Hypogeous fungi at tree line in the Australian Alps

James M. Trappe & Andrew W. Claridge

Abstract

The tree line of the continental Australian Alps yielded eighteen species of hypogeous fungi, all probably forming ectomycorrhizae with Eucalyptus niphophila, the tree species characteristic of that habitat. Six of the species were undescribed. These collections represented six families and twelve genera: Boletaceae (with Chamonixia), Gallaceaeae (Gallacea), Hysterangiacaeae (Hysterangium), Cortinariaceae (Cortinarius, Dermocybe, Descomyces, Protoglossum, Setchelliiogaster), Russulaceae (Cystangium, Gymnomyces, Zellermomyces) and Tricholomataceae (Hydnangium). A key to hypogeous fungi so far found at the Australian Alps tree line is presented.

Keywords: hypogeous fungi, sequestrate fungi, tree line, Australia, Eucalyptus, Boletaceae, Clathraceae, Cortinariaceae, Russulaceae, Tricholomataceae.

Introduction

Australia has a remarkable diversity of hypogeous and other sequestrate fungi. For example, Claridge et al. (2000a, b) recorded 209 species, over 150 being undescribed, from 136 forested plots scattered over an area of about 100 x 160 km in eastern Victoria and adjacent New South Wales; this number is close to the total of sequestrate species known from all of Europe. Just how many species might occur Australia-wide is presently unknown. On the basis of existing information, Lebel and Castellano (1999) estimated the figure to be around 600 taxa, a figure upgraded to more than 1,200 and perhaps as many as 2,450 by Bouger and Lebel (2001). Our recent collecting in previously unexplored habitats suggests that the estimate of 1,200 or more likely approaches reality.

Sequestrate fungi, the sporocarps mostly of ectomycorrhizal fungi, not only produce propagules but concomitantly provide a food source for many mammals (Claridge et al. 1996, Claridge and Trappe 2005). Tree lines in the Australian Alps provide edge habitats that may accommodate animals of both the alpine and subalpine zones (Fitzherbert et al. 1998, Happold 1989). Some of these are known mycophagists (Claridge et al. 1996): the broad-toothed rat (Mastacomys fuscus), the bush rat (Rattus fuscipes), the mountain pygmy-possum (Burramys parvus), the common brushtail possum (Trichosurus vulpecula), the western grey kangaroo (Macropus fuliginosus) and the swamp wallaby (Wallabia bicolor) (Claridge et al. 2001).

No studies of sequestrate fungi living at tree line have been reported for Australia until now. We took advantage of opportunities to collect at tree lines within Kosciuszko National Park in New South Wales and Alpine National Park in Victoria.
Collection areas and vegetation

Kosciuszko National Park, within the Snowy Mountains of New South Wales, contains approximately 250 km² of truly alpine area culminating with Australia's highest summit, Mt. Kosciuszko at 2,228 m above sea level. It's topographic features reflect its history of Pleistocene glaciation and contain a considerable variety of alpine plant communities (Costin et al. 1979, Galloway 1989). The tree line, with the overstory formed exclusively by snow gums, Eucalyptus niphophila, varies from about 1,800 m elevation on southern and sheltered slopes up to 2,050 m on exposed northern and western slopes (Slatyer 1989). The uppermost patches of trees are usually on rocky outcrops, perhaps in part because the rocks are effective absorbers of solar energy and provide a microclimate relatively salubrious for tree establishment and growth (Costin et al. 1979). Heath plants such as Epacris spp. are common in the tree line understory; the vegetation otherwise is described in detail by Costin et al. (1979). Generally similar conditions prevail at the Mt. Hot-ham/Mt. Loch study sites in Alpine National Park, in adjacent Victoria, except that area is not thought to have had Pleistocene glaciers (Peterson 1971) and our collecting was concentrated on relatively gentle slopes with few rock outcrops along the track from Mt. Hot-ham to Mt. Loch.

