 2, and the non-Abelian compo-
nent ~ANAB :

U j
s, s′ = e iθ j(~r)ei

∫~r+~a j
~r

~ANAB(~r ′)·d~r ′ (3.3)

I consider the unitary operators in Equation 3.3, which are
the tunneling operators in the system, consisting of the
staggered Abelian π/2 fluxes from Section 2 and the non-
Abelian ”Weyl” spin-orbit coupling given by Equation 3.1.
The tunneling operators are:

U1 = i eiqσx , U2 = i eiq
(

1
2 σx+

√
3

2 σy

)
,

U3 = i eiq
(

1
2 σx−

√
3

2 σy

)
, U4 = i eiqσz

(3.4)

With the tunneling operators in Equation 3.4 the Hamilto-
nian for the system in momentum space H(~k) is written in
the Weyl Hamiltonian form:

H(~k) = α0(~k)σ0 +αx(~k)σx +αy(~k)σy +αz(~k)σz (3.5)

where σ0 is the 2x2 identity matrix and the momentum
coefficients are given as :

α0 = 2t cos(q)

(
sin(kx)+2sin

(
kx

2

)
cos

(√
3ky

2

)
+ sin(kz)

)
(3.6)

αx = 2t sin(q)

(
cos(kx)+ cos

(
kx

2

)
cos

(√
3ky

2

))
(3.7)

αy =−2
√

3 t sin(q)

(
sin
(

kx

2

)
sin

(√
3ky

2

))
(3.8)

αz = 2t sin(q)cos(kz) (3.9)

When the Hamiltonian in Equation 3.5 is diagonalized the
energy is given by:

E(~k) = α0(~k)±
√(

αx(~k)
)2

+
(

αy(~k)
)2

+
(

αz(~k)
)2

(3.10)

When the q = 0 the energy E in Equation 3.10 reduces to
α0 which is equivalent to Equation 3.6, and it matches the
spectrum of the π/2-flux model from Section 2, and the
Hamiltonian H in Equation 3.5 also reduces to this model.
The parameter q is limited to 0≤ q < π because of the re-
lation H(q) =−H(q+π) .
The spectrum of the Hamiltonian in Equation 3.5 is char-
acterized by both Weyl points and double Weyl points,
and the the properties of the points and symmetries of the
Hamiltonian will be discussed in Section 4 based on the
works of Reference 5.

4 Weyl points of the system

4.1 Band structure and Weyl points

The single Weyl points have a linear energy dispersions
along the three momenta directions and have a topological
charge, which is associated with Berry flux of 2πκ where
κ = ±1 is the chirality23. The double Weyl points are
quadratic along two directions and linear in the third
and carry a double monopole of the Berry flux, which is
behaving topologically as two Weyl points with the same
charge.
In order to identify and describe the Weyl points prop-
erly we first look at the band touching points of the
first Brillouin zone. The energy spectrum of Equation
3.10 gives band touching points for any value of q 6= 0
at π

(
0, 2√

3
,± 1

2

)
, π

(
± 2

3 ,0,±
1
2

)
, π

(
± 2

3 ,
4√
3
,± 1

2

)
,

π

(
± 4

3 ,±
2√
3
,± 1

2

)
, which corresponds to four inequivalent

Weyl points and two double Weyl points in the first Bril-
louin zone. The band touching points can be studied if one
consider the gap between the valence (lowest) and con-
duction (highest) band, given by ∆E = 2

√
α2

x +α2
y +α2

z ,
in the first Brillioun zone for one of the momenta planes
(kx-k̃y plane). The shifted momentum k̃y is a gauge
transformation, k̃y = ky− 2π√

3
, and the kx-k̃y plane is shown

in Figure 3.

Fig. 3 Energy gap between the valence and conduction band in
one of the kx-k̃y planes (kz =+π/2) where the band touching
points are shown with their corresponding topological charge.
The momenta direction ky is shifted as k̃y = ky− 2π√

3
. There are

two inequivalent Weyl points with ±1 charge at the corners of
the first Brillouin zone (shown as black dotted hexagon ) and
one double Weyl point with −2 charge at the middle of the 2D
projection of the Brillouin zone.

