Meddelelser om Grønland

Late Quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland

Edited by Svend Funder

Geoscience

22 · 1990
Meddelelser om Grønland

The series Meddelelser om Grønland was started in 1879 and has since then published results from all fields of research in Greenland. In 1979 it was split into three separate series:

Bioscience
Geoscience
Man & Society

The series should be registered as Meddelelser om Grønland, Bioscience (Geoscience, Man & Society) followed by the number of the paper. Example: Meddr Grønland, Biosci. 1, 1979.

The new series are issued by Kommissionen for Viden­skabelige Undersøgelser i Grønland (The Commission for Scientific Research in Greenland).

Correspondence
All correspondence and manuscripts should be sent to:
The Secretary
Kommissionen for videnskabelige Undersøgelser i Grønland
Danish Polar Center
Hausergade 3
DK-1128 Copenhagen K.

Questions concerning subscription to all three series should be directed to the agent.

Agent

ISSN 0106-1054
ISBN 87-17-05971-2

Meddelelser om Grønland, Geoscience

Meddelelser om Grønland, Geoscience invites papers that contribute significantly to studies in Greenland within any of the fields of geoscience (physical geography, oceanography, glaciology, general geology, sedimentology, mineralogy, petrology, palaeontology, stratigraphy, tectonics, geophysics, geochemistry). Papers primarily concerned with other areas in the Arctic or Atlantic region may be accepted, if the work actually covers Greenland or is of direct importance to continued research in Greenland. Papers dealing with environmental problems and other borderline studies may be referred to any of the series Geoscience, Bioscience, or Man & Society according to emphasis and editorial policy.

Scientific editor – Geology

Instructions to authors.
See page 3 of cover.

© 1990 Kommissionen for Viden­skabelige Undersøgelser i Grønland. All rights reserved. No part of this publication may be reproduced in any form without the written permission of the copyright owner.
Late Quaternary stratigraphy and glaciology in the Thule area, Northwest Greenland

edited by

Svend Funder
Contents

Introduction ... 4
S. Funder
Participants in the NORDQUA 86 expedition 4
Previous studies of Quaternary geology 4
Methods and organisation of this report 5
Acknowledgements 5

The pre-Holocene Quaternary: lithostratigraphic
and geomorphic evidence 8
M. Houmark-Nielsen M. Kelly J.Y. Landvik and
L. Sorby
Saunders Ø (M. Houmark-Nielsen and L. Sorby) 8
General site description 8
Field observations 9
Lithostratigraphy 9
Interpretation 11
Narsârrassuk (M. Kelly and J.Y. Landvik) 11
The Narsârrassuk upland areas 11
Lowland areas 11
Lithostratigraphy 12
Interpretation 15
Qarmat, and the adjacent area (M. Kelly and
J.Y. Landvik) 15
Pitugfiup kâgsua and adjacent valleys 15
Qarmat, lithostratigraphy 16
Interpretation 17
Summary of regional glaciation history (M.
Kelly and J.Y. Landvik) 18

Fauna and flora 19
R. W. Feyling-Hanssen and S. Funder
Foraminiferal assemblages (R. W. Feyling-
Hanssen) ... 19
The Nonionella auricula assemblage 22
The Astronion galwayi assemblage 23
The Islandiella helenea assemblage 23
Other assemblages 23
Conclusions 23

Molluscs, barnacles and other marine and
terrestrial fauna and flora (S. Funder) 23
Present fauna and oceanography 24
Material ... 28
Mytilis edulis 28
Chlamys islandica 28
Balanus balanoides 28
Balanus crenatus 29
Terrestrial flora and fauna 31
Conclusions 32

Thermoluminescence dating and amino acid analy-
ses .. 33
C. Kronborg, V. Mejdahl and H.-P. Sejrup
Thermoluminescence dating of marine sedi-
ments from Saunders Ø and Qarmat (C. Kron-
borg and V. Mejdahl) 33
Samples and dating technique 33
Dose rate determination 34
Paleodoses and TL ages 34
Discussion 35

Amino acid geochronology (H.-P. sejrup) 36
Methods and material 36
Temperature conditions 36
Local aminostratigraphy 38
Chronology 39
Conclusion 39