Methods

Tree lines in Kosciuszko National Park were visited four times (April and December 1999, January and April 2000) and, in Alpine National Park, twice (May 1999, April 2000). Collection of fungi was restricted for the most part to within 100 m of the tree line. Four-tined cultivators were used to rake away the litter and a few cm into the soil where most hypogeous sporocarps form. Areas with shrub or herbaceous cover were left alone to avoid disturbing living plants. Sporocarps were bagged and, later on the day of collection, their fresh characters were recorded. Collections were numbered, specimens were cut vertically in half or into several slabs and placed on a portable, forced air food dehydrator set at a temperature of about 40°C. Once dried, specimens were kept in packets for later microscopic study. For that later analysis, thin sections were cut with a razor blade and mounted in 3% KOH and Melzer's reagent, respectively.

Cited collections are variously deposited in these herbaria: the National Herbarium of Australia, Canberra (CANB); National Herbarium of Victoria, Melbourne (MEL); Plant Pathology Herbarium, Orange Agricultural Institute, Orange (DAR); Oregon State University Herbarium, Corvallis (OSC).

Results

Eighteen basidiomycete species, representing six families and 12 genera, were found in probably ectomycorrhizal association with Eucalyptus niphophila at tree line in the Australian Alps; seven of these were undescribed. No ascomycetes were collected. In addition, no epigeous mushrooms were seen on the soil surface, but numerous specimens of small Cortinarius subgen. Telemonia spp. and Laccaria spp. were found under the thick (up to 20 cm.) layer of litter common in these sites. These small mushrooms originated from near the snow gum mycorrhizae and were not robust enough to emerge to the surface of the litter.

A synopsis of differentiating characters of the fungal species found is presented here. More detailed descriptions plus valid publication of the new taxa are to be found in Trappe and Claridge (2003). A key to these hypogeous species of the continental Australian tree line follows the descriptions and discussion.

Boletaceae

Chamonixia sp.

Basidiomata 10-30 mm broad. Peridium white or with some blue tinges, slowly staining pale blue in patches or overall when exposed, felty. Gleba initially white, often with blue-tinged areas, becoming pinkish brown with maturity. Odor initially mild, by maturity unpleasant and resembling dog feces; taste not distinctive. Peridium of periclinal to interwoven, hyaline hyphae 3-15 µm broad. Spores initially hyaline, by maturity pale brown, 10-15 x 5-8 µm including 4-6 obscure to prominent, longitudinal ridges.

Collections examined: New South Wales, Kosciuszko National Park, Kangaroo Ridge SW of Charlotte Pass, J. Trappe 24020 and 24022, 25 April 1999 (OSC);
Species presently assigned to the genus *Chamonixia* are widely distributed in south-eastern Australia on cool sites; they often fruit in or near the mycelial colonies of *Dermocybe globuliformis* (see below). One species has been named from Australia, *Chamonixia vittatispora* G. W. Beaton, Pegler & T. W. K. Young, but it is part of a species complex that needs to be sorted out before a species name can be applied with confidence (T. Lebel, pers. comm.). The generic name *Chamonixia* is European in origin; we have some doubt that the Australian species will remain assigned to that genus once molecular phylogenetic studies are conducted.

Gallaceaceae

Gallacea subalpina Trappe & Claridge

Basidiomata 5-14 mm broad, subglobose. *Peridium* white, slowly staining pale brown when exposed, glabrous. *Gleba* loculate, dark brown, rubbery-firm, with a gray-translucent, dendroid columella 0.5-1.5 mm broad near its base. *Odor* not distinctive; *taste* of *peridium* bitter, of *gleba* mild.

Peridiopellis ± 500 µm thick, of hyaline, thin-walled, interwoven hyphae 3-4 µm broad at septa, many cells inflated to 6-10 µm. *Spores* smooth, ellipsoid to broadly subfusoid, n-14 x 7-9 µm, the walls 0.5-1 µm thick, nearly hyaline in KOH, faintly and erratically dextrinoid, lacking a utricle; sterigmal attachment cupped, ca. 1.5 x 1.5 µm.

Collections examined: *New South Wales*, Kosciuszko National Park, Mt. Blue Cow, Trappe 25052, 1 April 2000.