The band touching points corresponds, as mentioned
earlier, to two inequivalent Weyl points with topological
charges ±1 and one double Weyl point with topological
charge +2 in the plane shown in Figure 3 and opposite
topological charges for the kx-k̃y plane with kz = −π/2 .
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In this 2D Brillioun Zone all the single Weyl points are
on the corners of the first Brillioun zone, and the double
Weyl point is in the center. An important requirement
to satisfy in regards to the topological charge is the
Nielsen-Ninomiya theorem24 which states that the sum of
the topological charge for all the Weyl points (single and
double) must be 0. This is also true for this system since
all the Weyl points comes in pair in the first Brillouin zone.

The filling of the bands, and how the parameter q,
in the spin-orbit term, changes the energy of the bands,
will be discussed in the following. I will first consider
q = π/2, resulting in α0 = 0 , and then how the system
evolves for q different from q = π/2.
I plot the energy in the kx-k̃z plane (ky = 0) with q = π/2,
where the shifted momentum is k̃z = kz− π

2 , in Figure 4,
which shows three Weyl points. Two of the Weyl points
are single Weyl points in which the energy dispersions are
linear in all momenta directions, and for the double Weyl
point the energy dispersion is quadratic in the kx-ky plane
and linear in kz.

Fig. 4 The energy dispersion with q = π

2 for the kx-k̃z plane is
shown for ky = 0. The momentum is shifted as k̃z = kz− π

2 . Two
inequivalent Weyl points with different charges ±1 with linear
dispersions in the kx-k̃z plane are shown. The double Weyl point
has quadratic dispersion in kx-direction and in kz-direction it has
linear dispersion.

The Weyl points all have zero energy at q = π/2, which
means the Fermi surface at half filling includes only
discrete points, and therefore both the bands are partially
filled.
In the case of q 6= π/2 the bands start to overlap in energy
as shown in Figure 5, where q = 2π/5. In the Brillouin
zone two single Weyl points with different charges have
the highest energy and two Weyl points with opposite
charges at the lowest energy.
The energy value of the double Weyl points is still 0
as in the case for q = π/2 thus it does not depend on
the parameter q and the filling of the double Weyl with
fermions can be expressed as NE = L3 , where L is length
of one of the dimensions of the system.

Fig. 5 An example of one the kx-k̃z planes (ky = 0). The energy
dispersion with q = 2π

5 for the kx-k̃z plane is shown for ky = 0.
Only the kx direction is shown in this Figure for better clarity of
the energy values. In this plane the single Weyl point with
negative topological charge has negative energy and positive
charge has positive energy.

4.2 Symmetries of the system

The single Weyl points are protected by their topological
charge and they can only be destroyed by coupling a pair
of Weyl points with opposite charges. This means that,
if they lie in different positions in momentum space, it is
not possible to open a gap with weak perturbations, unless
these perturbations break translational invariance. The sin-
gle Weyl points are protected by translational invariance
and local and uniform perturbations can not destroy the
single Weyl points.
I will consider the effect of local and uniform perturbations
on the double Weyl points and consider what symmetries
are protecting them. A double Weyl points can be split in
general into two equal Weyl points by local perturbations.
I consider the generic effect of a local, translational invari-
ant perturbation P on the Hamiltonian:

H = H0 +P (4.1)

where H0 is the non-perturbed Hamiltonian. The pertur-
bation P is a local and position independent operator and
I will only consider the perturbations which do not break
the single Weyl points, since that double Weyl points are
more fragile than the single Weyl points. The perturba-
tion consists of Zeeman terms (σx,σy,σz), where σz does
not break the rotational symmetry of the system, since it
is along the z-axis, and will shift the double Weyl points
along the z-axis. The other Zeeman terms, σx and σy, do
break the rotational symmetry and destroy the double Weyl
points, which is consistent with the results of Reference 5.
A study has shown C6-symmetry can protect the dou-
ble Weyl point5 and another study shows C3 with time-
reversal symmetry also protects the double Weyl25.
The system described by Section 4 has C3-symmetry
(shown in Appendix D) and particle-hole symmetry
(shown in Appendix E), which is reminiscent of the C3
with time-reversal symmetry.
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To analyze the band touching points in this model, I ex-
pand the Hamiltonian close to a double Weyl and trans-
late the momenta ky and kz and consider the Taylor expan-
sions on an effective low-energy level and get the effective
Hamiltonian He f f . The band structure of the model close
to the double Weyl points, with the shifted momenta k̃y and
k̃z can be described by:

He f f (~k) =
(
−3

4
t sin(q) k2

x +
3
4

t sin(q) k̃ 2
y

)
σx

+

(
3
2

t sin(q) kx k̃y

)
σy−2 t sin(q) k̃z σz

(4.2)

The effective Hamiltonian He f f is invariant under C6-
symmetry and therefore the energy bands of He f f are
eigenvalues of C6. I label uc and uv the eigenvalues
of the conductance and valence bands under a π/3 ro-
tation. When uc and uv are different from each other
〈ψ1|P|ψ2〉 = 0 unless the perturbation P is not invariant
under C6-symmetry .
If P does not depend momentum or position the gap can-
not open unless it violates the C6-symmetry and so it must
be that the double Weyl points are protected from any per-
turbation which does not violate the rotational symmetry.

5 Further developments of the model

As seen in Figure 3 the band touching points with the same
kx and kz coordinates have the same topological charge.
This suggests than when they are projected in the ky direc-
tions opposite topological charges do not overlap. There-
fore Fermi arcs appear on surfaces at fixed y. It could be
possible to explore the Fermi arcs if a hard-wall potential
is confining the potential and gives the system a finite size
in the y-direction (y = 0, ...,L) 4. The detailed analysis
of the wavefunctions and properties of the Fermi arcs of
the confined system are beyond the scope of this work and
may be subject of further investigations.
A proposal for the detection of the band touching points
experimentally is the Landau Zener experiments26,27,
which looks at the transitions of some of the fermions from
the lower band to the upper band. It may be possible to de-
tect how many fermions are in the upper band by time of
flight measurements and ideally distinguish between the
single and double Weyl points . If the Landau Zener ex-
periments becomes able to detect band touching points and
Weyl points, it could be an interesting way to study the
model presented in this paper experimentally.

6 Conclusions

I analyzed a tight-binding model of fermions hopping in
a 3D lattice and subjected it to a gauge potential and I in-
troduced staggered π/2 fluxes on the triangular plaquettes

with an Abelian gauge potential. To study Weyl points I
expanded the model with spin degree of freedom and in-
troduced a spin 1/2 degree of freedom, whose dynamics
was dictated by a non-Abelian gauge potential. The non-
Abelian gauge coupled the spin and the dynamics of the
particles like a spin-orbit coupling.
The band structure was characterized by four single Weyl
points at the corners of the first Brillouin zone and two
double Weyl points in the center of the kx-ky planes, which
had topological charges. The energy of the single Weyl
points were depend on the spin-orbit intensity but the dou-
ble Weyl points were at 0 energy at any intensity.
The symmetries protecting the double Weyl points were
explored as the system contained C3 rotational symmetry
and particle hole symmetry. At a low-energy level the sys-
tem had C6 symmetry, which can protect the double Weyl
points from any pertubation, which does not violate the
rotational symmetry. I finally suggested possible further
developments of the model, which included the study of
Fermi arcs of the system and the detection of Weyl points
through Landau Zener experiments.
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A Appendix: Second Quantization
Second quantization is the standard formulation of quantum many-particle theory. I will consider a free non-relativistic in a box with indistinguishable
particles, which are translation invariant. This means the single particle wavefunctions are plane waves and for fermions we need to also consider the
spin, so the single particle wavefunctions are given by:

ψ~k,s =
1√
V

ei~k·~r
σs (A.1)

where s is a spin index of either spin up or spin down. We would like to label the basis states in Fock space with occupation numbers {nk}= {n1,n2, ...}
We now introduce the creation operator c†

~k
acting on some state in our Fock space, which adds a particle to the system. The Hermitian conjugate of

the creation operator is the annihilation operator c~k , which removes (or annihilates) a particle from the system. By definition the annihilation operator
acting on a vacuum state |0〉 with no particles is given as:

c~k |0〉= 0 (A.2)

In the case of fermions the creation c†
~k

and annihilation operators c~k have anti-commutation relations since the wavefunction is antisymmetric:

{c~k,c
†
~k′
}= δk,k′ (A.3)

{c~k,c~k′}= {c
†
~k
,c†

~k′
}= 0 (A.4)

The single particle momentum state |k〉 can be expressed as:
c†
~k
|0〉= |~k〉 (A.5)

which is the creation operator c†
~k

acting on the vaccum state |0〉.
The single particle in a box has a wavefunction, which can be expressed at the integral over the box:

|~k〉= 1√
V

∫
d3~r ei~k·~r |~r〉 (A.6)

and the inverse relation with real space wavefunction:

|~r〉= 1√
V ∑

~k

e−i~k·~r |k〉 (A.7)

It is required that the real space creation operator |~r〉 satisfies:
c†
~r |0〉= |~r〉 (A.8)

The relations between the creation annihilation and creation creation operators in momentum space and real space can be defined by the use of Equations
A.5, A.6 and A.8. given as:

c~k =
1√
V ∑

~r
ei~k·~rc~r (A.9)

and the inverse Fourier transform:
c~r =

1√
V ∑

~k

e−i~k·~rc~k (A.10)

We can proof the transformation and inverse transformation:

c~r =
1√
V ∑

~k

e−i~k·~rc~k =
1√
V ∑

~k

e−i~k·~r
∑
~r ′

ei~k·~r ′ c
~r ′ = ∑

~r ′
c
~r ′

1√
V ∑

~k

e−i~k(~r−~r ′ ) = ∑
~r ′

c
~r ′ δ~r ~r ′ = c~r (A.11)

An example of how to Fourier transform the sums from real space to momentum space is shown for a 1D chain given the sum ∑
r

c†
r+1 cr :

∑
r

c†
r+1 cr = ∑

r

1√
L ∑

k
ei k(r+1)c†

k
1√
L ∑

k′
e−i k′rck′ =

1
L ∑

r
∑
k,k′

ei k(r+1)e−i k′rc†
kck′ (A.12)

and using ei k(r+1)e−i k′r = ei(k−k′) r+i k and seperating them:

1
L ∑

r
∑
k,k′

ei k(r+1)e−i k′rc†
kck′ = ∑

k,k′
c†

kck′ ei k 1
L ∑

r
ei (k−k′) r = ∑

k,k′
c†

kck′ ei k
δk k′ = ∑

k
c†

kck ei k (A.13)

The transformation is for the 1D case:
∑
r

c†
r+1 cr = ∑

k
c†

kck ei k (A.14)

and for the Hermitian conjugated:
∑
r

c†
r cr+1 = ∑

k
c†

kck e−i k (A.15)
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B Appendix: Gauge Transformations
I will review some basic concept about gauge transformations in quantum systems and for simplicity consider the case of a wavefunction in free space.
However the following definitions can be generalized to the lattice case relevant for ultracold atoms trapped in optical lattices. 28.

B.1 Abelian gauge transformation
The Abelian gauge transformation is a local transformation and, if we describe a dynamical system, depended on the space-time coordinates , with a
complex function ψ(x), we can express the Abelian gauge transformation as:

ψ(x)→ ψ
′(x) =U(x)ψ(x) (B.1)

where U(x) = eiθ(x) is a unitary operator and belongs in the unitary group U(1) and it depends on the position in θ(x). When a particle follows a path
from a reference point j to a point k. It acquires a ”magnetic phase factor” 28:

ψ(~rk) = exp
(

i
h̄

∫ k

j
A(x) ·d~l

)
ψ0(~rk) =U jkψ0(~rk) (B.2)

where ψ0(~rk) is the wavefunction in the absence of the gauge potential and U jk = eiφ jk is the tunneling operator.
In the case of an Abelian gauge transformation a particle subjected to a local gauge potential A(x) and the non-relativistic single-particle Hamiltonian
reads:

H =
(p+A(x))2

2m
(B.3)

where p =−i∂x and with the phase difference term U(x) we can calculate that:

H =
U†(p+A(x))2U

2m
→ (−i∂x+∂xθ(x)+A(x))2

2m
(B.4)

where the gauge potential A(x) for the Abelian gauge transformation is transformed as:

A(x)→ A ′(x)+∂xθ(x) = A(x)+U†(−i ∂x U) (B.5)

The tunneling operators transforms as:

U jk →U ′jk =U jk exp
(

i
θ(~rk)−θ(~r j)

h̄

)
(B.6)

The following is a inclusion of lattice models. We will consider a square lattice in the explanation of plaquettes. The plaquettes, a closed region in space
delimited by a set of points, are connected by links as shown in Figure B.1:

Fig. B.1 Figure from Ref. 28 showing the plaquette, tunneling operators and magnetic flux.

When the particle performs a loop � around the plaquette it gains an Aharonov-Bohm phase:

ψ(~r1)→
i
h̄

∮
�

A(x) ·d~lψ(~r1) = e2πiΦ�ψ(~r1) (B.7)

where Φ� is the number of magnetic flux quanta Φ0 penetrating the plaquette � and it is expressed with the ”loop product”t of tunneling operators U jk:

e2πiΦ� =U12 U23 U34...UL−1 UL1 = ∏
�

U jk = exp

(
i∑
�

φ jk

)
(B.8)

In order to describe a lattice of a quantum system subject to a gauge potential the gauge potential A the lattice description should include:

1. A set of lattice sites~r j

2. A set of links, j to k, connecting the sites and defining plaquettes

3. A set of tunneling operators U jk associated with the links
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B.2 Non-Abelian gauge transformation
If the tunneling operators U jk couple to internal degrees of freedom, like the spin, gauge potentials act differently on the different spin states, and they
are now matrix-valued objects. Tunneling operators now belong to the SU(2) group and the potential ~A is a vector of matrices ~A = q(σx,σy,σz)
The tunneling operator U jk is given now dependent on the link j to k and the different spin states s and s′ :

U jk,s,s′ = P exp
(

i
h̄

∫ k

j
~As,s′ ·d~l

)
(B.9)

where P is a path ordered integral and is required because at at different points of the path the matrices Âz,y do not necessarily commute.
In the case of the non-Abelian gauge transformations we must distinguish between global and local gauge transformations.

Global non-Abelian gauge transformation:
The global non-Abelian gauge transformation is given by

ψ → ψ
′ =Uψ (B.10)

where the unitary operator U = ei~α~σ is not position dependent and it belongs to the SU(2) unitary group.
The Hamiltonian for a system subjected to a global non-Abelian gauge transformation is

H =
(~p σ0 +~A)2

2m
→ U†(~p σ0 +~A)2U

2m
(B.11)

and through calculations the global non-Abelian gauge potential can be described as

~A→ ~A′ =U†~A U (B.12)

Local non-Abelian gauge transformation:
The local non-Abelian gauge transformation is given by:

ψ(x)→ ψ
′(x) =U(x)ψ(x) (B.13)

where the unitary operator U = ei~α(x)~σ is position depend and it belongs to the SU(2) unitary group.
The Hamiltonian for a system subjected to a local non-Abelian gauge transformation is:

H =
(~p σ0 +~A(x))2

2m
→ U†(x)(~p σ0 +~A(x))2U(x)

2m
(B.14)

and through calculations the local non-Abelian gauge potential can be described as:

~A(x)→ ~A(x)′ =U†~A(x)U +∂x~α(x) ·~σ (B.15)
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C Appendix: Calculation of Berry Monopoles
I will briefly review how to calculate the Chern number of a touching point, which corresponds to the topological charge of a Berry monopole.
Given the Hamiltonian H(~k) =−~k ·~σ , where ~σ is the Pauli matrix, we consider the states |↑〉 and |↓〉 and label the states α and β .
If we consider the Bloch sphere in Figure C.1 we can describe the wave function of a band by spherical coordinates.

Fig. C.1 The Bloch sphere with the spherical coordinates φ , θ and k.

I consider the example with the state |ψ〉 given by Equation C.1

|ψ〉=
(

α = cos( θ

2 )

β = ei φ sin( θ

2 )

)
(C.1)

Then we calculate the Berry connection A(~k), which is similar to a vector potential in momentum space and is given by Equation C.2

A(~k) = i〈ψ(~k)|~∇kψ(~k)〉 (C.2)

If ~∇k is written in spherical coordinates, as shown in Equation C.3, we can calculate the Berry connection in Equation C.2.

~∇k =

(
∂k,

1
k

∂θ ,
1

k sin(θ)
∂φ

)
(C.3)

The three spherical components of the Berry connection is calculated in Equation C.4-C.6

Ak(~k) = 0 (C.4)

Aθ (~k) =
1
k

(
−1

2
cos
(

θ

2

)
sin
(

θ

2

)
+

1
2

cos
(

θ

2

)
sin
(

θ

2

))
= 0 (C.5)

Aφ (~k) =−
1

k sin(θ)

(
sin2

(
θ

2

))
6= 0 (C.6)

The Berry connection in the φ direction (Equation C.6) is the only term not equal to 0.
We can use the Berry connection as a vector potential in regards to calculate the magnetic field given as C.7

~F = ~∇×~A (C.7)

where the curl ~∇×~A in spherical coordinates is given as C.8

~F = ~∇×~A =
1

k sin(θ)

(
∂

∂θ
(Aφ sin(θ))− ∂Aθ

∂φ

)
k̂+

1
k

(
1

sin(θ)
∂Ak

∂φ
− ∂

∂k
(kAφ )

)
θ̂ +

1
k

(
∂

∂k
(kAθ )−

∂Ak

∂θ

)
φ̂ (C.8)

We can reduce Equation C.7 by using the results of the Berry connections in Equations C.4-C.6 as shown in Equation C.9-C.11

Fk =
1

k sin(θ)

(
∂

∂θ
(Aφ sin(θ))

)
=− 1

2k2 (C.9)

Fθ =
1
k

(
− ∂

∂k
(kAφ )

)
=

1
k

∂

∂k

(
1

sin(θ)
sin2

(
θ

2

))
= 0 (C.10)

Fφ =
1
k

(
∂

∂k
(kAθ )−

∂Ak

∂θ

)
= 0 (C.11)

Since we have fluxes from a sphere the only direction we consider is the k direction, which goes outward of the sphere, so the surface I consider is a
oriented surface. The Chern number cn can be calculated as the surface integral of magnetic fluxes given in Equation C.12 29

cn =
1

2π

∫
d2k k̂ ·~F =

1
2π

∫
d2k Fk (C.12)

The integral is the area of the Bloch sphere and the Chern number becomes:

cn =
1

2k2 (4πk2)

(
− 1

k2

)
=−1 (C.13)

The Chern number −1 corresponds to a Berry monopole with topological charge of −1.
If one considers different wave functions of a band |ψ〉 the topological charges may change to be ±1.
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D Calculation of the C3 rotation symmetry
To show the C3 rotation symmetry we need to satisfy the following:

H̃0(R~k) =C†
3 H̃0C3 (D.1)

where R is the rotation operator which shifts the momenta in the kx and ky as 2π/3:

ei 2π
3 Lz ~k e−i 2π

3 Lz = R~k → ei 2π
3 Lz H̃0(~k)e−i 2π

3 Lz = H̃0(R~k) (D.2)

We must rewrite the Weyl Hamiltonian H(kx,ky,kz), given in Equation 3.5, with H(kx, k̃y,kz) , where k̃y = ky− 2π√
3

. The kz terms will not be considered
because they are invariant under any rotation along the ẑ axis:

H̃0(kx, k̃y) = 2t cos(q)

(
sin(kx)−2sin

(
kx

2

)
cos

(√
3

2
k̃y

))
σ0

+2t sin(q)

(
cos(kx)− cos

(
1
2

kx

)
cos

(√
3

2
k̃y

))
σx

+2t sin(q)

(
sin
(

1
2

kx

)
sin

(√
3

2
k̃y

))
σy

(D.3)

The tunneling operators given in Equation 3.4 are:
U1 = i eiqσx (D.4)

U2 = i eiq
(

1
2 σx+

√
3

2 σy

)
(D.5)

U3 = i eiq
(

1
2 σx−

√
3

2 σy

)
(D.6)

U4 = i eiqσz (D.7)

If we look at Figure 3 the system has a 2π√
3

translation in the ky direction and it corresponds to sign change of U2 and U3:

H̃0(kx, k̃y) =−t U1ei kx + t U2ei 1
2 kx+

√
3

2 k̃y + t U3ei 1
2 kx−

√
3

2 k̃y +h.c. (D.8)

With the counterclockwise 2π/3 rotation of the momenta:

H̃0(R~k) =−t U1e−
1
2 i kx+

√
3

2 i k̃y + t U2e−i kx + t U3ei 1
2 kx+

√
3

2 k̃y +h.c. (D.9)

The C3 rotation operator is defined as:

C3 = ei π
3 σz =

1
2

σ0 +

√
3

2
i σz (D.10)

If the following equalities are fulfilled the system has C3 rotational symmetry:

C†
3U1C3 =−U†

3 (D.11)

C†
3U2C3 =−U†

1 (D.12)

C†
3U3C3 =U2 (D.13)

I calculate the equalities:

C†
3U1C3 = i cos(q)σ0 + sin(q)

(
1
2

σx−
√

3
2

σy

)
=−U†

3 (D.14)

C†
3U2C3 = i cos(q)σ0 + sin(q)σx =−U†

1 (D.15)

C†
3U3C3 = i cos(q)σ0 + sin(q)

(
−1

2
σx−
√

3
2

σy

)
= i eiq

(
1
2 σx+

√
3

2 σy

)
=U2 (D.16)

1–12 | 11



E Calculation of the particle-hole symmetry
The canonical way of defining particle hole symmetry is

CH∗(−~k)C† =−H(~k) (E.1)

where H(~k) is the Weyl Hamiltonian shown in Equation 3.5 and C is a suitable matrix that we have to find.
The Weyl Hamiltonian in Equation 3.5 (with a negative sign) is given as:

−H(~k) =−2 t cos(q)

(
sin(kx)+2 sin

(
1
2

kx

)
cos

(√
3

2
ky

)
+ sin(kz)

)
σ0−2 t sin(q)

(
cos(kx)+ cos

(
1
2

kx

)
cos

(√
3

2
ky

))
σx

+2 t sin(q)

(
sin
(

1
2

kx

)
sin

(√
3

2
ky

))
σy−2 t sin(q) cos(kz)σz

(E.2)

The complex conjugated Weyl Hamiltonian with negative~k is given as:

H∗(−~k) =−2 t cos(q)

(
sin(kx)+2 sin

(
1
2

kx

)
cos

(√
3

2
ky

)
+ sin(kz)

)
σ0 +2 t sin(q)

(
cos(kx)+ cos

(
1
2

kx

)
cos

(√
3

2
ky

))
σx

+2 t sin(q)

(
sin
(

1
2

kx

)
sin

(√
3

2
ky

))
σy +2 t sin(q) cos(kz)σz

(E.3)

The unitary operators C must be defined so Equation E.1 is fulfilled and therefore the operators must show following properties:

σ0→ σ0 (E.4)

σx→−σx (E.5)

σy→ σy (E.6)

σz→−σz (E.7)

Therefore the operator C, which has the properties shown in Equation E.4-E.7, is the Pauli matrix σy given as:

C =

[
0 −i
i 0

]
= σy (E.8)

With the Pauli matrix σy Equation E.1 is reduced to:
σyH∗(−

−→
k )σy =−H(

−→
k ) (E.9)
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