Local events and regional correlation 40
S. Funder and M. Houmark-Nielsen
Local correlation and event stratigraphy (M.
Houmark-Nielsen) 40
Local correlation 40
Correlation of till beds 40
Prograding marine sequences 40
Event stratigraphy and age 40
The Agpat glaciation 42
The Saunders Ø interstade 42
The Narsârrassuk stade 42
The Qarmat interstade 42
Hiatus ... 43
The Wolstenholme Fjord stade 43
The Holocene 43
Thule and Baffin Bay (S. Funder) 43
Regional amino acid stratigraphy 43
Correlation of events on land 43
Deep sea results 45
Discussion 45

Conclusions on the Quaternary stratigraphy of the
area ... 46
R. W. Feyling-Hanssen, S. Funder, M. Houmark-
Nielsen, M. Kelly, C. Kronborg, J. Y. Landvik,
V. Mejdahl, H.-P. Sejrup and L. Sorby 46
Stable isotope studies on ice margins in the Thule
area ... 47
N. Reeh, H. H. Thomsen, P. Frich and H. B.
Clausen
Glaciological setting 47
Sampling programme 48
Geographical δ^18O-distribution 50
Ice-dynamic model for Tuto Ramp 51
Ice cap geometry 51
Mass balance 52
Ice temperatures 52
Results ... 52
Age estimate for the Nuna Ramp δ^18O record ... 53
The δ^18O record from Store Landgletscher 54
The δ^18O-elevation relationship 55
Discussion and conclusions 55

Appendix
C-14 dating of samples collected during the
NORDQUA 86 expedition, and notes on the
marine reservoir effect 57
compiled by N.-A. Mörner and S. Funder
Marine reservoir effect in the Thule Area
(Rcorr) .. 57

References 60
Appendix

C-14 dating of samples collected during the NORDQUA 86 expedition, and notes on the marine reservoir effect

compiled by Nils-Axel Mörner and Svend Funder

Radiocarbon age determinations of samples of bivalve shells (23) and organic detritus (4), collected by members of the NORDQUA expedition, are summarised below.

The ages were determined by conventional dating at Laboratoriet för isotopgeologi at Naturhistoriska Riksmuseet, Stockholm (samples marked St-), and at the C-14 Dating Laboratory of the Geological Survey of Denmark and the National Museum, Copenhagen (samples marked K-, by courtesy of the Geological Survey of Denmark). One sample has been determined by accelerator mass spectrometry (AMS) at the Physics Institute, Aarhus University (sample marked AAR, by courtesy of Mette Skovhus Thomsen). The conventional dates were corrected for isotopic fractionation according to measured values for C-13, while the AMS date was corrected for the standard isotopic fractionation in marine carbonates (0 0/00 PDB).

The results are reported according to the recommendations of Stuiver & Polach (1977), and include conventional and reservoir corrected ages (Rcorr). However, while the conventional ages from the laboratories in Stockholm and Aarhus are normalised to the standard activity in wood (-25 0/00 PDB C-13), those from Copenhagen are normalised to 0 0/00 PDB, and have a built-in 400 yr marine reservoir correction (see notes on determination of reservoir effect below).

While the laboratory in Stockholm calculates infinite ages as sample activity +1 σ, the laboratory in Copenhagen uses sample activity +2 σ, and therefore gives lower minimum ages.

Marine reservoir effect in the Thule area (Rcorr)

Three samples of contemporary shells from northern West Greenland have been C-14 dated by H.Tauber. The samples were supplied by the Zoological Museum in Copenhagen through the kind help of G. Højner Petersen. The results appear at the end of the dating list, and the activity is expressed as per cent of modern, i.e. 0.95 of the activity of the oxalic acid standard, and corrected for isotopic fractionation and decay from the time of collection to 1950.

The average activity of the three samples is 99.95±0.6 % of modern, i.e. they show a C-14 deficiency corresponding to 5±5 yrs. This is in agreement with previous results from Thule, thus a sample of contemporary shells from the area gave an activity of less than ±1 % of modern wood (Suess 1954), and Mytilus shells, collected in 1940, gave an age of 50±60 yrs (GSC-2316; Blake 1987). There is also agreement with results from further south in West Greenland (Krog & Tauber 1973). However, the reservoir effect is somewhat smaller than that measured at nearby Ellesmere Island (Mangerud & Gulliksen 1975, Blake 1987, 1988), and Northeast Greenland (Funder 1982, Tauber & Funder 1975), where the higher reservoir effect has been thought to be caused by the low C-14 activity in polar water, cut off from exchange with the atmosphere (Tauber & Funder 1975).

Thus the reservoir effect appears to be determined by water mass regime, and we suggest that Holocene C-14 dates from the Thule area, like those from other parts of West Greenland, are corrected by subtracting 400 yrs from conventional ages normalised to -25 0/00, while ages normalised to 0 0/00 should not be further corrected.