This collection was deteriorated and riddled with larvae, but its microscopic features fit those of the species as described by Castellano (1988) except many of the spores were minutely rugose. The unpleasant odor may reflect the condition of the basidioma and not be typical for the species. *Hysterangium gardneri* was originally described from a collection from under eucalypts in California. It is widely distributed in Australia, although evidently not common, and has been introduced along with eucalypts in many places in the world (Castellano 1988).

Cortinariaceae

Cortinarlus debbiae Trappe & Claridge

Basidiomata hypogeous or under humus with the cap adpressed to the soil surface. *Pileus* 2-4 cm broad, convex, the margin inrolled and attached to the stipe by a membranous, persistent, white veil. *Pellis* light orange brown, innately radiate fibrillose, moist when fresh but not viscid, not hygrophanous, sometimes with a white remnant of veil on the disc, the context 3-6 mm thick, white with a slight brown zone beneath the pileipellis. *Lamellae* light brown in youth, becoming cinnamon from spores by maturity, adnate, discharging spores onto the inner surface of the persistent veil. *Stipe* 12-30 x 6-12 mm, white above the velar attachment, brownish white below and light brown at the base, the context concolorous. *Odor* mild, *taste* mild with a slightly astringent aftertaste. *Pileipellis* 3-layered: suprapellis 20-30 µm thick, of pale yellow...
hyphae 5-10 µm broad; pellis ca. 50 µm thick, of hyaline hyphae 2-6 µm broad; subpellis 50-60 µm thick, of hyphae 4-7 µm broad at septa but cells mostly inflated to 7-15 µm. Clamp connections common. Spores basidiosporic, ellipsoid to subamygdaliform in face view, 9-12 x 5.5-6.5 µm, pale yellowish brown, ornamented with minute warts <0.2 µm broad and tall.

Cortinarius debbiae is the second hypogeous species of the genus with ballistospores but a persistent veil to be described from Australia. The other species, now recombined as Dermocybe globuliformis, also occurs at tree line in the Australian Alps (see following description). C. debbiae is named for Debbie Claridge, accomplished Australian collector of hypogeous fungi, who introduced the senior author to the beauty of the tree line and alpine zones of the Australian Alps.

Dermocybe globuliformis (Bougher) Bougher & Trappe

Basidiomata hypogeous or under the humus with the cap adpressed to the soil surface, formed in bright yellow mycelial mats. Pileus 5-30 mm broad, convex to plane, the margin attached to the stipe by a membranous, yellow veil that persists to late maturity when it may tear and fragment. Pellis bright yellow, context 2-4 mm thick, light yellow. Lamellae bright yellow in youth, becoming cinnamon from spores by maturity, adnate to subdecurrent, discharging spores onto the inner surface of the persisting veil. Stipe 2.7 x 2-4 mm, bright yellow, the context concolorous, exceeding the lamellae only slightly. Odor and taste mild. Pileipellis 3-layered: suprapellis 20-30 µm thick, of pale yellow hyphae 5-10 µm broad; pellis ca. 50 µm thick, of hyaline hyphae 2-6 µm broad; subpellis 50-60 µm thick, of hyphae 4-7 µm broad at septa but cells mostly inflated to 7-15 µm. Clamp connections common. Spores basidiosporic, ellipsoid to subamygdaliform in face view, 9-12 x 5.5-6.5 µm, pale yellowish brown, ornamented with minute warts <0.2 µm broad and tall.

This colorful fungus is the only hypogeous Dermocybe described to date (Bougher and Trappe 2002).
Protoglossum luteum Massee

Basidiomata 20 x 25 mm, subglobose to globose. *Peridium* with a gelatinous-viscid, grayish yellow to yellowish brown or dark brown, easily separable pellicle 0.5-1 mm thick. *Gleba* loculate, light brown from the combination of the moderate brown massed spores and white trama, the locules 0.2-1 mm broad and rounded to elongate, lacking a columella but sometimes with a small, white basal projection up to 3 x 3 mm. *Odor* and *taste* mild, pleasant. *Spores* bilaterally symmetric, broadly ellipsoid to subglobose, 10-13 x (7-)8-11 µm excluding the ornamentation of rounded warts and short ridges 0.1-1.5 µm broad and tall, the walls 1-1.5 µm thick, brown in KOH; sterigmal attachment smooth, conical, ca. 2 x 2 µm.

Protoglossum luteum is the type species of the genus. DNA sequence data suggest that the genus *Protoglossum* as conceived by May (1995), though within the Cortinariaceae, is polyphyletic (Peintner et al. 2001). Until phylogenetic relationships within the family are further resolved, however, we follow May’s approach to the genus at least so far as species with a thick, separable, gelatinous pellicle are concerned.

Protoglossum niphophilum Trappe & Claridge

Basidiomata 12-20 x 10-30 mm, globose to ellipsoid. *Peridium* with a gelatinous-viscid, easily separable pellicle, silvery white with some slight violet tinged areas to lilac overall, 0.5-1 mm thick. *Gleba* loculate, rusty brown from massed spores, the trama dark brown, the locules 0.2-0.5 mm broad and rounded to elongate, lacking a columella but with a sterile, protruding, white basal pad 2-4 x 2-5 mm; 3% KOH on fresh gleba turning the trama black and spore mass dark brown. *Odor* faintly raphanoid, *taste* not distinctive. *Spores* bilaterally symmetric, ellipsoid, (13-)14-17(-18) x (7-)8-10 (-12) µm excluding the ornamentation of irregular warts and patches 0.5-1 x 0.2-1(-2) µm, the walls ca. 0.5 µm thick, brown in KOH; sterigmal attachment verrucose, ca. 2 x 2 µm.

Protoglossum viscidum (Massee & Rodway) T. W. May

Basidiomata 8-22 x 10-28 mm, globose to subglobose. *Peridium* with a gelatinous-viscid, light brownish orange to brownish orange, readily separable pellicle 0.5-1 mm thick. *Gleba* loculate, moderate brown from massed spores, the trama dark brown, the locules 0.2-1 mm broad and rounded to elongate, with a white to rusty brown columella 2-4 µm broad terminating near the center of the gleba or sometimes constricted from there to a percurrent strand up to 1 mm broad. *Odor* faintly sweet-spicy, *taste* not distinctive. *Spores* bilaterally symmetric, ellipsoid, (13-)14-17(-18) x (7-)8-10 (-12) µm excluding the ornamentation of irregular warts and patches 0.5-1 x 0.2-1(-2) µm, the walls ca. 0.5 µm thick, brown in KOH; sterigmal attachment verrucose, ca. 2 x 2 µm.

Protoglossum violaceum (Massee & Rodway) T. W. May resembles *P. niphophilum* macroscopically but has smaller spores (8-10.5 x 5-7 µm).

Protoglossum violaceum (Massee & Rodway) T. W. May

Basidiomata 15-25 x 16-25 mm, pileate-stipitate, the margin persistently adpressed to stipe or seceded a few mm. *Peridium* at first enclosed in a thick, felty, orange-brown veil which persists on the stipe but breaks up on the pileus, which may become nearly smooth and brown or retain a patch of veil on the disc. *Gleba* sublamellate to loculate, light brown, the columella usually percurrent, 2-3 mm broad, white, extending below the gleba as a stipe 6-10 x 4-8 mm, the base usually broadened to subbulbous, the context white above and brown below. *Odor* and *taste* not distinctive. *Spores* bilaterally asymmetric, sub fusoid to amyg daliform, 14-19 x 7-10 µm excluding the ornamentation of fine warts, the mucronate apex smooth, the walls up to 1.5 µm thick and yellowish brown in KOH.

Lake Track, Trappe 24983, 5 Dec. 1999 (CANB); Guthega, Mt. Blue Cow, Trappe 25051, 1 April 2000 (MEL); Mt. Guthrie, Trappe 25001, 6 Jan. 2000 (DAR) and Trappe 25054, 1 April 2000 (CANB). Victoria, Alpine National Park, Mt. Hotham, track to Mt. Loch, J. Trappe 24048, 9 May 1999 (MEL).

Setchelliogaster spp. can vary considerably macroscopically, from lamellate and agaric-like to loculate and strongly sequestrate (Lago et al. 2001). *S. australiensis*, the most frequently encountered hypogeous species at tree line in the Australian Alps, was relatively consistent in its morphology there, however. The broadening of the stipe base was not recorded in the original description by Beaton et al. (1985).

Russulaceae

Cystangium polychromum Trappe & Claridge

Basidiomata 5-22 x 7-30 mm, pulvinate to subglobose, the base often radially rugose, the margin of the gleba free of the stipe and initially adpressed to it, later seceded or sometimes becoming plane to upturned. *Peridium* pale yellow to grayish yellow above, concolorous or sometimes white below, in youth blushed rose and becoming mottled rose to reddish purple or very dark purplish red on the disc or those colors overall or mottled with deep yellow, glabrous, context white, thin except on disc, fragile. *Gleba* of contorted and folded lamellae, often intervenose and becoming subloculate, initially white but becoming brownish white to pale yellow by maturity; stipe-columella persistent, white, 20 x 2-4 mm, the stipe exceeding the gleba only slightly or not at all. *Odor* and *taste* mild.

Peridiopellis 1-2 layered, with a narrow suprapellis of tangled, repent to erect, hyaline hyphae 3-5 µm broad overlying an epithelium of 5-8 tiers of cells inflated up to 20 x 17 µm; context with scattered to abundant nests of sphaerocysts. *Hymenium* with abundant, conspicuous, clavate to cylindric or ventricose, hyaline cystidia with rostrate to mucronate or obtuse apices, 55-100 x 10-15 µm, often containing granules near the apex, greatly exceeding the basidia. *Spires* globose, 8-11.5(-13.5) µm broad excluding the ornamentation of strongly amyloid, robust, isolated spines 1-1.5 µm tall, sometimes in clusters of 2-3 fused at the base; plage inconspicuous or absent; sterigmal appendage ca. 2 x 1.5 µm, sometimes with an amyloid collar.

Cystangium polychromum resembles *C. sessile* in most microscopic respects, but the pileus of *C. sessile* at most secedes only slightly from the stipe and shows only a faint red blush after exposure, in contrast to *C. polychromum*, which has a pileus that may expand to plane or concave and early develops strong, red to purple pigmentation in the pileipellis. Both species were found in Kosciuszko National Park in the same, general localities, and no intergradations in these characters were found between colonies of the two.

Cystangium seminudum (Massee & Rodway in Massee) T. Lebel & Castellano

Basidiomata 10-30 x 10-35 mm, subglobose, the base often radially rugose. *Peridium* completely enclosing the gleba, white to ivory, sometimes with brown patches, minutely pubescent-verrucose but often becoming glabrous. *Gleba* with small, irregular locules, initially white but becoming cream color by maturity; stipe lacking, columella lacking or rudimentary and then white and 1-3 mm broad. *Odor* faintly chlorinaceous or mild; *taste* mild. *Peridiopellis* 2-layered, with a narrow suprapellis of tangled, repent to erect, hyaline hyphae 3-5 µm broad overlying an epithelium of 5-8 tiers of cells inflated up to 20 x 17 µm; context with scattered to abundant nests of sphaerocysts. *Hymenium* with abundant, conspicuous, clavate to cylindric or ventricose, hyaline cystidia with rostrate to mucronate or obtuse apices, 55-100 x 10-15 µm, often containing granules near the apex, greatly exceeding the basidia. *Spires* globose, 8-11.5(-13.5) µm broad excluding the ornamentation of strongly amyloid, robust, isolated spines and rods 1-1.5 µm tall, sometimes in clusters of 2-3; plage inconspicuous; sterigmal appendage ca. 2 x 1 µm.

Collections examined: *New South Wales*, Kosciuszko National Park, Guthega, Mt. Blue Cow, Trappe 25052, 1 April 2000 (CANB); Rainbow Lake Track, J. Trappe 24978, 5 Dec. 1999 (MEL); Rainbow Lake, J.
Cystangium seminudum is the most common hypogeous member of the Russulaceae in middle to high elevations of south-eastern mainland Australia and Tasmania (Lebel 2003a). At tree line it fruited in summer and autumn at Kosciuszko National Park and autumn in Alpine National Park.

Cystangium sessile (Massee & Rodway) Singer & A. H. Sm.

Basidiomata 5-32 x 6-40 mm, globose to subglobose, the base often radially rugose, the margin of the gleba free of the stipe and adpressed to it or slightly seceded. *Peridium* white to ivory or pale yellow, in age sometimes with brown patches or blushed pale red on exposure, glabrous. *Gleba* of contorted and folded lamellae irregularly joined by cross-walls to form elongated to convoluted chambers, initially white but becoming pale yellow by maturity; stipe-columella sometimes lacking but usually truncate to percurrent, white, 0.5-4 mm broad, the stipe exceeding the gleba only slightly or not at all. *Odor* and *taste* mild. *Peridiopellis* of loosely interwoven hyphal tips emerging from the context of hyaline, interwoven hyphae 2-3.5 µm broad. *Hymenium* with inconspicuous, clavate, hyaline cystidia 20-45 x 10-15 µm, not exceeding the hymenium. *Spores* globose, 8-9.5 µm broad excluding the ornamentation of crowded, amyloid, sometimes curved, isolated spines and rods 1-2.5 µm tall; plage absent.

Gymnomyces eburneus is widely distributed in south-eastern mainland Australia (Lebel 2003b).

Ze/leromyces claridgei Trappe

Basidiomata 5-20 mm broad, subglobose, even to lobed and furrowed. *Peridium* medium orange to dark brownish orange, glabrous. *Gleba* loculate, pale orange to brownish orange, when fresh and moist exuding a whey-like latex. *Odor* and *taste* mild to slightly farinaceous. *Peridiopellis* with a weakly to well developed epithelium of 3 to 5(-6) tiers of cells inflated up to 20 µm broad; subpellis of interwoven hyphae 3-5 µm broad with scattered to abundant laticiferous hyphae. *Hymenium* with scattered to rare cystidia up to 50 x 6 µm, tapered to an obtuse tip, often not exceeding the hymenium. *Spores* subglobose to globose, 6-9 µm broad excluding ornamentation, the walls weakly amyloid, the ornamentation mostly 1 µm tall at maturity, zebroid, of more or less parallel ridges 0.2-0.7 µm broad, some of which encircle the spore, others

154
being short lines, usually one or two of the encircling ridges more prominent than the others, often with some short lines at angles to the main ornamentation; plage inconspicuous or absent; sterigmal appendage ca. 1 x 1 µm, often with amyloid spots or an amyloid collar.

This species, one of several glabrous, orange members of the genus, resembles Zelleromyces striatus (G. H. Cunningham) G. W. Beaton, Pegler & T. W. K. Young in its combination of orange coloration and distinctive, zebroid spore ornamentation. However, Z. striatus has a peridiopellis of narrow, interwoven hyphae (Beaton et al. 1984) rather than the epithelium of inflated cells characteristic of Z. claridgei, which is widely distributed in eastern Victoria and south-eastern New South Wales (Trappe and Claridge 2003).

The species is named in honor of Dr. Andrew Claridge, who collected the holotype and many other collections of this species in the Australian Alps.

Zelleromyces corkii Trappe & Claridge

Basidiomata 3-20 mm broad, subglobose. _Peridium_ pale to medium orange, glabrous. _Gleba_ loculate, pale orange, when fresh and moist exuding a whey-like latex. _Odor_ and _taste_ mild. _Peridiopellis_ of interwoven, hyaline hyphae 2-5 µm broad, at the surface loosely tangled and with occasional cells inflated up to 12 µm; laticiferous hyphae present but inconspicuous. _Cystidia_ scattered, tapered and often acicular, 40-55 x 2-5 µm, substantially exceeding the hymenium. _Spores_ globose, 6-7(-9) µm broad, the walls weakly amyloid, the ornamentation a complete to mostly complete, irregular, amyloid reticulum ca. 0.2 µm tall, with some isolated amyloid spots and short side branches; plage inconspicuous or absent; sterigmal appendage ca. 2 x 1 µm.

Yet another of the “orange complex” of _Zelleromyces_, Z. daucinus, differs from the others by its tall, strongly amyloid, completely reticulate spore ornamentation. It is widely distributed in eastern Victoria and south-eastern New South Wales (Claridge and Trappe, unpubl.).

Tricholomataceae

Hydnum cuneatum Wallr.

Basidiomata 5-25 mm in diam., subglobose to irregular, with a basal attachment of hyphae and clinging soil. _Peridium_ pale to medium pink or brownish pink, felty. _Gleba_ loculate, pink, often with a white sterile basal pad or irregular columella. _Odor_ and _taste_ mild. _Peridiopellis_ of interwoven hyphae 2-12 µm broad, clamp connections present. _Spores_ subglobose to globose, hyaline, 12-17 µm broad excluding the ornamentation of hyaline cones and spines 0.5-1 µm broad and tall; sterigmal appendage 1.5-2 x 0.5-1 µm.

Collections examined: New South Wales, Kosciusz-
Hydnangium carneum is a widely distributed, ectomycorrhizal hypogeous fungus associated with eucalypts in Australia, although it is not common everywhere (Claridge et al. 2000a and 2000b and unpublished data). Hydnangium is a sequestrate relative of the mushroom genus Laccaria.

Key to hypogeous fungi at tree line

1. Peridium a gelatinous-viscid pellicle 0.5-1 mm thick
2. Peridium dry to moist but not a gelatinous-viscid pellicle

3. Spores 10-13 x (7-)8-11 µm excluding ornamentation
4. Peridium silvery white to violet
5. Peridium grayish yellow to dark brown or orange brown

6. Spores 13-17(-18) x (7-)8-12(-12) µm excluding ornamentation
7. Spores (13-)14-17(-18) x (7-)8-10(-12) µm excluding ornamentation

8. Protoglossum niphophilum
9. Protoglossum luteum
10. Protoglossum viscidum

11. Spores ornamented with ±parallel ridges (zebroid)
12. Spores ornamented with a reticulum

13. Spores ornamented with hyaline spines
14. Peridium pink to grayish pink; spores nonamyloid, ornamented with hyaline spines
15. Peridium white to yellow, orange or brown, if pink tinged, the spores amyloid, variously ornamented or smooth

16. Peridium an epithelium of inflated cells; spore ornamentation 1-2.5 µm tall
17. Peridium of interwoven hyphae, with scattered, inflated cells; spore ornamentation ca. 0.2 µm tall

18. Zelleromyces claridgei
19. Zelleromyces daucinus
20. Zelleromyces corkii

21. Zelleromyces claridgei
22. Protoglossum niphophilum
23. Protoglossum luteum
24. Protoglossum viscidum

25. Hydnangium carneum
26. Peridium white to yellow, orange or brown, if pink tinged, the spores amyloid, variously ornamented or smooth
27. Peridium orange and glabrous; gleba exuding a whey-like latex; spore ornamentation amyloid
28. Peridium white, yellow, red, purple or brown; gleba not exuding a latex; spores smooth or with either amyloid or inamyloid ornamentation
29. Spores ornamented with ±parallel ridges (zebroid)
30. Spores ornamented with a reticulum
31. Peridium an epithelium of inflated cells; spore ornamentation 1-2.5 µm tall
32. Peridium of interwoven hyphae, with scattered, inflated cells; spore ornamentation ca. 0.2 µm tall

33. Chamonixia sp.
34. Zelleromyces claridgei
35. Zelleromyces daucinus
36. Zelleromyces corkii

37. Hemisphaeralia sp.
38. Chamonixia sp.
39. Zelleromyces claridgei
40. Zelleromyces daucinus
41. Zelleromyces corkii

42. Cystangium polychromum
43. Cystangium sessile
44. Cystangium sessile
45. Cystangium sessile
46. Cystangium sessile
47. Cystangium sessile
48. Cystangium sessile
49. Cystangium sessile
50. Cystangium sessile
51. Cystangium sessile
52. Cystangium sessile
53. Cystangium sessile
54. Cystangium sessile
55. Cystangium sessile
56. Cystangium sessile
57. Cystangium sessile
58. Cystangium sessile
59. Cystangium sessile
60. Cystangium sessile
61. Cystangium sessile
62. Cystangium sessile
63. Cystangium sessile
64. Cystangium sessile
65. Cystangium sessile
66. Cystangium sessile
67. Cystangium sessile
68. Cystangium sessile
69. Cystangium sessile
70. Cystangium sessile
71. Cystangium sessile
72. Cystangium sessile
73. Cystangium sessile
74. Cystangium sessile
75. Cystangium sessile
76. Cystangium sessile
77. Cystangium sessile
78. Cystangium sessile
79. Cystangium sessile
80. Cystangium sessile
81. Cystangium sessile
82. Cystangium sessile
83. Cystangium sessile
84. Cystangium sessile
85. Cystangium sessile
86. Cystangium sessile
87. Cystangium sessile
88. Cystangium sessile
89. Cystangium sessile
90. Cystangium sessile
91. Cystangium sessile
92. Cystangium sessile
93. Cystangium sessile
94. Cystangium sessile
95. Cystangium sessile
96. Cystangium sessile
97. Cystangium sessile
98. Cystangium sessile
99. Cystangium sessile
100. Cystangium sessile
101. Cystangium sessile
102. Cystangium sessile
103. Cystangium sessile
104. Cystangium sessile
105. Cystangium sessile
106. Cystangium sessile
107. Cystangium sessile
108. Cystangium sessile
109. Cystangium sessile
110. Cystangium sessile
111. Cystangium sessile
112. Cystangium sessile
113. Cystangium sessile
114. Cystangium sessile
115. Cystangium sessile
116. Cystangium sessile
117. Cystangium sessile
118. Cystangium sessile
119. Cystangium sessile
120. Cystangium sessile
121. Cystangium sessile
122. Cystangium sessile
123. Cystangium sessile
124. Cystangium sessile
125. Cystangium sessile
126. Cystangium sessile
127. Cystangium sessile
128. Cystangium sessile
129. Cystangium sessile
130. Cystangium sessile
131. Cystangium sessile
132. Cystangium sessile
133. Cystangium sessile
134. Cystangium sessile
135. Cystangium sessile
136. Cystangium sessile
137. Cystangium sessile
138. Cystangium sessile
139. Cystangium sessile
140. Cystangium sessile
141. Cystangium sessile
142. Cystangium sessile
143. Cystangium sessile
144. Cystangium sessile
145. Cystangium sessile
146. Cystangium sessile
147. Cystangium sessile
148. Cystangium sessile
149. Cystangium sessile
150. Cystangium sessile
151. Cystangium sessile
152. Cystangium sessile
153. Cystangium sessile
154. Cystangium sessile
155. Cystangium sessile
156. Cystangium sessile

156
12. Peridium an epithelium of inflated cells
12. Peridium of interwoven hyphae

13 (9). Basidiomata with a stipe
13. Basidiomata lacking a stipe

14. Basidiomata bright yellow
14. Basidiomata brown

15. Spores 9-12 x 5.5-6.5 µm; basidiomata lamellate
15. Spores 14-19 x 7-10 µm; basidiomata sublamellate to loculate

16 (13). Spores brown, the ornamentation of scattered warts and short ridges 0.2-1 tall
16. Spores hyaline or nearly so, smooth or minutely rugulose

17. Gleba brown; spores 11-14 x 7-9 µm
17. Gleba grayish olive to green, spores 8-10 x 3-4 µm

Acknowledgements

J.M. Trappe participated in this research while serving as a McMaster's Research Fellow with C.S.I.R.O. Wildlife and Ecology, Canberra. The studies were supported in part by a grant from the Australian Biological Resources Study for the project “Taxonomy and biogeography of Australian sequestrate fungi in the Pezizales, Elaphomycetales, Boletales and Hysterangiales.” and by the U.S. Forest Service, Pacific Northwest Research Station.

References

Claridge, A. W., Trappe, J. M. and Claridge, D. L. 2001. Mycohagy by the swamp wallaby (*Wallabia bicolor*): a dis-