Reservoir correction is applied only to ages younger than 15,000 yrs.

The C-14 dates are listed according to their field number (GC), the last three digits are the same as used as sample numbers elsewhere in this volume.

Samples collected by Svend Funder,
Michael Houmark-Nielsen, Christian Kronborg, Ove Klakkegg, Robert Lagerbäck, Arve Misund, Lars Rohde, Lars Erik Skylvik, Oddmund Soldal, Lennart Sorby and Morten Thoresen

GC68-001:K-4780. Saunders Ø.
8200±85 B.P. 13C=-1.1 0/00
Rcorr. 8200 B.P.

Articulated shells of Mya truncata and Hiatella arctica in silt in section 21 m above sea-level. Section B, unit S6. Same as sample 010, and amino acid analysed and TL-dated (BAL-1235, R-861006; Tables 9 and 10). Narsarsuak, 76°36'N, 69°42'W.
A fragment of *Mya truncata* from beach gravel from top of upper marine terrace 40 m above sea-level. Minimum age for Holocene marine limit. Amino acid analyses suggest that older shells are also present (BAL-1300; Table 10). Previous C-14 dates from this locality have been reported by Suess (1954), and Blake (1987). Narsarsuaq, 76°36'N, 69°42'W.

Sample collected by Jan Lundquist, Jan Mangerud and Joar Srettem

GC68-021: K-4781. Wolstenholme Fjord. 9150±95 B.P. 13C=1.7 0/00 Rcorr. 9150 B.P. Fragments of *Hiatella arctica* and *Mya truncata* from silt 1 m above sea-level at base of 6 m high coastal section. Minimum age for local marine limit at 35 m. Fauna contains also *Mytilus edulis* and *Chlamys islandica*. Near Salisbury Gletscher, 76°40'N, 68°38'W.

Samples collected by Nils-Axel Mörner Coastal cliffs at Narsârassuk, 76°27'N, 69°35'W

GC68-079: St-10721. Section E, unit N4. 41 215 ±1480 B.P. 13C= 2.4 0/00 Shells of *Hiatella arctica* from upper part of upper silt at 11.1 m above sea-level.

GC68-080: St-10722. Section E, unit N4. >48 000 B.P. 13C= 2.2 0/00 Articulated shells of *Hiatella arctica* in living position at silt/sand boundary 13.05 m above sea-level.

GC68-081: St-10723. Section E, unit N5. >48 000 B.P. 13C= 2.3 0/00 Articulated shells of *Hiatella arctica* in living position in sand 13.4 m above sea-level.

GC68-082: St-10724. Section E, unit N5. >48 000 B.P. 13C= 2.4 0/00 Articulated shells of *Hiatella arctica* and *Mya truncata* in living position in sand 13.67 m above sea-level.

GC68-083: St-10725. Section E, unit N5. >45 000 B.P. 13C= 2.3 0/00 Articulated shells of *Hiatella arctica* and *Mya truncata* in living position in sand 13.8 m above sea-level.

GC68-084: St-10726. Section E, unit N5. >47 000 B.P. 13C= 2.1 0/00 Articulated shells of *Mya truncata* in living position in sand at 13.7 14.0 above sea-level.

GC68-085: St-10727. Section E, unit N5. 45 160 ±4500 B.P. 13C=2.5 0/00 Articulated shells of *Mya truncata* in sand at 14.1 m above sea-level.

GC68-086: St-10730. Section G, unit N5. 44 390 ±4500 B.P. 13C=2.5 0/00 Shells in gravel 7.1-7.2 m above sea-level.

GC68-087: St-10731. Section G, unit N5. 40 680 ±1450 B.P. 13C=2.4 0/00 Shells just above gravel at 7.5 m above sea-level.

GC68-088: St-10734. Section H, unit N6. 9295±100 B.P. 13C=1.9 0/00 Rcorr. 8895 B.P. Shells of *Mya truncata* and *Balanus crenatus* in sand at 7.1-7.2 m above sea-level.

GC68-089: St-10732. Section “NAM-2”. 42 940 ±2870 B.P. 13C= -22.2 0/00 Organic detritus (lower layer) in sand, at 8.3 m above sea level.

GC68-090: St-10733. Section “NAM-2”. >45 000 B.P. 13C= -23.6 0/00 Organic detritus (upper layer) in sand 8.4 m above sea-level.

GC68-091: St-10728. Section “NAM-3”. >33 000 B.P. 13C= 2.3 0/00 Organic detritus and shell fragments in lower beach gravel 3.9 m above sea-level.
Shells above beach gravel at 7.5 m above sea-level.

Shells from upper part of upper silt at 12.15 m above sea-level.

Shells of *Mya truncata* in upper part of upper silt at 4.9 m above sea-level.

Shells of *Mya truncata* in upper part of Holocene sand at 7.4 m above sea-level.

Shells of *Mya truncata* in Holocene sand at 4.9 m above sea-level.

Shells of *Mya truncata* in upper part of Holocene sand at 8.4 m above sea-level.

Articulated shells of *Mya truncata* and *Hiattella arctica* from coastal section G, unit N5. 76°27'N, 69°20'W.

Articulated shells of *Mya truncata* and *Hiattella arctica* in coastal section immediately in front of Harald Moltke Bræ at Nunatarssúp nua, 76°39'N, 68°00'W. Previous C-14 dates from same locality reported by Crane & Griffin (1959) and Goldthwait (1960)

Articulated shells of *Mya truncata* and *Hiattella arctica* found on the glacier surface, and transported from glacier bed along shear planes. 76°39'N, 68°00'W.

C-14 dating of contemporary shells

Shells from nine individuals of *Mytilus edulis*, collected by F. Johansen on July 10th, 1936. Preserved in alcohol at The Zoological Museum, Copenhagen. 72°22'N, 55°44'W.

Shells from eight individuals of *Mytilus edulis*, collected on July 2nd, 1936. Preserved in alcohol at The Zoological Museum, Copenhagen. 72°47'N, 56°10'W.

Shells from eight individuals of *Mytilus edulis*, collected on Sept. 2nd 1940. Preserved in alcohol at The Zoological Museum, Copenhagen. 76°34'N, 68°48'W.
References

Schytt, V. 1956. Lateral drainage channels along the northern side of the Mohtke Glacier, Northwest Greenland. - Geografisk Aarbd. 38: 64-77.

Vilks, G. 1969. Recent foraminifera in the Canadian Arctic. - Micropaleontology 15: 35-60.

Wertman, J. 1961. Mechanism for the formation of inner moraines found near the edge of cold ice caps and ice sheets. - J. Glaciol. 3: 965-978.

Meddelelser om Grønland, Geoscience 22 · 1990
Instructions to authors

Two copies of the manuscript, each complete with illustrations, tables, captions, etc. should be sent to the Secretary, Kommissionen for videnskabelige Undersøgelser i Grønland. Manuscripts will be forwarded to referees for evaluation. Authors will be notified as quickly as possible about acceptance, rejection or desired alterations. The final decision on these matters rests with the editor.

Manuscripts corresponding to less than 16 printed pages (of 6100 type units) including illustrations are not accepted, unless they are part of a special theme issue. Manuscripts that are long in relation to their content will not be accepted without abridgement.

Manuscript

Language. - Manuscripts should be in English (preferred language), French or German. Authors who are not writing in their native language must have the language of their manuscript corrected before submission.

Place names. - All Greenland place names used in the text and in illustrations must be names authorised by The Greenlandic Language Committee. Authors are advised to submit sketch-maps with all required names to the Secretary for checking before the manuscript is submitted. Names of Greenland localities outside the area with which the paper is concerned should be accompanied by coordinates (longitude and latitude).

Title. - Titles should be as short as possible, with emphasis on words useful for indexing and information retrieval.

Abstract. - An abstract in English must accompany all papers. It should be short (no longer than 250 words), factual, and stress new information and conclusions.

Typescript. - Typescripts must be clean and free of handwritten corrections. Use double spacing throughout, and leave a 4 cm wide margin on the left hand side. Avoid as far as possible dividing words at the right-hand end of a line. Consult a recent issue for general lay-out.

Page 1 should contain 1) title, 2) name(s) of author(s), 3) abstract, 4) key words (max. 10), 5) author’s full postal address(es). Manuscripts should be accompanied by a table of contents, typed on separate sheet(s).

Underlining should only be used in generic and species names. The use of italics in other connections can be indicated by a wavy line in pencil under the appropriate words.

Use at most three grades of headings, but do not underline. The grade of heading can be indicated in soft pencil in the left hand margin of one copy of the typescript. Avoid long headings.

References. - References to figures and tables in the text should have the form: Fig. 1, Figs 2-4, Table 3. Bibliographic references in the text are given thus: Shergold (1975: 16) ... (Jago & Daily 1974b).

In the list of references the following style is used:
