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NATURAL
PARAMETERIZATION

Torben Brgchner

Aarhus University, Department of Engineering

Abstract

The objective of this project has been to develop an approach for imitating physical objects with
an underlying stochastic variation. The key assumption is that a set of “natural parameters” can be
extracted by a new subdivision algorithm so they reflect what is called the object’s “geometric
DNA’". A case study on one hundred wheat grain cross-sections ( 7riticum aestivum) showed that it
was possible to extract thirty-six such parameters and to reuse them for Monte Carlo simulation of
“‘new” stochastic phantoms which possess the same stochastic behavior as the “original” cross-
sections.



ABSTRACT

Today, high resolution scanners are able to capture the geometrical details of natural objects like never before.
As a result, highly irregular look-a-like phantoms, based on scanned observations, are receiving increasing
attention in the field of multi-physics modeling. A few models within Biosystems applications such as grain, soil
and natural fluid transport, are already being investigated by the latest multi-physics software. However, with
regard to multiresolution modeling of natural objects, there is an identified need for new parametric
simulation approaches that can handle roughness and other complex geometries that vary from scan to scan
and over time. One of the first approaches to stochastic phantom generation was published by Baek, SY. & Lee,
K., Seoul National University, January 2012. This approach focused on the generation of smooth, human body
surfaces, from a 3D template based on whole body scans. However, the geometry of objects investigated in
Biosystems engineering is not smooth. On the contrary, most natural objects are characterized by irregular
shapes, rough textures, hair, and other geometric complexities that make template based modeling
unreachable. Therefore, an alternative parameterization approach is required for rough objects. Specifically,
there is a need for a novel generic parameterization approach, based on scanned objects, that is able to model
irregular space-time variations in naturally rough objects as easily as today’s free-form modeling is able to
model smooth objects.

The objective of this project has been to imitate geometries of objects with an underlying stochastic variation.
In order to do so a two-step approach was introduced. The first step is dedicated to the extraction of intrinsic
parameters from samples of specific objects. In the second step, these parameters, popularly referred to as the
“geometric DNA,” are used for re-parameterization into imitation meshes, which are then displayed as
phantoms. A central assumption of this approach is that it is possible to extract, at minimum, one unique
constellation of parameters for any natural object in such a way that they behave like generalized coordinates.
In other words, the extracted parameters are perceived as independent degrees of freedom variables which
are able to model the entire geometry. This assumption also forms the basis for subsequent generation of
stochastic phantoms through Monte Carlo simulations of new independent parameters. The final outcome is a
series of new phantoms, which appear in such shape and detail that experts are likely to recognize them as
“feasible imitations” of the underlying objects. In other words, the goal is to create “look alike” phantoms that
appear with the same stochastic characteristics as observed in the original object.

In a case study of one hundred wheat grain cross-sections, parameter extraction was initiated using expert
knowledge of the “bow-line,” a characteristic landmark for wheat grains. This unique landmark of all wheat
grains was identified in every single object in the sample. Computationally, the “bow-line” was localized by a
dedicated identification algorithm based on the convex hull of the cross-section and a special anti podal pair’s
constellation. It was demonstrated that the “bow-line” landmark, and another seventeen unique master
parameters for each cross-section, could be extracted. This means that it was possible to extract a total set of
eighteen parameters, which were then used to form the set of so-called “master parameters”. Thereafter, an
automated segmentation routine was used to divide the cross-section outline into six tortuous segments. From
each such segment, another three iterated parameters were extracted using an iterative replication approach.
Since three iterated parameters were extracted for each of the six segments, an additional set of eighteen new
“iterated parameters” was formed. During the iterative replication of the iterated parameters, the maximum
relative error for replication of the one hundred cross-sections areas was found to be less than one percent.
The eighteen master parameters, along with the set of eighteen iterated parameters, gave a total of thirty six



“natural parameters” for each cross-section. A set of natural parameters and the constellation they form is
called a “master mesh”. This master mesh is a parameteric representation of the objects “geometric DNA”.
Mathematically, the extraction of the eighteen iterated parameters was accomplished using a novel
multiresolution parametric subdivision approach called Frenet subdivision. This approach is a variant of the
well-known Catmull-Clark approach, however, it includes Frenet vectors and natural equations explicitly. In this
case study, a novel concept called “goodness of replication” was introduced to control the “fitting” of the
generated geometry to the observed geometry with a high “efficiency of replication”. An iterated solution for
such a “replication problem” is an extremal, represented by a set of iterated parameters. Finally, all the
extracted parameters were stored in a parametric bank and treated by chemometrics. In the final step, the
treated parameters were reparameterized into stochastic phantoms.

In stochastic phantom simulation, new “imitations” are created from input parameters, i.e. mean value and
standard deviation, which are taken from the parametric bank. In the case study on wheat grains, one hundred
such phantoms were generated as imitations of the original wheat grains. Mathematically,
“reparameterization” is based on Frenet subdivision for the mesh generation. To control the imitation meshes
a novel concept called “goodness of imitation” was introduced. This novel concept ensures that the stochastic
distribution of a set of indicators for the imitation meshes does not differ significantly from the distribution of
the same indicators of the “real” objects. Results obtained from the case study on wheat grains verify that
extracted natural parameters can be modelled as independent random variables in such a way that realization
can be obtained from simple Monte Carlo simulations. Furthermore, from the master mesh it was possible to
generate realizations from Monte Carlo simulations with distributions for area variations, which at a five
percent significance level for two-sample Kolmogorov-Smirnov tests, do not differ significantly from what was
found in the original sample objects. This indicates that the “new” phantoms were able to imitate the “real”
objects with a high efficiency of imitation.

Weaknesses in natural parameterization are likely to be revealed when further case studies are performed.
However, the aim of this first approach is for parts of the method to be applied to a wide range of application
objects and phenomena. The theoretical basis of natural parameterization is founded on fundamentals from
calculus of variation, vector calculus, differential geometry, biometrics, finite elements, multi-variate
optimization, and chemometrics. As such, adoption and modification of the approach for use within each
different discipline is hopefully straightforward. The new approach for human body surfaces, natural
parameterization, and other stochastic modeling approaches might initiate experimentation on pseudo-natural
objects. This means that real human beings, animals, biomasses, vegetation, soil, fracture, flows, or other
objects or phenomena with an underlying stochastic behaviour may have the potential to be substituted with
stochastic phantoms during experimentation. Future experimentation and FE-based multi-physics analysis on
new stochastic phantoms has the potential to identify opportunities for simulation and reduce laboratory
expenses in empirically based studies.

Keywords

natural parameterization, geometric DNA, parametric meshing, parameter extraction, reparameterization,
tortuous mesh, observation mesh, master mesh, goodness of replication, tortuosity pole, natural parameters,
master parameters, iterated parameters, Dido’s problem, Frenet subdivision, alpha-beta decomposition,
parametric bank, goodness of imitation, stochastic phantoms



Assume that a sample of “real” walnuts are scanned and individually modeled by 3D meshes. Then imagine that
their “geometric DNA” can be extracted by an automated procedure and later reused to generate a set of “new
walnuts”. Each of these “new” walnuts differs from all the “real wallnuts” and also amongst each other, i.e. all
the “new wallnuts” are unique. Now, if observations are performed on the “new walnuts” it will be found that
their stochastic variation does not differ from the “real” walnuts, i.e. the “new” wallnuts are good imitations of
the “real” ones. In conclusion, the “new” and the “real” wallnuts seem to be alike!

- This is what natural parameterization is about!

SUMMARY

Advances in scanning technology enable mesh-representation of 3D objects in increasing detail. Today, a few
such natural meshes are used for multi-physics modeling of human body parts and grains. Models of other
biomasses and objects such as vegetation, soil, and phenomena such as natural fluid flow and crack growth in
various materials, are expected to be new targets for similar multi-physics modeling in the near future.
Traditionally, natural objects and phenomena are investigated through costly field or laboratory experiments in
Biosystems engineering, medicine, and other sciences. With the use of emerging multi-physics software, new
opportunities to supplement today’s experiments with tomorrow’s sophisticated computer simulation lie
within our reach. However, if they are to obtain reliable results, new multi-physics models require geometric
meshes that provide a much higher level of detail than is currently available. The absence of irregular and very
complex meshes is a key barrier for complex modeling since even with todays most advanced NURBS based
meshing software the geometry modeling costs are very high. An even bigger problem arises when stochastic
variations are to be included in such modeling. The goal of this study is to take the first step in the
development of a generic approach for the generation of rough geometries with natural and abnormal
variations with a high level of detail. The aim is to let this detailed modeling be a natural extension of today’s
free-form approaches for smooth geometries. The intention is that the new meshing techniques will be
customizable through perturbation modeling based on parametric subdivision. Finally, the new approach is
intended to be fully parametric, i.e. all geometric quantities are modeled by parameters, which again are
modeled as random variables. This means that the resulting model becomes a stochastic representation of the
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underlying object and is said to reflect the objects’ “geometric DNA”. In the following discussion, the working

title for a first version of such an approach is: “natural parameterization.”

Specifically, natural parameterization is intended to be a systematic approach that contributes to parametric
meshing of natural geometries. The outcome is imitation meshes (represented as stochastic phantoms), which
are supposed to "look natural." In other words, they appear with the same underlying stochastic variations,
natural or abnormal, as the observed natural geometries. The approach is founded on a generic discretization
model for natural geometries in 3D and is operationalized as a two-step process.



The first step, called parameter extraction, operates on observation meshes which are preprocessed meshes
originating from sample observations. From these meshes, characteristic quantities are extracted, normalized,
and finally stored in a parametric bank as natural parameters. Most of the parameters included are intuitively
controlled by the modeler. Many are even measurable from the natural object directly. In general, the
parameterization focusses on location and orientation quantities and their perturbations. Technically, an
observation mesh is segregated into a new parametric master mesh called the master mesh. Thereafter, this
master mesh is subdivided parametrically into finer meshes called iterated meshes. After some recurrences
these iterated meshes form a limit mesh. Because the parameterization follows this strategy, the parameters
used are classified as master parameters or iterated parameters respectively. The master parameters carry
information related to size and landmarks, whereas iterated parameters reflect location and orientation of the
shape. The parameter extraction of master parameters is governed by expert knowledge, whereas the
extraction of iterated parameters follows a decision rule called the goodness of replication. This rule ensures
that an extracted replication mesh is considered the extremal mesh, amongst a set of feasible meshes, if it
contains the smallest tortuosity with a replication error lower than a prescribed limit value. A tortuous version
of the Catmull-Clark subdivision is used to form a novel parametric mesh engine suitable for rough geometries.
Algorithmically, this engine enables the creation of 3D curves, surfaces, and volumes with smooth, rough, and
fractal characteristics. The mesh engine is called Frenet subdivision since it explicitly includes Frenet vectors
and natural equation values for embedded tortuous curves. The resulting meshes are mesh-fields rather than
conventional meshes of interconnected vertices. This is because the new meshes also include information on
Frenet vectors, curvatures and parameter settings. One complication is finding a combination of parameters
that can be extracted in such a way that they form the same identical set of parameters, just with different
values for each of the objects in the sample. This set of feasible parameters must exist, and it must be verified
that these parameters are weakly correlated so that they can be modeled as independent random variables.
Theoretically, this makes it plausible that mapping from an observation space to a parametric space is possible.
However, due to the built-in non-linearity of rough geometries, a novel stochastic decomposition founded on
Reynolds averaging is introduced. Its purpose is to decompose each random parameter into two components.
One component, called the alpha-component, is used to model the main fluctuations (i.e. the dominant part of
the natural variations), whereas the beta-component is used to model the semi-stationary variations (i.e. small
induced numerical errors and/or small mean value variations). This alpha-beta decomposition delivers
stochastic information on the parameters, which are then formally stored in a parametric bank along with
other relevant information. Over time, if the bank is continuously extended and updated with new
information, the natural object becomes better explained, and better understood. The parametric bank then
becomes a parametric knowledge base for that object.

The second step, called reparameterization is designed for regeneration of new imitation meshes from the
alpha-beta decomposed parameters drawn from the parametric bank. However, before the regeneration into
imitation meshes takes place, the modeler might pre-manipulate the parameters. Because the approach is
made fully customizable, the model can be adjusted to meet experimental requirements in terms of volume,
area, arc length, straightness, roundness and roughness. Theoretically, the stochastic simulation of new
meshes follows a novel decision rule called goodness of imitation. It ensures that the stochastic simulation first
produces a proper mean value imitation before the dominant variation simulation is applied. Ultimately,
goodness of imitation ensures that meshes simulated by random number generators match the underlying
stochastic behavior of the natural object with a high efficiency of imitation.



In general, the problems to be solved numerically are highly nonlinear making the new meshing algorithms
very CPU demanding. For increased speed of convergence and stability, the highly non-linear multivariate
optimization algorithm, which is a key part of the extraction of parameters, must be enhanced in the future.
Also, it must be noted that the new algorithmic design and its implementation as a unified approach is just in
its infancy. However, in this piloting case study, a set of imitation meshes called wheat cross-section phantoms
are generated. Despite the complexity, the aim is to make stochastic imitation modeling a customizable tool for
free form simulation modeling - an ambition that could realistically be fullfilled in a few years from now.
Technically, these new phantoms are formed as conventional tri or quad meshes and are intended for patch
graphics visualizations for further post processing by FEA based multi-physics software or for materialization
into physical models. The alpha-beta mesh generator is also useful for more simple deterministic or pseudo-
stochastic phantom generations. The simplest phantoms are called deterministic replica phantoms. They
replicate the observation mesh as a one to one fit. Mean value meshes, which produce a single mesh from the
mean values of the extracted parameters, are not fully stochastic but rather pseudo-stochastic. Furthermore, it
is possible to generate synthetic phantoms based on purely synthetic parameters. In these cases, the new mesh
engines act like conventional deterministic mesh generators.

An indirect capability validation of the developed algorithms was performed as a case study on a sample of
one hundred wheat grain cross-sections (Triticum aestivum). The observation mesh for each cross-section was
represented by pseudo-3D polyhedral with an artificial unit thickness. For the one hundred objects, the
maximum relative error of replication was less than one percent. The reparameterization was performed in
accordance with the new concept on goodness of imitation and it is verified that the master mesh was able to
generate realizations from Monte Carlo simulations. A comparison between the distribution of the segment
and cross-section areas from the simulated and real meshes was performed using the corresponding two data
vectors. The test was performed as a two-sample Kolmogorov-Smirnov test. The null-hypothesis, that the
cross-section and segment areas from the two data vectors were distributed equally, was not rejected at five
percent significance level. In other words, the “new” simulated wheat cross-section phantoms were found to
imitate the “real” wheat grain cross-sections with a high efficiency of imitation.
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NOMENCLATURE

Notations

Q: S, U,F, S, A

o’Q: C, B, L, |
’Q:V, T,N,B, d
o'Q: g, p

K, K ,T

!’

pll plcl pz’

o°Q: 7, 4,D,,D,,D,

INDICES

number of scanned data sets for a natural geometry

limit level of refinement

level of refinement. (Master level: k. =0. Iterated levels: k, >1)
GEOMETRIC DISCRETIZATION

Domain Representations

cluster

subcluster

object/species

subdomains, volume segment, volume element, volume
Boundary Representations

surfaces: surface segment, planar surface segment, face element, surface area,
planar area

curves: curve segment, edge element, curve length, linear length

vectors: vertex, tangent, normal, binormal, rectifying vector

scalars: generalized curvature, radius of curvature
segment curvature, (Frenet) curvature, (Frenet) torsion
segment radius of curvature, radius of curvature, radius of torsion

shape metrics: tortuosity, lacunarity, Hausdorff-Besicovitch dimension, Minkowski—
Bouligand dimension, Rényi dimension
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Constellation Representations

Frenet frame

tortuosity pole, pole valence

frame index

bi-pole

bi-mesh

tortuous mesh, first derivative of a tortuous mesh, observation mesh, phantom

master mesh, iterated mesh, limit mesh

multiresolution parametric subdivision operator

Parameters

natural parameters, perturbation parameters

master parameters, master perturbation parameters

size parameters, size normalization parameters, dimension parameters
landmark parameters, location parameters, orientation parameters
iterated parameters, iterated perturbation parameters

Iterated pole parameters, location parameters, orientation parameters

alpha-beta decomposition of Q

perturbation level

beta mean value, i.e. the mean value of the decomposed Q

alpha standard deviation, beta standard deviation

variance ratio

alpha-beta realization of Q, alpha realization of Q, beta realization of Q
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Abbreviations

FEA

e finite element analysis
G, G, G

e vertex continuity, tangent continuity, curvature continuity
NURBS

e non uniform rational basis spline
IFS

e iterated function system
MPA

e multi-physics analysis
SA

e sensitivity analysis
TSW

e thousand seeds weight
PCA

e principal component analysis
PLS

e partial least squares
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Prolog

This prolog is an informal appetizer to the PhD-study entitled "Natural Parameterization”.

Figure 0.1. Four subdivision geometries resulting from four parametric settings of the exact same master mesh and two
pictures of beet roots

Can nature be parameterized like ellipsoids and other volumetric objects?

In 2009, my friend Dr. Ole Green looked at the images in Figure 0.1. and posed this tricky question: "Since we
are able to parameterize complex but man-made subdivision geometries, do you think it is possible to develop a
kind of "reverse parameterization" which enables us to find a unique set of “natural parameters” that can be
used for parametric modeling of natural geometries, such as beet roots, as well?”

This teasing question is the motivation for this study and the inspiration for challenging research in the years to
come. When you take a look at the images above you see a sphere, an octahedron, a cup, and something that
"looks almost like a beet root".

Surprisingly, these geometries are generated from the same six geometric "poles" which contain information
on location vertices and orientation tangents. Following the idea of reverse parameterization, the question that
emerges is: whether or not it is possible, by examining of a collection of beet roots, to identify the same six
poles for every single object observed?

- The answer is probably!
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In other words, is it possible to develop a "reverse parameterization procedure"” which can reveal a kind of
"parametric DNA" of natural geometries?

In this study, some modest attempts to answer these questions and pursue these goals are introduced. The
research includes: a systematic approach for parameter extraction of natural objects based on expert
knowledge, a decomposition method for stochastic parameters which enables simple Monte Carlo simulation,
and finally a novel parametric subdivision algorithm for imitation of rough geometries based on Frenet-Serret
concepts and tortuosity. To control the approach, two new concepts are presented. The first concept, called
the goodness of replication, controls the extraction of natural parameters from scanned objects. The second
concept, called goodness of imitation, controls the reparameterization from the captured parameters back into
new unique look-a-like phantoms.

Upon close inspection natural objects usually seem rough and irregular!

Figure 0.2. Stereomicroscopic images of wheat grains (Triticum aestivum) with rough and highly irregular surfaces

Compared to most man-made geometries, the big challenge of working with natural geometries is that they
always possess rough characteristics (as seen in the above images). One key strategy used in natural
parameterization is to let all irregularities be modeled through controlled parameterization. The parameters
introduced are simple, measurable, and intuitive. It also allows for free form modeling with a high degree of
flexibility.

Parameterization of location and orientation

Figure 0.3 Left: A smooth ellipsoid. Right: A rough ellipsoid with one perturbation DOF
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When an ellipsoid is parameterized by its center and its semi-axes, the center is said to provide information on
location in space, whereas the semi-axes provide information on the objects bounding dimensions and local
orientation. Mathematically, location and orientation are represented by vectors. Other domain properties
such as volumes, cross-section moments of area, and curvatures, are defined by scalars. Important metrics
such as tortuosity, lacunarity, the Hausdorff-Besicovitch® dimension, the Minkowski—Bouligand? (box counting)
dimension, and others are all scalar properties of irregular geometries. Therefore, vectors and scalars are the
fundamental building blocks used to model the size and the shape of any tortuous geometry, whether it be
smooth or rough.

Degrees of freedom

The “smooth ellipsoid” in Figure 0.3 is defined by: three coordinates controlling the location, and three semi-
axis controlling the orientation and size. The number of parametric degrees of freedom (DOF) is therefore six.
To include roughness, at least one more parameter must be included. In the “rough ellipsoid” (see Figure 0.3,
right), one additional parameter, called the perturbation level, is introduced to alter the appearance of the
surface. This perturbation level randomly translates each of its smooth surface coordinates by simple Monte
Carlo perturbations. In Figure 0.3 (right) these perturbations are realized by multiplying the perturbation level
with a realization obtained from the uniform random number generator with zero mean and unit variance. As a
result, the number of DOF of the rough geometry is now increased to seven, i.e., even a minor increase in the
parametric DOF’s for analytic geometries can change the appearance from smooth to rough. However, it is not
likely that such a simple modification of analytic geometries can be used to imitate natural geometries
appropriately. Therefore, more advanced imitation generators are needed in order to model natural objects.

Figure 0.4. Left: Reconstruction by Non-uniform Rational B-spline Surfaces (NURBS) of a scanned model - GSI STUDIO® Geometry
Systems, Inc. Right: IFS rough grain surface with complex texture, componed by an assembly of six fractal surfacic patches connected
with GO continuity (the edge on the top) or G2 continuity (making their boundaries indiscernible from one patch to the other), Dr. Gilles
Gouaty, Université Claude Bernard Lyon 1, FRANCE

! Felix HAUSDORFF (1868 —1942), German mathematician. Abram Samoilovitch BESICOVITCH (1891 — 1970), Russian mathematician.
2 Hermann MINKOWSKI (1864 - 1909), German mathematician and physicist. Georges Louis BOULIGAND (1889-1979), French
mathematician.
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Complex vs. intuitive parameterization

Over the past decade, NURBS has been developed into an advanced tool for irregular geometry modeling - see
Figure 0.4 (left). However, in terms of parameterization, the number of DOF for NURBS models is likely to
become very high for imitations like the one seen in the figure above (left). In todays advanced geometry
software NURBS are the de facto mesh engine. However, another promising mesh engine is a parametric
subdivision strategy known as Iterated Function Systems (IFS), see mesh Figure 0.4 (right). It controls the
appearance of the geometries by manipulating a set of control points. In this way, it allows the modeler to
induce highly irregular geometry patterns. Unfortunately, the parameters of parametric IFS are not directly
measurable which means that when a model is generated its parameterization cannot be identified from
simple measurements. Therefore, it is not straight-forward to obtain reverse parameterization. Furthermore,
the fractal behavior, which is the beauty of the irregular geometries, makes it very difficult to anticipate the
limit model from controlled parameters. At this stage, it seems difficult to avoid such modeling complexity and
to let the IFS parameterization be simple and intuitive. A very impressive IFS based synthetic subdivision
surface, which imitates the texture of a grain in surprising detail, is illustrated in Figure 0.4 (right). Such texture
generations by IFS might be today’s best answer for advanced modeling of rough surfaces. However, since the
ambition is to model curves, surfaces, and solids from a unified approach based on a simple setup with
measurable parameters, a special subdivision approach is developed during this study. Briefly, this approach is
a tortuous variant of what is commonly called a Catmull—Clark split (Catmull & Clark, 1978). Like Catmull-Clark
subdivision the tortuous approach starts from an initial mesh and decomposes it into new meshes which
become more and more detailed for each step during recursive mesh refinements. The tortuous variant
proposed here is called Frenet subdivision since its initial mesh is formulated from Frenet frames.

Frenet subdivision

One advantage of the novel Frenet subdivision scheme is its ability to generate meshes that imitate natural
geometries from an initial master mesh with low parametric DOF. Another benefit is that, due to the use of
measurable parameters, the modeler finds the parameterization process intuitive and controllable. However,
the drawback is that the entire model is non-linear by nature and thus requires an iterative setup to carry out
the Catmull-Clark splitting, a process which is quite CPU demanding.

Natural objects are unique and hard to imitate

Except for clones, natural objects are unique. This means that any imitation generated from parameters must
possess the same underlying stochastic nature as the object itself. Therefore, imitations must be based on
collected knowledge, and reflect this knowledge within the generated imitations. Consequently, the collection
of statistical data and its influence on the reparameterization into imitations is significant for today, and
tomorrow’s, advances in natural parameterization.
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Historical procedures are turned into non-linear parameterization algorithms

To face the challenges, new algorithms have been developed and are summarized in the following section to
give a first impression. The overall approach is called "natural parameterization". It is a two-way approach. In
the first step, expert knowledge is used to extract parameters from natural objects. In the next step, the same
parameters are re-parameterized into new, unique imitations. Statistically these imitations belong to the same
family as the observed objects. The extraction is geometrically formulated by so-called tortuosity poles, which
contain information on location as well as orientation. This information is for each pole linked is to the same
nodal point in space. Pairs of such poles then form a so-called tortuosity bi-pole and this, in turn, forms a so-
called tortuosity bi-mesh. The most fundamental mesh, which is composed by a finite number of bi-meshes, is
called the "master mesh". It has the lowest number of DOF. This mesh is subdivided into denser meshes each
containing more and more data. In the limit, it finally forms a so-called “goal mesh,” denoted as an iterated
limit mesh. Algorithmically, the mesh generation is performed by the novel Frenet subdivision scheme. This
enables the generation of tortuous curves, surfaces and volumes in 3D. The extraction of the set of governing
natural parameters is governed by a novel rule called goodness of replication. It governs the iterations so that
the replication meshes have minimum tortuosity and small replication error. This rule is entirely deterministic
and suits the parameter extraction process. However, to obtain "nature-like" imitations, a stochastic
decomposition variant of Reynolds averaging called "alpha-beta decomposition" is introduced. This
decomposition enables generation of parameterized geometries where the natural parameters are
uncorrelated. To ensure a high efficiency of such stochastic imitations, another decision rule called goodness of
imitation is introduced. It is an indirect approach introduced to ensure that the underlying stochastic nature of
a natural geometry is also found in its imitations. The “new” imitations represent stochastic phantoms, i.e.
computational phantoms that are deformable and size-shape customizable. The above principles and methods
are based on well-established theory and include elements of calculus of variations, differential geometry,
vector algebra, stochastic Reynolds averaging, biometrics, chemometrics, FE formulations and multivariate
non-linear optimization.

Natural parameterization

Natural parameterization is a piloting approach towards modeling of
multiresolution natural objects and it is encouraged by "reverse
parameterization" fostered by Dr. Ole Green. However, this first
version of the natural parameterization approach does not at all give
a profound answer on reverse parameterization. It simply attempts

to reveal some of the key problems and introduce a systematic set of
parameterization procedures for modeling of natural objects and
Figure 0.5. A “synthetic” phantom phenomena.

Natural parameterization is in its very beginnings and reverse parameterization poses a big challenge for future
research.

19



1 INTRODUCTION

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line" (Mandelbrot, 1983).

1.1 CONTEXT

Today, high resolution scanners are able to capture the geometrical details of natural objects like never before.
Using the latest multi-physics software, advanced geometrical models can be developed and used for
sophisticated applications. The creation of detailed geometrical meshes using observations from objects that
exhibit variation in space and time, represent the very wide contextual boundary of this study. At this stage,
computational phantoms have only been modeled for anatomical parts of humans (Xu & Eckerman, 2010).

Computational Phantoms

Time=1 Siice: Velocity magnitude (m/s)
= A 04687

A view of the aorta and its ramification (branching Free tetrahedral mesh Velocity field color slice in the aorta and
vessels) with blood contained, shown both with (left) its ramification (branching)
and without (right) the cardiac muscle

Figures and labels from: Fluid-Structure Interaction in a Network of Blood Vessels, COMSOL® Multiphysics 4.2a, 2012 — www.comsol.com
Figure 1.1. Synthetic phantom of the aorta, 2012

In Figure 1.1, a synthetic mesh of the human aorta, is defined and modeled by the COMSOL® Multiphysics
software to investigate the interaction between blood flow and structural deformations. Such finite, element
based, multi-physics is a reflection of today’s state of the art natural modeling capabilities. However, the
creation of the geometrical model of the natural objects, such as the aorta, is challenging since the blood
boundary layer is essential to obtain realistic flow patterns. The geometry of this boundary layer is highly
irregular and it is very complicated to model in detail. As a result, the physics of this layer is approximated and
not modeled in high resolution. Such situations where details are crucial for accurate simulations represent the
specific conceptual environment for this study. Obviously, geometric irregularities relate to the underlying
stochastic nature of the object itself and therefore stochastic modeling becomes a specific conceptual

ingredient in this study.

Today, irregular but smooth meshes are usually synthetic or semi-synthetic in the sense that they are based on
nominal parameters found from fitted analytic geometries such as: spheres, ellipsoids, or percentile or mean
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value parameters. However, in this study such synthetic meshes are perceived simply as a special case of
realizations of stochastic parameters. Technically, synthetic parameter values are assumed to be achieved
from parametric Monte Carlo simulations with no variance. Therefore, to obtain look-a-like phantoms there is a
need to combine classical geometry modeling with stochastic data simulation. This means that the
development of new advanced look-a-like phantoms must reflect not only the ability to model conventional
irregular geometries but also tortuous geometries with natural or abnormal variations. Like natural objects,
each look-alike phantoms must be simulated so it is unique. On the other hand, if a huge sample of these
unique phantoms is simulated, then their stochastic variations must match the variations of the underlying
natural object. In the following discussion, this problem is called an imitation problem and it highlights the
theoretical context of this study.

Focus is shared between a detailed representation of highly irregular geometries and a general variation
modeling for natural objects and phenomena. The development of algorithms for the creation of parametric
phantoms with natural properties is also a major task. Since these algorithms are supposed to integrate with
the latest multi-physics software they must also be designed so the modeler can apply and modify the
generated phantoms during modeling. Despite the geometrical complexity, the setup must be designed to
meet today’s demand for free-form geometry modeling as known from Rhinoceros®, 3ds Max Design® and
other software packages based on NURBS.

During the last few years, modeling of the first human body parts and biomasses has been performed using
finite element based multi-physics software from synthetic phantoms (Anza, 2011), (Lazutkin, Harkara, &
Husar, 2010) and (Lund, 2009). Furthermore, human-centered design is receiving increasing attention
indicating that extended focus is on accurate modeling of natural geometries.

e e Especially within human-centered design, much
‘ effort has been placed on the development of

constraints accurate computational phantoms, which can be
used to investigate the effect between the

2t 80

AR TN

product and the human user.

’_.; ) J approach there are many key elements. First, a
body shape parameters | resultanthuman model . .
s ode data base is created using whole body scans.

Each body is fitted to a template model by a set

Ay
3D whole body scan q::,:::;::["
database L L 0 ation
] ; The first full body approach for human surface
ml O a . . .
- R k,)‘( g 2 generation was published a few months ago
%, YENTVEY .
gl I { P Ml "W “!N w\"? ) (Baek & Lee, 2012). In this novel Baek-Lee
clustering | analysis W
Iy 33 1} T\

An overview of the proposed method. 3
of sixty-eight H-Anim, ISB> anthropometric

Figure and Label from: (Baek & Lee, 2012 .
€ ( ) markers® (of which seventeen new markers were

Figure 1.2. The first approach for full body imitations, 2012 proposed by the authors).

*1SBisan acronym for International Society of Biomechanics. See also isbweb.org.
* More details on H_Anim, ISB markers and other human body statistics is found in (van Sint Jan, 2007). See also h-anim.org.
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Thereafter, the scanned data are treated by statistics and a set of body shape parameters is formed. This
offline process is later followed by an online process where the extracted parameters are optimized to meet
modeler’s body-size specifications i.e., the resultant simulation of the human models allows for customizable
full body phantom creation.

The research in human variation modeling started only thirteen years ago in 1999. The original work involved
morphable modeling of 3D faces by (Blanz & Vetter, 1999). This first work by Blanz and Vetter, has been a
main source of inspiration for subsequent research up until present day.

One key characteristic of variation modeling is that
the meshing of new computational phantoms is
based on the statistics from a sample of humans.

Matching a morphable model to a
single image (1) of a face resultsin a
3D shape (2) and a texture map
estimate. The texture estimate can be
improved by additional texture
extraction (4). The 3D model is
rendered back into the image after
changing facial attributes such as
gaining (3) and losing weight (5),
frowning (6), or being forced to smile

(7).

Figure and label from (Blanz & Vetter, 1999).

Figure 1.3. The first approach for morphable modeling, 1999

A comprehensive review of the attempts to develop customizable phantoms based on samples was presented
by (Baek & Lee, 2012). The review started with the initial contribution by Blanz & Vetter in 1999 and ended
with their own approach in 2012. In these approaches from 1999-2012, the shape characteristics of human
beings, often referred to as landmarks, attributes, or patterns, are hand-labeled. In other words, they are
selected from expert knowledge. The characteristic vertices are stored in shape-vectors (coordinate arrays) and
texture-vectors including RGB-color settings. Usually, such texture-vectors store one RGB-setting per vertex.
Furthermore, segmentation is introduced to increase the expressiveness of the model, i.e. for human faces
sub-regions such as eyes, nose, mouth and a surrounding area are assumed to be independent. During the
reparameterization, these segments are generated individually by parametric combinations and finally blended
at their borders.

However, to isolate attributes which are not expressible by simple manipulations is not a trivial task (Blanz &
Vetter, 1999).
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Novel approaches for creation of rough phantoms are needed

A literature search on rough phantom generation for soil, animals, biomasses, vegetation, fluid transport and
material science revealed that approaches similar to the novel Baek-Lee method either do not exist, or can not
be found in the published literature. Therefore, the idea is to develop a new approach for rough phantom
generation which encorporates some of the methodic elements presented in the Baek-Lee approach, but is
generic, in the sense that it is applicable for geometries from Biosystems engineering as well as other research
areas too.

Advances in scanning technology

Despite the fact that a general approach has not been found for variation modeling of Biosystems engineering
objects and phenomena, a variety of data are available from various scans of biomasses, vegetation, soil and
others. Just as scans of human beings were a starting point for the Baek-Lee approach for smooth full body
surfaces, existing scans of biomasses, vegetation, and soil are a very important starting point for the
development of novel approaches for rough geometries. The steadily increasing level of meshing details
resulting from ongoing advances in scanning technology is one explanation for the development of new
variation centered design approaches. It appears that future achievements in stochastic phantom modeling will
go hand in hand with the advances in scanning technology.

A novel mesh approach must handle both rough and smooth geometries

Various complex physical problems, which are estimated by macroscopic parameters, might be be better
explained using micro- and Nano-scale models. This means that new geometrical meshing tools must allow for
multiresolution geometry modeling. On the other hand, novel meshing approaches must still be able to handle
conventional parameterization for comparative analysis and for validation of new results. They must also be
able to incorporate standardized parameters for soil, biomasses, vegetation, atmospheric air, and other fluids
i.e., new meshing approaches must be customizable.

: A brief introduction to selected scanning and meshing aspects are presented in chapter 1: “INTRODUCTION”".

Ongoing experiments needs multi-physics verification

There is an immediate need for a new tool to assist the verification of novel Biosystems engineering
developments by multi-physics modeling. For example, such model verification by computer simulations is
planned to be included in a recent sensor development approach based on the impedance tube measurement
of the acoustic transmission loss (TL) through seed clusters initiated by Ole Green, AU. This technique shows
promising results for non-invasive detection of density and other parameters. However, its underlying multi-
physics model is a challenge, since detailed rougness models must be included.
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Figure 1.4 (left) illustrates a stereo microscopic image of a single wheat grain on the top of other wheat grains.

Figure 1.4: Detailed multi-physics modeling of grain geometries might verify acoustic TL measurements, AU, 2010

The sound absorption coefficient spectra for such wheat grains (Triticum aestivum) and six other seed samples:
oat (Avena sativa), barley (Hordeum vulgare), maize (Zea mays), sunflower (Helianthus annuus), soya bean
(Glycine max) and canola (Brassica napus), are investigated by impedance tube measurements, see Figure 1.4
(right). The piloting experiments indicate that it is possible to identify density and other parameters from the
sound absorption coefficient spectra and that PCA presents reliable seeds type grouping capabilities (Gasso-
Tortaja et al., 2010). Additional transmission loss (TL) experiments for clay, sand, rice and others clusters of
materials show similar results (Gasso-Tortajada, Dubasaru, Rojas, Brgchner, & Green, 2010).

The original starting point

However, existing physics models do not fully explain these surprising findings. A detailed computer simulation
which mixes classical Biot theory for grain clusters is considered to be modeled as porous media (Biot, 1956;
Biot, 1956). Acoustic energy transport through a model of a seed cluster with detailed surface irregularities
might explain the surprising results better. Also, previous findings on the dependence between shape and
reverberation time (Salandin, 2004) (p. 55-70) indicate that acoustic absorbtion is texture dependent.
Therefore, detailed multi-physics simulation including complex geometries might reveal new explanaitions on
experimental findings.

In fact, the development of a detailed multi-physics model for such particular porous media aiming at acoustic
identification and classification of seeds was the original starting point of this study. The first multi-physics
model was planned to be developed along with ongoing experiments (Gasso-Tortajada, Dubasaru, Rojas,
Brgchner, & Green, 2010) on wheat grain clusters (Triticum aestivum). However, the development of a grain
cluster model for multi-physics soon lead to a more general study on modeling of natural geometries and their
parameterization. This general study on a generic approach for natural parameterization is what is reported
and discussed in this thesis.

: The theory behind the novel natural parameterization approach is presented in chapter 2: “METHODS”.
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Validation by wheat grains cross-sections

A sample of the same type of wheat grains (Triticum aestivum) used in the aforementioned acoustic
experiments was used to validate the novel parameterization approach.

According to the Food and Agriculture Organization of the United Nations (FAO) wheat is ranked as the world’s
number two food commodity. In terms of annual production, 650.2~106[MT] of grain was produced in 2010,
following closely behind rice at 672.2- 10°[MT]. In Denmark, wheat is ranked number one with 5.05-10°[MT]
and barley second with 2.98-10°[MT]. For more details see (FAOSTAT, 2010).

Within Biosystems Engineering, wheat grains are an important object of investigation. Two examples of recent
investigations are: geometric parameters of wheat grain determined by image analysis (Fératlégil-Durmus et
al., 2010) and changes in mitochondrial shape in wheat root cells exposed to mitochondrial poisons
(Ponomareva & Polygalova, 2012).

In general, various seeds properties have been targeted for thorough investigation over the past decade. The
physical properties of sweet corn seed (Zea mays saccharata Sturt.) was studied by (Coskun, Yalcin, & Ozarslan,
2006) and (Ahmadi, Mollazade, Khorshidi, Mohtasebi, & Rajabipour, 2009) determined some physical and
mechanical properties of fennel seed (Foeniculum vulgare).

International seed measurement standards have also been developed, i.e., for size distribution by sieving the
international standard (ANSI/ASAE $319.3, 1997) is today’s normative reference.

Therefore, grains in general, and wheat grains in particular, were selected as a relevant validation object for
this study.

A sample of cross-section images was captured of one hundred wheat grains (triticum aestivium) using a stereo
microscope. They were used as the target for the methodic validation of the introduced approach called
“natural parameterizaton”.

: Details on the validation by wheat grain cross-sections are presented in chapter 3: “RESULTS”.
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1.2 THE PROBLEM DOMAIN

Geometric complexity and the tortuosity metric

A general observation in biometrics is that natural geometries seem to be smooth at low resolutions and highly
irregular at high resolutions. Furthermore, natural geometries often form clusters, which from a macroscopic
point of view, are often considered porous media. One important geometric characteristic of the air channels
of porous media is tortuosity. It indicates the degree of irregularity of a curve segment and is simply defined as
the ratio between the arc length of the segment and the chord it spans over. The inclusion of tortuosity was
originally introduced in the study of porous media by (Biot, 1956). Such tortuosity effects are clearly geometric
in nature and thus play a central role in this study. However, it is not only soil pore spaces that are tortuous
(Moldrup, Olesen, Komatsu, Schjgnning, & Rolston, 2001). Any curve embedded in a natural geometry exhibits
tortuosity”. This observation has been validated by a number of investigations carried out over the last decade:
(Bullitt, Gerig, Pizer, Lin, & Aylward, 2003), (Grisan, Foracchia, & Ruggeri, 2003; Grisan, Foracchia, & Ruggeri,
2008), (Kou et al., 2012) and others.

ALS raw data and field measurements : MIXED

Three-dimensional representation of
wigwim  data available for the mixed field plot
1 (side-view). Colored dots denote raw
s ALS* echoes with their respective
1w  heights, while pine tree geometry
w was reconstructed using ellipsoids
i 1w according to field measurements.
i 17 Oak layer depth was assessed on
t 17 subplots as top and bottom height
im (transparent surface).
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See Figure 1.13 for another
illustration on this project on air flow
over a “grass” roof, Air Physics Lab.,
VIA UC/AU, 20009.

Stereo microscopic images of wheat
grains, DANS project, AU, 2010

Figure 1.5: Complex natural surfaces (left), discrimination of vegetation (right, top) and turbulent flow (right, bottom)

> One exception with no tortuosity is an embedded curve through the middle region of a stationary liquid surface.
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As it appears from Figure 1.5, the complexity of the three illustrations is a consequence of an underlying
stochastic variation. Figure 1.5 (left) illustrates the geometrical complexity of wheat grain surfaces such as
irregular body, shape, texture, micro-landscapes, characteristic “bow-line,” and hair. Keeping in mind the
beauty of fractals (Mandelbrot, 1983), the modeling of such complex geometries might be described by
iterative recurrence relations. Figure 1.5 (right, top) illustrates that discrimination of vegetation from height
and intensity information retrieved from airborne laser scanning is possible for three different vegetation
strata in a multilayered ecosystem (Morsdorf et al., 2010). To obtain an even more accurate stratification than
is possible with spheres, new irregular shapes might be useful. Figure 1.5 (right, bottom) displays an instant
image of a turbulent flow over a “grass” roof. Today, such fluid flows are usually modeled by Reynolds’
averaged vector fields as solutions to Navier-Stokes equations®. Perhaps these transport phenomena can be
modeled alternatively by particle tracing simulations’ in Nano- or micro-scale?

A thru-thickness crack in a
mortar disk specimen
showing: (a) crack width
variability and crack
tortuosity, (b) crack wall
roughness.

Figure and label from: (Akhavan, Shafaatian, & Rajabipour, 2012)

Figure and label from (Ngom, Monga, Mohammed, & Garnier, 2011)
Optimal cylinders, truncated cones, and balls computed from the simply connected set of balls. (a) Cylinders computed from the MISS
representation of the recomposed soil. Each chain is attached to a color. (b) Cylinders are colored in white and truncated cones are
colored in mauve. (c) Cylinders and truncated are cones in grey and balls in red. (d) Cylinders, truncated cones and balls in gray

Figure 1.6: Geometry models of soil (left) and tortuous cracks (right)

The four illustrations (a-d) in Figure 1.6 (left) show geometric models of soil by means of generalized cylinders
for complex 3D soil micro-structures, scale 3-5 [um] (Ngom et al., 2011). In Figure 1.6 (right), a crack in a
mortar disk specimen is illustrated (a, b). In general, such cracks are described by stochastic extreme value
theory (Lamon, 2009) . However, future cracks might alternatively be modeled from irregular, incrementally
updated, meshes with random roughness® characteristics.

® Navier Stokes equations are named after Claude-Louis Navier (1785-1836) and George Gabriel Stokes, 1% Baronet (1819-1903). These
equations govern fluid flow models in continuum mechanics.

7 Inspiration on tortuous flow field simulation might be found in the illustrations in Figure 2.19.

8 Inspiration on rough curves might be found in the illustrations in Figure 2.21 and Figure 2.23 in Chapter 2.
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Abnormalities

£

d)

Interior
double yolk
impacts
exterior shape

: = /
- Geometrical D'eformity b) — Extreme size and shape c) -Surface color abnormality
Khaki
Chicken Egg with a peculiar One normal Eastern Bluebird egg, Bluebird eggs have blood on Campbell
deformity, DK one small and one very big them, and white streaks of feces duck eggs
Local news paper article: Pictures (b), (c) and (d) are located 23" May 2012 at URL: www.sialis.org/weirdeggs.htm

Hans Wackers, Horsens
Folkeblad, DK, Sep. 2011

Figure 1.7: Geometrical abnormalities of eggs

Sometimes, natural geometries are observed in variants classified as abnormal. These abnormalities can
appear as non-normal shapes (deformities)®, as extreme size and shapes, as outer scars (scratches, holes, and
cracks from mechanical impacts, diseases or other invasive natural objects) or as internal misconfigurations
(such as missing, duplicate or triplicate regions or collapsed structures).

Stochastic phantoms must be flexible, detailed and natural at the same time

As seen from the above examples, many complex problems exist in Biosystems Engineering and the related
sciences. Key problems relate to the detailed modeling of complex biomass and vegetation surfaces, turbulent
fluid flow, various soil phenomena, and cracks in different materials. Abnormalities also are likely to create
geometric modeling problems. These examples of well-known geometric modeling problems, along with other
problems which will be discussed later, constitute the wide problem domain of this study.

Modeling techniques for sharp edges by subdivision, have been studied for some years (Zorin, Schréder, &
Sweldens, 2006; Zorin, 2006). However, controlled parameterization of meshes with sharp edges and
extraordinary points remains problematic. A novel approach to such roughness problems by parametric vertex-
controlled IFS are under investigation in these years (Gouaty, 2009).

Mathematical formulation problems related to the modeling of sharp edges, extraordinary points, and other
geometric irregularities as well as their controlled parameterization, extend the problem domain of this study
even further. Moreover, a special theoretical question on about how to judge which phantom of a set of
merely identically simulated phantoms is the best model of the original object must also be treated. The
mathematical formulation and the algorithmic design, which ensure that created phantoms behave “naturally,”
are also key theoretical issues that need to be addressed.

? Inspiration on the modeling of ab-normal shape deformities might be found in the illustration in Figure 2.26 (right).
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1.3 STATE OF THE ART

Scanning instruments, meshes for FEA and modeling constraints

Natural geometry modeling relies on scanning objects for subsequent discretization and meshing. As such, this
method is centered on state of the art scanning instruments and meshing techniques that relate to the imaging
of irregular geometries. This introduction is limited to scanning instruments used in Biosystems engineering
and medical science and meshing techniques that have reportedly been applied to natural objects. Some
geometrical properties related to the description of natural objects are also briefly presented and grouped.

Selected scanning instruments that are particularly relevant for data acquisition from natural objects are
described in section 1.3.1 while meshes mainly dedicated to tortuous geometries are presented in section
1.3.2. Modeling constraints are outlined in 1.3.3 accompanied by a discussion of grouping by size, bounding,
location and orientation representations, Frenet curvatures and torsion, special curvatures, Frenet planes,
shape metrics, mechanical properties and landmarks.

1.3.1 Scanning Instruments
Scanners are non-invasive devices used to capture shape, color characteristics, and other properties of objects

or the environment. The object or environment scanned is either 2D (planar), 3D (spatial) or 4D (spatial real-
time). The data obtained are usable for construction of two- or three dimensional static or time-dependent
three dimensional computational replication phantoms or two- or three dimensional physical phantoms
respectively. Retrieved data are often stored as raw image data in pixels (for reflected surfaces), voxels (for
penetrated volumes), or as a derived set of vertices forming a point cloud. Colors and other properties are
either integrated in the storage data format or stored separately. In the following section, scanners are
categorized based on their underlying measurement principle.

In relation to the formation of observation meshes, emphasis is placed on sensors designed for vector
measurements. Relevant measurements include distance, location, orientation, and colors. However, for 4D
representations time is also measured. The selected types of sensors for vector measurements include radars,
laser scanners, image scanners, ultrasound and tomography. In the following a summary description of the
measuring principles for this selection of sensors, planning of measurements, selection of measuring and data
processing systems is given. Descriptions of non-penetrating devices such as lasers, radars, and image scanners
are given in paragraphs 0-1.3.1.3. Paragraphs 1.3.1.4-1.3.1.5 provide an introduction to penetrating scanners,
including 3D ultrasound and X-ray based tomography with focus on computed tomography (CT) and magnetic
resonance (MR). Because the application field for this selection of scanners is extremely wide, the introduction
concentrates on the imaging of highly irregular or complex (2D, 3D) geometries and irregular flow fields (4D).
This introduction also pays special attention to emerging approaches and improvements in existing scanning
systems.
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1.3.1.1 Radars
A RADAR (acronym for RAdio Detection and Ranging) is an object-detection system that uses electromagnetic

waves to measure distance, location, and change in position (velocity) of reflecting objects. Micro wave
radiation is characterized by radio waves with a frequency range from 3[kHz] up to 300[GHz] and
corresponding wavelengths that range from 100[km], to 1[mm]). Radars are useful for detection of macro-
sized geometries with dimensions bigger than 1[mm]. Such geometries are usually detectable by the naked
eye. The sensor is based on an antenna transmitting electromagnetic energy as pulses of radio waves. These
waves are bounced off an object and returned. The reflected beam is captured by a dish, which concentrates
the incoming radiation into a narrow volume so it becomes detectable by a receiver. The received energy level
is significantly lower than the transmitted level. Direct measurment of the signal is performed by a time sensor,
which is able to capture the elapsed time between the outgoing and incoming electromagnetic beam. The
derived measure, i.e. the distance to the object, is then calculated as the product between the elapsed time
and the constant propagation speed of light. It is assumed that the elapsed time is proportional to the
distance. The antenna, receiver, and dish are usually mounted in one installation unit. Historically, the
development of radar goes back to World War Il.

Photo of the stabilized platform with the radar frame resting
in the cradle. The roof hatch with the slanted radome is
located above the cylindrical antenna shroud

Above: Figure and label from: (a) SSMIIS ice particle effective diameter, (b)
(Moran, 2012) SSMIS ice water path, and (c) GOES-12 imager
and SSMIS ice water path superimposed plot
Right: Figure and label from: . .
(Sun & Weng, 2011) for Hurricane Gustav at the time of landfall at
& 1430 UTC 1 Sep. 2008.

Figure 1.8. Motion-stabilized shipboard radar (left). Ice water path (IWP) for Hurricane Gustav (Right)

Radars are often land-based, however, motion-stabilized shipboard radars, see Figure 1.8 (Moran 2012), and
airborne radars (Koch, 2010) are also in operation. The review by (Koch, 2010), includes a profound overview
on remote sensing in general and sensing for forest biomass assessment in particular. In a recent study, such
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multi-parameter remote sensing data from radars was used to estimate above-ground biomass over cold and
arid area (Tian et al., 2012). In Figure 1.8 (right), the ice water path (IWP) for Hurricane Gustav in 2008 is
illustrated. Global quantitative measurements of ice cloud microphysical parameters, such as IWP and ice
particle size in ice clouds, are crucial for understanding climate changes (Sun & Weng, 2011).

Many radar installations are designed to monitor different weather conditions including the motion of rain
droplets, cloud formations, and many forms of precipitation (rain, sleet, snow, graupel and hail). For such
meteorology measurements, weather surveillance radars (WSR) and Pulse-Doppler weather radars are often
used (Brown & Lewis, 2005). The Pulse-Doppler is in fact a 4D system capable of detecting the spatial location
and the radial range ROC. In general, the collected data are used for weather forecasting and prediction of
extreme weather such as storms, hurricanes, rainfall, and more.

1.3.1.2 Laser scanners
A laser is an optical oscillator that emits a beam of electromagnetic radiation. Technically, a laser consists of a

transmitter and a receiver of the beam and a scanning device. The term laser is an acronym for Light
Amplification by Stimulated Emission of Radiation. The abbreviation LIDAR, which stands for Light Detection
and Ranging, is used to specify its application for distance measuring. By such range determination, it is the
distance to the first object the beam pulse meets on its path which is measured. LIDAR is applicable for
formation of irregular point cloud representations of surfaces.

Like radars, laser scanners can be used for long distance object-detection but they can also be used for micro-
distance measurements. A push broom scanner represents a long range sensor often used to capture satellite
images of the earth. The latest developments in high resolution satellite images are significant because their
remote images are utilized for accurate earth observations (Poli & Toutin, 2012).

LIDAR system for field test in
vineyard (left) and pear orchards
(right), also showing polar (distance,
r, and angle, q) and Cartesian (x, v,
z) coordinates reference systems.

Figures and labels from:
(Polo, Sanz, & Llorens, 2009)

Figure 1.9. A tractor mounted scanning LIDAR for vegetative volurme and area imaging

For middle-range distance measurements, terrestrial laser scanners (TLS) are used. TLS and light detection and
ranging (LIDAR) represent standard sensing technology in various studies on natural objects and nature caused
damages. In a comparative study within Biosystems engineering conducted by (Polo et al., 2009), a tractor
mounted scanning LIDAR was used to measure volume and vegetative surface area of tree-row plantations (see
Figure 1.9).
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Recently LIDAR was also used in a monitoring study on biological crust in civil engineering structures (Gonzales-
Jorge, Gonzales-Aquilera, Rodriguez-Gonzalvez, & Arias, 2012). In a study by (Armesto-Gonzales, Riveiro-
Rodriguez, & Riva-Brea, 2010) TLS was used to detect damages in historical buildings.

A review on airborne laser scanning (ALS) was carried out by (Wehr & Lohr, 1999), while a comprehensive
introduction to range scanning has been given in the book “Topographic laser ranging scanning“(Shan & Toth,
2008).

The principle for laser scanner data acquisition for the TLS example is illustrated in Figure 1.10 below (left).

Main scar

Beam width

Last return
Pulse

Firstreturn 2
Pulse ">
e arsio’

Principles of laser scanner data acquisition, showing Hillshade view of the upper part of Les Pics instability (Muraz,
the example of TLS Switzerland). Gravitational features as scarps, trenches and depressions

forming the “Les Pics DSGSD” could be clearly identified. The real
instability extend could be better defined using LIDAR-derived DEM than

Figures and labels by (Jaboyedoff et al., 2012) in aerial photographs or from topographic maps (Data from swisstopo)

Figure 1.10: Left: Terrestial laser scan (TLS). Right: LIDAR derived landscape discretization

Two major sensing techniques, interferometric synthetic aperture radar (inSAR) and light detection and ranging
(LIDAR), are described thoroughly in a review on scanner technologies for landslides, rock fall, and debris-flow.
It is mentioned that areas with water are critical due to reduced reflectivity. The data acquisition delivers a
point cloud and the accuracy is typically £1.5 cm with maximum distance 800-1000 m (Jaboyedoff et al., 2012).

A comprehensive overview and details relating to terrestrial laser scanning (TLS) can be found in “Chapter 3 —
Terrestrial Laser Scanners” (Petrie & Toth, 2008) .
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1.3.1.3 Image scanners
Image scanners are instruments that optically scan 2D and 3D objects. Conventional 2D objects include images,

printed text, handwriting, while typical 3D objects include physical objects. However, natural objects such as
fingerprints and other recognition objects are image scanned. In iris recognition, subtle infrared illumination is
used to acquire detail-rich images of the complicated and random structure of the iris.

Today’s image scanners are designed as flatbed or mechanically driven hand held devices. In flatbed designs,
the object is stationary and the scanner moves, whereas in mechanically driven designs the object moves
relative to the scanner. In hand-held designs, the device is usually moved around the object.

Since the beginning of this millennium, retinal images have been used for diagnosis and post-treatment

checking.

Panel (a) shows the retinal image
(000004ce.bmp) acquired at gestational
age 236 days in a patient being screened
for ROP™. Panel (b) shows the retinal
image (00000513.bmp) acquired at
gestational age 257 days, at which point
the patient was judged to have reached
threshold disease, and was treated. The
increase in vessel width and tortuosity is
clearly apparent.

(a)
Figure and label from: (Heneghan, Flynn, O'Keefe, & Cahill, 2002)

Figure 1.11: Image analysis used to measure changes in vessel width and tortuosity

In Figure 1.11, two retinal images of the same eye of a prematurely-born baby are captured at different stages
of ROP™. In this study, tortuosity was used as an indicator for changes in the blood vessels, and a general
approach for segmenting out vascular structures in retinal images and characterizing the segmented blood
vessels was proposed (Heneghan et al., 2002).

Lately, image analysis has been
introduced as an indirect measurement
of kernel weight, see Figure 1.12.

Images from the side (a) and front (b) views from
the kernels.

Figure and label from (Amaral, Rocha, Goncalves,
Ferreira, & Ferreira, 2009)

Figure 1.12: Image analysis used as indirect measurement of kernel weight

" RoPis an acronym for retinopathy of prematurity which is an eye disease that affects prematurely-born babies.
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In Figure 1.13, the airflow in the neighborhood of a rough
surface is captured at The Air physics lab, Aarhus
University, Bygholm, Denmark, 2009. The surface is
supposed to imitate grass on the roof of a building. The
picture is captured by a high speed camera and
represents one frame, whereas the picture in Figure 1.5
(right top) is a high-resolution still picture of the same
“grass” roof. The air is supplied with smoke and the
lighting is obtained by a laser sheet. High resolution
particle tracing from such 4D data is almost impossible

since the geometrical constellation of the velocity field is

(DANS Project, AU, 2010) extremely difficult to mesh even with a single frame.

Figure 1.13. Air flow over “grass” roof

Multi-setups

(a) Optical tracker set-up, (b) IR camera unit. Detection of partially occluded spheres.

Figures and labels from (Barone, Paoli, & Razionale, 2012)

Figure 1.14. 3D shape measurements based on alignment of images captured by two digital cameras from detection of
pre-positioned occluded sphere landmarks

In a recent study, (Barone et al., 2012) presented an automatic procedure for full 3D shape measurements
based on alignment of images captured by two digital cameras from detection of pre-positioned landmarks
(see Figure 1.14).

Ultra-high speed cameras are sometimes used in similar multi-setups.

A multi-vision setup is also employed in the following example where it is used to capture 3D point clouds for
geometrical vegetation modeling.
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Photography (left) and two 3D images (corresponding to different views) of a Ficus Benjamina Variegata, obtained with a LMS200 laser
scanner in a laboratory environment. Figures and labels from (Rosell et al., 2009)

Figure 1.15. Point Clouds from laboratory tests of a 2D setup

In a study aimed at obtaining the 3D structure of tree orchards using LIDAR scanning, a 2D setup was first
tested in the laboratory. For subsequent scanning of real crops in the terrain, a 2D setup based on a terrestrial
LIDAR sensor was used to obtain vertical slices of continuous, as well as discontinuous, vegetation surfaces

from two sides.

By using dedicated software, it was demonstrated that it was possible to construct 3D models from 2D scans of
plants (Rosell et al., 2009). This, and other field-based measurements (Polo et al., 2009), indicate that current
scanning technologies can enable field-based observation meshes represented by point clouds from treatment

of 2D measurements.

Digital cameras mounted on microscopes enable imaging of surface geometries with micro-dimensions
(Ponomareva & Polygalova, 2012). High-speed vision cameras are relevant for experiments involving 4D
scanning of fluid flow, and for validation of CFD models. As with 3D imaging, simultaneous use of two or three
high speed cameras is necessary for 4D imaging (Hwang, Dog, & Okamoto, 2005).

In the following two paragraphs, a brief introduction to penetrating scanning instruments, such as 3D

ultrasound and tomography, is given.
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1.3.1.4 3D Ultra sound
3D ultrasound is a relatively new penetrating scanning technique developed and patented by Olaf von Ramm

and Stephen Smith at Duke University in 1987 (United States Patent 4,694,435 - Sep15, 1987). Ultra sound
waves are mechanical pressure waves with a frequency greater than 20[kHz] and a corresponding wavelength
below 17[mm]. Such a small wavelength enables considerable penetrating power.

In contrast to ordinary 2D ultrasound, where waves are sent and reflected within the same angle orientation,
3D ultrasound sends out sound waves at different angles. 3D ultrasound produces volumetric images from
where width, height and depth can be measured.

Ultrasonic has conventionally been used in obstetric ultrasonography (during pregnancy) to reconstruct the
human fetus’ surface of internal organs. However, animals such as cows and horses are also targets for
ultrasound scanning.

Shapes of 3D transducers. (A) Bulb-
shaped abdominal 3D transducer
for humans. (B) Pole-shaped endo-
vaginal 3D transducer for humans.
(C) Actual size and shape of the
bulb-shaped transducer compared
to the anus and vagina of a
thoroughbred mare.

Figure and Label from: (Kotoyori et al.,
2012)

Figure 1.16. Ultrasound transducers for humans used for imaging of the equine fetus

In Figure 1.16 A) and B), two standard ultrasound transducers normally used for human scans are illustrated. In
a study exploring the possibility of using 3D ultrasound imaging, the same two transducers were used to
examine imaging of the equine fetus C) for clinical applications (Kotoyori et al., 2012).

4D ultrasound is a time controlled extension of conventional 3D scans which allows for volumetric images.
Compared to 3-dimensional ultrasound, where the streaming image lags due to computer construction time,
4D ultrasound is visible in real time.

Acoustic measurements in the audible range

Acoustic measurements in the audible range have been used for some years. A recent non-invasive experiment
on eight different cultivars (Gasso-Tortaja et al., 2010) shows that acoustic measurement in the audible range
(20[Hz]-20[kHz], 17[mm]-17[m] at 20[C°]) can be an inexpensive tool for future bio-characterization.
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1.3.1.5 Tomography
Tomography is an imaging technique based on penetrating electromagnetic waves. It is useful for mapping the

interior of natural objects. The object is scanned in sections (cross-sections, slices) and the individual images
(the tomograms) are composed into continuous representations by tomographic reconstruction.

A few devices (tomographs) such as CT and MR, which are used for imaging of natural objects with highly
irregular geometry, are commented on in the following section.

Velocity (cm/s)

From the top row: facial photographs of subjects A, B, and 17 year-old female with Tetralogy of Fallot repaired with transannular
C (Aa, Ba, and Ca), reconstructed faces (Ab, Bb, and Cb), patch at 2 years of age. Particle trace visualization during a right

scanned facial surfaces (Ac, Bc, and Cc), alignments each of  ventricular diastolic time frame demonstrates pulmonary regurgitation
the facial reconstruction, and corresponding scanned face (closed arrow). The majority of the flow from the right atrium (RA) into

(Ad, Bd, and Cd; gold-colored for the scanned faces, the RV is directed abnormally toward the RV apex (curved dashed arrow)
orange-colored for the reconstructions).corresponding with a smaller vortex just beyond the tricuspid valve (open arrow).Color-
scanned face (Ad, Bd, and Cd; gold-colored for the scanned  coding was achieved with respect the absolute acquired velocities. SVC =
faces, orange-colored for the reconstructions). superior vena cava; IVC = inferior vena cava; MPA = main pulmonary
Figure and labels from (Lee, Wilkinson, & Hwang, 2012) artery; RPA = right pulmonary artery.

Figure and labels from (Frangois et al., 2012).

Figure 1.17. Left: Facial reconstruction employing cone beam CT from Live subject sculls. Right: MR Velocity mapping
during a right ventricular diastolic time frame

Figure 1.17 (left) illustrates cone-beam computed tomography (CT scan) utilized for 3D forensic facial
reconstruction from live subjects (Lee et al., 2012). In Figure 1.17 (right) an instant frame from a 4D magnetic
resonance (MR) velocity mapping is shown. The impressive color coded fields are obtained by (Francois et al.,
2012).
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The previous two examples show that CT and MR are able to produce accurate representations of both hard
and soft tissues of human beings. For biomasses, livestock animals, and many other natural objects, it is likely
that such 3D/4D scans are able to replicate non-human nature with the same level of resolution.

In radiology, tomography is used to both diagnose and treat human body diseases. The illustrated reference
book, “Squires’s fundamentals of radiology” (Novelline & Squire, 2004), covers imaging techniques, normal
radiological anatomy, and details body parts as well as the vascular and central nervous system and more.
Advances in scanning technology enable more and more accurate meshing of natural objects such as human
body parts, animals, biomasses, vegetation, soil, crack growth, landscape discretization and natural fluid flow
phenomena and more.

Following this overview on scanning instruments, various well-known and relevant meshing techniques will be
presented.

1.3.2  Meshes for FEA
In this study, meshes are perceived as discrete geometric representations of objects. Meshes are intended to

be further modeled and investigated using finite element based multi-physics software. Finite element analysis
is a numerical method for approximation of differential or integral equations. The key idea is to discretize the
geometry of the object into smaller parts called elements. These elements are defined from a node point,
called nodes, and specified through connectivities. Today there are many commercial FE-software packages on
the market, however still at universities throughout the world FE-subroutines are used for teaching, research
and development and tested by development software such as Maple®, Matematica®, Mathcad®, MATLAB®
and others. Furthermore, new algorithms must comply with standard matrix programming. A detailed
introduction to the programming of algorithms for finite element matrices can be found in (Shivaswamy, 2010)
where MATHCAD® is used as the technical documentation language. For details on FE-algorithms programmed
by MATLAB®, see the original work by (Kwon & Bang, 2000). A thorough introduction into automatic mesh
generation for FEA can be found in (Zienkiewicz, Taylor, & Zhu, 2005). For an introduction into completeness
and compatibility requirements for iso-parametric elements see (Ottosen & Petersson, 1992). Finally, for a
detailed presentation on non-linear FEA, and to obtain a historic perspective, see the reference book by (Bathe,
1982).

The first model for moisture transfer for drying grain was developed as an FE application within Biosystems
engineering by (Lund, 2009). The model was developed within the software package COMSOL Multiphysics®. In
COMSOL® and ANSYS® (and other multi-physics software), a discretization strategy for 3D solid elements
enables inclusion of several different physics in the same model. Obviously, this physical discretization strategy
affects the geometrical discretization and its core must be adopted into new meshing approaches. This is
particularly relevant in Biosystems engineering where non-isothermal CFD, particle transport, thermodynamics
and other bio-physical and bio-chemical phenomena are often mixed. Therefore, meshes designed for multi-
physics modeling are given high priority. Storage wise, vertices of meshes are assumed to be stored in
coordinate arrays, and incidences in connectivity arrays.
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A phantom is a mesh represented with additional graphical features such as colors, lighting and opacity. This

additional information is stored in corresponding arrays, which will not be discussed in further detail here.

Phantoms are used extensively as anatomical models and represent formalizations of natural objects. A

comprehensive overview of anatomical phantoms is provided by The International Commission on Radiological

Protection (ICRP) in the reference work “Handbook of anatomical models for radiation dosimetry,” edited by

(Xu & Eckerman, 2010) . This book summarizes the development in phantom creation and various phantom

series up until 2010.

Newborn Male Newborn Female

e

10-year Male Adult Male Adult Female

10-year Female

15-yearMale  15-year Female
3D frontal views of the entire series of UF hybrid paediatric and adult
phantoms. The body contours were made semi-transparent for better

viewing of internal anatomy.
Figure and label from: (Lee et al., 2010)

Figure 1.18: The (UF) reference phantoms

Three main types of phantoms are in use:
stylized phantoms which are equation based
surface meshes, computational phantoms
based on voxels, and finally hybrid phantoms
which combine stylized and computational
phantoms in a NURBS based mesh approach.
Various phantom series such as the Pediatric
15 years old)

Series (1 - developed at

University of Florida (UF) are also included.

Recently, attention has been put on the
development of supplementary pediatric

phantoms of newborn patients (Wayson,
2012). All

anatomical models for radiation dosimetry and

such phantoms are used as
to model standard persons i.e. reference man,
reference woman, reference child and more
(Lee et al., 2010) see Figure 1.18.

Equation-based stylized phantoms have been developed and used since the 1960s. Today’s 3D voxel phantoms,

based on NURBS surfaces, are developed with surprising detail and complexity. They play an essential role in

today’s dosimetry.

A stochastic phantom is a parametric deformable mesh based on a stochastic simulation. A customizable

phantom is a stochastic phantom that can be manipulated to the modeler’s specifications for height, width,

volume and other geometric characteristics. The morphable human faces originally modeled by (Blanz &

Vetter, 1999) represent one of the first examples of customizable phantoms.
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1.3.21 Synthetic vs. Tortuous Meshes
The label synthetic is used to emphasize that a mesh is formed from analytic geometries such as NURBS or a

nominal data set. Since most FE models concern man-made objects that are usually designed and
manufactured from analytic geometries or NURBS, the majority of today’s meshes are synthetic. The label
tortuous emphasizes that a mesh is formed from data with an underlying random variation. Also, it is
understood that a tortuous mesh is parametric and deformable in the sense that its size and shape is affected
by changes in its parameters. Customizable meshes formed from scanned data or generated from statistical
parameters are said to be tortuous. From a statistical point of view, a synthetic mesh differs from a tortuous
mesh because the underlying data. For a synthetic mesh the underlying data is assumed to be deterministic,
whereas it is assumed to be stochastic for a tortuous mesh.

1.3.2.2 Special Tortuous Meshes
All the derived meshes in the previous subsection 1.3.1 on scanning instruments, represent observation

meshes. An observation mesh is a tortuous mesh directly retrieved from the scanning of natural objects or
phenomena. It is assumed that observation meshes are affected by natural or abnormal variations. This means
that they vary from scan to scan of objects within the same class of objects. Observation meshes are used for
description, identification, or classification of natural characteristics.

However, tortuous meshes can also be distinguished according to their creation process and thus can be
labeled as replication or imitation meshes.

1.3.2.2.1 Replication Meshes
The label replication indicates that a mesh is fitted to a single observation mesh, i.e. it is an approximation to

an existing geometric constellation anchored to one scan or one data file. Replication meshes include meshes
achieved from digital shape reconstruction (DSR) (Goyal, Piya, Benjamin, Liu, & Ramani, 2012). Other
replication meshes are based on polynomial approximation to edges from raw data such as pixel boundaries of
images. The advanced technique used to fit a full 3D human scan to a template mesh by affine transformations
(Allen, Curless, & Popovic, 2003) is also a replication mesh. The classification of characteristics from
observation meshes is defined from existing domain, segment, or boundary elements. The meshes resulting
from classification of characteristics are often referred to as atlas reconstructions or classification maps. In
general, the aim of these meshes is to replicate the same attributes as observed from the underlying object.
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Location of the parting line

Figure 1.19. Surface reconstruction

Recently, a new mathematical algorithm for automatic
surface reconstruction, which enables practical restrictions on
scanned points to be taken into consideration, is presented by
(Lin et al., 2012). In this paper, some typical issues on surface
construction are also outlined, see Figure 1.19. Recently,
studies based on existing algorithms have been carried out
and published in very different application areas: (Baroncini,
2012) studied the human hypothalamus from MRI and
defined its atlas. (Pan & Skala, 2012), (Lin et al., 2012) focused
on surface reconstructions and (Cham, Beckers, Spanhove, &
Borre, 2012) classified Natura 2000 heathland in Belgium.
Apart from the diversity in applications, it must be
emphasized that in all of the mentioned replication mesh
examples characteristics or attributes were directly or
indirectly extracted from the observation mesh.

Typical issues in current surface reconstruction approaches: (a) complex
holes near the parting line, (b) irregular and even wrinkled surfaces near
the parting line, and (c) wrinkled surfaces near sharp regions.

Figure and label: (Lin, Huang, Lai, Tsai, & Ueng, 2012)

In Biosystems engineering, species outline recognition is often used to recognize an unknown object and
identify the species it belongs to based on the captured outline properties. Usually, the objects’ characteristics
are available as an image file and the identification is based on a trained backpropagation neural network
(Rojas, 1996) or by characteristic landmark identifications or recognitions.
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With the Leaves Recognition® v1.0 software, it is possible to
extract the edge token from a leaf image as a polygon of pixel
values. The subsequent identification procedure allows an
unknown object to be specified as belonging to a particular
species. This recognition procedure is based on a trained
backpropagation network.

For more details see:

Jens Langner, Leaves Recognition v1.0. Neural Network based recognition system
of leaf images. LightSpeed Communications GbR. Dresden Germany. 18 April
2006. Localized 21st March 2012 at www.jens-langner.de/Irecog/#2.1
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1.3.2.2.2 Imitation Meshes
The label imitation is used to stress that a mesh is generated from sample information of observation meshes.

In general, an imitation mesh is formed from data that has been treated with chemometrics. Examples of
immitation meshes are phantoms generated from random parameters and fitted to meet constraints within
stochastic approaches (Blanz & Vetter, 1999), (Allen et al., 2003) and (Baek & Lee, 2012). Formally, a replication
mesh represents a deterministic fit, whereas an imitation mesh represents a simulation based on realizations of
parameters modeled as random variables or stochastic processes.

1.3.2.2.3 Examplifications on Synthetic vs Tortuous Replication and Imitation Meshes

EXAMPLIFICATIONS The label “synthetic” is used for meshes purely formed from analytic geometries, fractals, scanned or
man-designed buildings, machines, infrastructure, vehicles and more. The label “tortuous” simply means that the mesh is based on
scanned data that reflects an underlying variation. The additional label “observation” emphasizes that the scanned objects are human
beings, animals, vegetation, soil, landscapes and others. Also, geometric constellations of scanned cracking phenomena in materials are
considered observation meshes, i.e. the data source for “synthetic” meshes is deterministic, whereas it is stochastic for “observation”

III

meshes. The label “replication” indicates that a tortuous mesh is fitted to a single observation mesh such as various types of digital

shape reconstruction, whereas the label “imitation” relates to a process where the new mesh is formed by stochastic data such as
Monte Carlo generated location and orientation parameters. Technically, “replication” refers to a parameter extraction process
whereas “imitation” refers to a reparameterization process. Note that none of the above labels reflect the degree of geometric
irregularity they only characterize the data type or the meshing process.

1.3.2.3 Master Meshes

A master mesh is a constellation of characterics, i.e. biometric points
such as points of interest, special identifiers or other characteristic
location and orientation patterns. In the following discussion, all
such characteristics are defined as landmarks. The formation of
landmark information into a parametric constellation used for
further subdivision is described as a master mesh. Today, landmarks
are commonly used for identification of parts of human body

surface, see illustration to the left hand side.

From Wikipedia Commons commons.wikimedia.org

Technically, master meshes are outcomes of manipulated observation meshes. They carry geometrical and
color information adequate enough for an observer with relevant expertise to identify characteristics. Such
manual identification is sometimes replaced with automatic detection procedures implemented as
identification algorithms.

The expert knowledge is usually formalized by atlas or tables of anthropometric markers. The (CAESER, 2012)
anthropometric database (Civilian American and European Surface Anthropometry Resource) contains 3D
surface grid and color map information. This database also includes “The seventy-three Anthropometry
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Landmarks” of the human body. Landmarks for iris scanning and fingerprints are other well-known examples.
Recent studies indicate that automatic detection of landmarks for selected objects appears to be on the
horizon in the near future. Recently, various emerging identification algorithms have been presented:

An automatic detecting approach based on spin images was presented by (Li & Zhong, 2012). A fast and
automatic image-based registration of TLS data where key-point candidates are selected after comparison of
each sample point to its eight neighbors and their characteristic location and orientation is derived from local
image gradients and presented by (Weinmann, Weinmann, Hinz, & Jutzi, 2011). An Automated sparse 3D point
cloud generation of infrastructure from video streams was introduced by (Fathi & Brilakis, 2011) . In this stereo
vision-based method, surface data was captured using two video streams. The characteristic features were
detected and matched from such pairs of stereo video frames.

However, automatic detection procedures still reflect expert knowledge about the object in the algorithmic
definitions. However, it is likely that in future full-automatic detection, the need for expert knowledge will be

reduced to a minimum.

Formally, the constellation of the detectable characteristics is in itself regarded as a mesh. Location and
orientation landmarks represent an initial coarse or sparse “master” for the shape of the object. If the master
mesh is defined from anthropometric parameters defining height, width, length, radius, curvature or other
metrics they are called parametric master meshes.

Often, a master mesh serves as a basis for the generation of rough or smooth models with higher mesh
densities. In these situations, a discretization of the observation mesh is required. This discretization is
performed using geometric primitives and, or subdivision. This will be further elaborated on in later sections.
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1.3.2.4 Technical Meshing

Mesh creation from GUIs is usually synonymous with interactive manipulations of geometric primitives. These
primitives are the building blocks for mesh creations. In multi-physics software such as COMSOL®, ANSYS® and
others, the geometric primitives for 3D volume creation include: point, Bezier polygons, parametric curves &
surfaces, block, cone, cylinder, sphere, ellipsoid, helix, hexahedron, pyramid, tetrahedron, torus and more.
Furthermore, during the geometric design process, the objects are divided into domain, segments, and
boundary elements that are further specified as homogenous entities with individual physical settings. In
boundary representation, the topological elements are defined as follows. A face is a bounded portion of
a surface, an edge is a bounded piece of a curve, and a vertex lies at a point. In terms of physical properties,
each domain (or subdomain) is usually considered a solid, which has a unique setting.

However, in some situations relevant for natural geometries, the domain, segment, and boundary elements are
not used to model solid matter but rather cavities filled with fluids (gasses or liquids). In one example (Monga
2009), air-filled pore spheres of soil were modeled using simple primitives. In this case balls were used as
geometric primitives (see below). In a recent approach, generalized cylinders were introduced to model
cavities by (Ngom, Monga, Mohammed, & Garnier, 2011). An important study on blood vessels by (Heneghan
et al., 2002) also exemplifies liquid-filled cavities. In this study, vessels were modeled using line segments that
were extracted from a RetCam® image (Clarity Medical Systems, Inc., Pleasanto, CA, USA), and tortuosity was
calculated from constituent points of each vessel segment and used to detect changes in retinal vessels.

Boolean operations including Boolean difference, intersection, union, and complement, supplement built-in

features in modern CAD software.

Figure 1.20 illustrates a COMSOL®
Multiphysics model which indicates that
flow phenomena in idealized pore spaces
are realistically represented by the

v-A Nl Navier-Stokes equations. In this study

pore cells are defined from rhombohedral
packing of spheres by Boolean operations
(Viola, Zama, Tuller, & Mesini, 2009).

In the future more detailed meshes which

(a) Rhombohedral packing of Two joint rhombohedric cells with the inlet include irresularly shaoed pore cells with

identical spheres, and (b) unit face on top. g y P P

pore cell. roughness and local discontinuities might
Figures and labels from (Viola et al., 2009) influence the results significantly even

when the central tortuosity of the flow
Figure 1.20: A synthetic mesh for flow through rhombohedric pore path through the cells is kept at the same

spaces constructed by Boolean operations on sphere primitives. level
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A corresponding rhombohedral packing is often experimentally reproduced from uniform sands or glass beads
having different porosities. Typical experimental parameters such as tortuosity, diffusivity, and permeability in
the liquid and gaseous phases of soils have been used by (Moldrup et al., 2001). Also, transport studies of
suspended particles (SP) in a saturated porous medium have also been studied (Benamar, Ahfir, Wang, & Alem,
2007). Such pore space problems, as well as other other special soil modeling problems, need to be
supplemented by new multiresolution simulations in the future. One such example is related to complex pore
spaces created by biological activity (Monga, 2009).

Mesh creation from imported data is a feature included in some software packages. In the following
illustration the COMSOL® Multiphysics software package is used to illustrate the simple steps in such data
import.

In Figure 1.21, a tortuous surface plot for the COMSOL®
—_ version 4.2a (2012) built-in file,

rock fracture flow aperture data.txt,

is illustrated. Like other advanced software packages,
COMSOL® Multiphysics allows for parameterization of
imported data files. The mesh based on the above data file is
imported, interpolated, and finally used as a boundary

surface for a 3D domain.

Figure 1.21: Tortuous observation mesh created
from imported data, DANS Project, AU, 2011

The first book on Multiphysics modeling using COMSOL® has recently been published (Pryor, 2011). In this
book a thorough introduction into Multiphysics is given, along with a huge number of meshing examples for
self-studying.

In general, it might be expected that future software will allow for highly irregular geometry files to be
imported, transformed into tortuous domains as observation meshes, and if relevant, utilized for further multi-
physics analysis.

B-splines, (Basis-splines'!), which are piecewise smooth polynomial functions defined from control points
(sometimes referred to as de Boor points), are themselves used for mesh generation. Recently, a novel
approach for smooth fitting of highly irregular surfaces using B-splines was presented by (Galvez, Iglesias, &
Puig-Pey, 2012). This flexible approach, based on genetic algorithms,™? enables accurate fitting to point clouds
even with complex discontinuities. Indirect parameterization of B-splines is performed from the control points.

™ Nikolai Ivanovich Lobachevsky, Russian mathematician (1792 —1856) was one of the first who studied splines.
12 Genetic Algorithms (GA) originated from the seminal work of John Holland in the 70s, republished in the book “Adaptation in Natural
and Artificial Systems”, (Holland, 1992)
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NURBS stands for Non-Uniform Rational Basis Spline. The concept was pioneered by Bezier'® and represents
today’s de facto technique for irregular meshing of smooth surfaces in 3D. At the Rhinoceros® home page (see
link at 7.2) details on NURBS algorithms, as well as smooth and kinked curves, are provided in an intuitive
manner. Kinked curves are used to model discontinuities. This means that NURBS based meshes also allow for
highly irregular geometries including singularities. NURBS meshes are designed from “artificial” control points.
In general, these control points are not directly measurable from observation meshes since they usually lie
outside or inside the object.

Control points (as mentioned under B-splines) can be perceived as parameters efficient for shaping a mesh.
However, meshes based on NURBS control points are not the answer when the goal is to use parameters that
are intuitive and directly measurable from observation meshes. NURBS based meshing is the mathematical
engine of the Rhinoceros® software and a feature in 3ds Max Design® as well as others. This type of software is
designed for free form modeling, meaning that the mesh of control points can be flexibly adjusted in an
intuitive manner by the modeler. Free-form modeling eases the geometry creation of both man-made objects,
and models of natural objects, see Figure 0.4.

Implicit surfaces, also known as “metaballs”, “blobbies” or “soft objects,” are another starting point for

smooth mesh generation. Let f = f(x,y,z) define an implicit function in 3D. Then f, =0 defines a

mplicit mplicit

surface representation, whereas f <0 defines the negative domain, i.e. the inside of the surface and

implicit

Frnpiice >0 the positive domain, i.e. the outside. Implicit surfaces are used to interpolate irregular observation

meshes with new smooth meshes. One of the first pioneering articles on implicit surfaces was published by
(Savchenko, 1995). As for spline-based meshes, the parameterization of implicit functions is indirect

3 pierre Etienne Bézier (1910 -1999), French engineer at Renault was the pioneer behind today’s NURBS.
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Mesh creation from wizards is very efficient if the geometry is regular and parametrically definable from

boundary polygons and holes.

In Figure 1.22 (left), the built-in “Cooling
Tower” wizard from the Staad.Pro® V8i 2012
software is used to illustrate a skeletal
structure defined in cylindrical coordinates
by six parametric inputs: top & throat
diameter, height, distance from top, and
divisions along circumference and height.

However, features such as translational
repeat, rotational repeat, and mirroring are
other semi-wizard based mesh generation
procedures available in many commercial
software packages.

In Figure 1.22 (middle) a model from a study

Simple synthe.tm s.tructure, Human vertebral Turning s!<e|et§|, by (Healtheephan, 2010) for the structural
parametric wizard by parametric script . .
(DANS Project, AU, 2010) (Healtheephan, 2010) (DANS Proj., AU, 2010) behaviour of human vertebral column using

Staad.Pro® is illustrated.
Figure 1.22: Structural meshes

In this study on the deflections and forces in vertebrae produced in the vertebral column (spine) during the
course of accidents, the geometry is modeled from different types of spinal curves and normal curvature
values.

Mesh creation from super-element scripts is an alternative that gives full control over the actual mesh. A non-
parametric input script is a code sequence, which is interpreted by the meshing software and transformed into
a graphical mesh. These input scripts usually take advantage of super-element codes including super node
arrays, connectivity arrays, and supplementary codes for subdivision specification.

The super-elements themselves are usually formed as quadrilateral or triangular surface elements. Such super
elements are equivalent to the nodal elements formed by master meshes. However, parametric meshes can
also be coded using a third-party programming language. As such, they are able to deliver input script code for
the meshing software.

In Figure 1.22 (right), a turning skeletal structured coded as a MATLAB® script generates a new input script file
ready made for Staad.Pro®. It demonstrates the user-flexibility in current mesh generation software across
platforms. It also enables dedicated algorithms for irregular meshing to be separated from the FE-software,
where the mesh is later used.
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Subdivision is a meshing technique based on recursive subdivision, which gives finer and finer meshes from an
initial coarse mesh. This coarse mesh can also be referred to as the control mesh, control points, control
handles, control polygons, global mesh or master mesh. In the following section it is called a master mesh
since it defines the key characteristics of the geometry. In other words, a master mesh represents the
geometric basis constellation, which is the starting point for subsequent subdivision into finer and denser
meshes. The new subdivision meshes are usually called jterated meshes. Each of these iterated meshes are
specified at a specific level of refinement from the sequence of new subdivision meshes. At any step of
recursive subdivision, iterated meshes are in fact the intermediate outcome. The ultimate (final, terminal or
goal) mesh is the last iterated mesh in the sequence and is referred to as the limit surface. At the infinte, there
is no longer any mesh (a finite set of polygons) but rather a continuous set of points. Master and iterated
meshes are technical meshes used in a recursive formulation strategy. A comprehensive overview of recursive
surface meshing is found in the book “Subdivision Surfaces” by (Peters & Reif, 2008). It provides details about
the development of the various algorithms as proposed by (Deng & Ma, 2012). The following section includes a
retrospective introduction related to irregular geometry modeling. It starts by highlighting the latest
achievements and works backwards to the roots of subdivision.

A study including scale dependency and applications of subdivision geometry, affected by multi-level scales,
was recently presented in a work by (Stotz, Gouaty, & Weinand, 2009). They showed that transformation
driven geometric design methods can be applied to the architectural design of timber constructions through
controlled modification of the subdivision operators. Usually, subdivision surfaces are treated as spline surfaces
with singularities, as described by (Peters & Reif, 2008). A comprehensive overview with many applications on
modeling with multi-resolution subdivision surfaces was presented by (Zorin, 2006). A special branch of
subdivision is called Iterated Functions Systems (IFS). Mathematically, IFS represent a collection of contractive
transformations. Details on IFS, and an approach to build fractals from subdivision schemes, can be found in
(Schaefer, Levin, & Goldman, 2005). This and later approaches to generate fractals from subdivision are based
on the work by (Goldman, 2004). Surprisingly, Goldman showed, using The de Casteljau subdivision
algorithm,** that Bezier curves are also IFS attractors. This means that Bezier curves are fractals, since fractals
are attractors (fixed points) of iterated function systems (Barnsley, 1988).

However, even before Goldman’s findings, other attempts to form highly irregular meshes had been made.
(Tobler, Maierhofer, & Wilkie, 2002) introduced a rule based on mesh growing where modification of vertex
position at each subdivision level was defined at a local tangent plane. The basic idea of adding such small-scale
geometry into the subdivision process is probably one of the most fundamental approaches for the generation
of irregular natural objects. In principle, parameterization and small-scale control can be applied on a variety of
subdivision schemes. (Guérin, Tosan, & Baskurt, 2001) gave a concise classification of a wide variety of
representation methods based on the original data source. Furthermore, they introduced an IFS based
approximating method for both smooth and rough surfaces. Such approximation seems relevant, in particular
for natural object surfaces since they seem to always possess rough characteristics.

Y De Casteljau's algorithm is a stable recursive method to evaluate polynomials developed by Paul de Casteljau (born 1930), French
physicist and mathematician.
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Unfortunately, the introduction of irregularity by perturbations can result in smoothing instead. In an article
about the control of irregular geometries, (Dyn, Levin, & Micchelli, 1990) studied the impact from small
perturbations and found that even a proper perturbation could increase the smoothness and thus provide a
one-parameter class of schemes with better continuity properties. Therefore, special perturbations enhance
smoothness, whereas huge vertex perturbations in other situations produce non-smooth fractal like
geometries. It is a common experience that adding perturbations at one subdivision level, influences all
subsequent levels. This makes it very hard to predict the limit geometry and even harder to make geometry
simulations customizable in a controlled way. Irregularities were also studied in an article on the simplest
possible subdivision schema for smoothing polyhedra (Peters & Reif, 1997). Here, the first convergence
improvements at irregular points were integrated into the subdivision process. Also, studies of the smoothness
of the limit surface were performed by (Peters & Reif, 1997). IFS based methods were originally introduced by
(Barnsley, 1988) and sprung out of the original work on subdivision by (Doo & Sabin, 1978) and (Catmull &
Clark, 1978). Other control-point based predecessors for curve and surface generation were introduced in the
70’ties by (Lane & Riesenfeld, 1977), (Barnhill, 1974).

Still, the key ideas behind many of today’s subdivision algorithms are based on the original work by Edwin Earl
Catmull (born 1945) and James H Clark (born 1944). These key concepts are introduced hereafter.

J\ In Catmull-Clark subdivision (Catmull & Clark,
2
\Q(%,ﬁvp,q 1978), an arbitrary master mesh Mf formed by
@I ﬁg_g é‘% V2 polygonal faces is used to iterate a new finer
d.-:- di " mesh M¢ by a recurrence relation
0 2
g M: M =S“M“™ | Here k_=1,..n_is the level of
Wi refinement and n_ is the ultimate level of
VAR ! DvET (1.1) L
ne = refinement. S is the subdivision operator
1 . . .
VEk} __( ;(A +Vk a4 +V +V ) (12) which split every polygonal face into a number
To4N of new quadrilateral faces by manipulating the
ny-1 ny-1 . - .
v :”v_zv\fﬁl +izvg,—1+izvfr (1.3) old vértices V™ so new face-vertices V" see
n "
v (1.1), edge-vertices VEkf see (1.2) and vertex-
Figure 1.23: Catmull-Clark subdivision vertices V\'," see (1.3) are generated.

From these iterated vertices, a new and finer quadrilateral mesh M';f is then formed. Therefore, each face of
this new mesh is bound by four edges and four vertices. Hereafter, the same recurrence relation is applied until

a limit mesh M =S"fM';*’1 is eventually created. This mesh possesses G* geometric continuity in the limit
(nk —>00), except at some extraordinary vertices. In (1.1) ngis the number of edges defining the face, i.e. the
face valence and i is the index of vertices. In (1.2) and (1.3), j is the index for an edge defined from local A to

local B, and n, is the number of edges meeting at a vertex, i.e. the vertex valence.
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IFS and Fractal Meshes

One of the latest theoretical studies by (Gouaty, 2009)
generalizes IFS to a level where the subdivision
operators are customizable, i.e. the use of moving
subdivisions points affect the geometry at each level
of subdivision and therefore at smaller and smaller
scales.

n u

The "grain", “stone” and “ring,” shown in Figure 1.24,

represent synthetic 3D phantoms. In general, these

IFS meshes from: project Modltere, LIRIS, Université Claude Bernard, Lyon  multiresolution geometries are fractal. However, the
1, France . . .

generalization by Gouaty also allows for generation of

Figure 1.24: Synthetic IFS meshes smooth phantoms.

In a famous article by (Morse, Lawton, Dodson, & Williamson, 1985) it was demonstrated that some natural
surfaces are fractal. Morse et al. showed that the distribution of arthropod body lengths was correlated with
the fractal dimension of vegetation. This correlation indicates that geometry might play an important role in
the study of diseases and insect attacks on seeds. A study on Hausdorff dimension and Diophantine
Approximation by (Dodson & Kristensen, 2004) demonstrated that the fractal dimension also provides an
indication of the size and complexity for packing of particles. Dodson and Kristensen also showed that the
boundary of the Mandelbrot set has the Hausdorff dimension two. The packing of biological objects (such as
seeds and vegetables and soil particles) is a very complex geometrical phenomenon that should be seen in a
fractal perspective.

Inspiration might also be found in The von Koch snowflake curve. This curve, and other irregular curves, have
been known for more than a hundred years. Details on these curves, and more, can be found in the fascinating
book by (Barnsley et al., 1988) on fractal images. For multiresolution modeling, such iterated curves might
become useful especially for natural geometries at micro and Nano-levels. In the reference book "The beauty
of Fractal" by (Peitgen & Richter, 1986), a formalization of Julia sets and fractals was established. The
computer graphical generations in the book were state of the art at that time. The spectacular images are still a
source of inspiration for many scientists and for modeling of natural objects as well.

Benoit Mandelbrot developed the notion of a fractal and presented the iterative recursive nature of fractal
generation in the famous work "The Fractal Geometry of Nature" (Mandelbrot, 1983). When natural objects
like vegetation and landscapes are observed, fractal appearance is striking. The same conclusion is made when
natural objects are observed under a microscope. Therefore, fractals seem to be a relevant tool for modeling of
irregular and unpredictable geometries. However, as mentioned earlier, due to their built-in chaotic behavior it
is hard to control fractal iterations in algorithms designed for systematic geometry generation.
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1.3.3  Modeling Constraints
Geometrical and mechanical properties are today’s key parameters for seed characterization (Coskun et al.,

2006). Conventional seed measurement covers volume, thousand seed weight (TSW), moisture content (MC),
and other mechanical properties. These parameters represent constraints and they are, themselves,
parameters in stochastic phantom modeling. Therefore, they are expected to play a leading role in future
flexible simulation modeling. Some geometrical and mechanical properties have been measured over the
decades. They range from simple caliper measurements and laser scans, over geometrical models, to image
analysis, acoustics, and other non-invasive measurements. In general, the geometry of any natural object is
likely to be constrained by these properties. Therefore, in the following section selected properties relating to
size, boundings, location and orientation, landmarks and shape are introduced.

1.3.3.1 Size Metrics
For stochastic phantom creation the following size properties seems to be the overall natural constraints.

e 1D:length/ , width/,, thickness/, diameter d and perimeter O
e 2D:surface area S, cross-sectional area A; and projected area A

e 3D:Volume V.

Sometimes, also the following derived quantities are relevant:

1
e Geometric mean diameter (side length of the cube of equal volume): d= (/1/2/3 )3
11

e Equivalent diameter of projected area (diameter of the circle of equal area): d, =27 2A?
1 2
e Spherical surface area (area of the sphere of equal volume): A, =73 (6V)3

The use of size properties in phantom creation was included in one of the early studies on the space of human
body shapes by (Allen et al., 2003). First human phantoms were generated with a required height and weight
(=volume times homogenous density) and thereafter from feature-based editing adjusted to fit changes in the
height and weight respectively. In the determination of reference phantoms, the size was found to be a
constraining property for meshing (Wayson, 2012), (Lee et al., 2010).

In a recent study on one hundred kernels per seven different cultivar by (Fératlégil-Durmus et al., 2010), a FEA
approach and formulas for ellipsoid seeds model was compared with digital image analysis on a number of
standard parameters. Furthermore, the relative difference in volume and surface area between pycnometric
measurement and ellipsoid approximation was determined. The size values approximated from the ellipsoid
did not differ more than 10% and 4% from the pycnometric measurement respectively. As such, this study
demonstrates that using 2D image analysis in combination with ellipsoid approximation is a suitable method
for determining the size of grain as well as other parameters.
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1.3.3.2 Bounding Metrics

Model 4 - Combination of two cone frustums

Feret bounding box (axbxc) and its geometric mean box Figure and label from: (Sykorova, Sarka, Bubnik, Schejbal, & Dostalek, 2009)
(dxdxd), DANS Project, AU, 2009

Figure 1.25: Feret bounding box (left) and analytic cone frustrums bounding model (right)

The following bounding metrics are likely to be relevant for geometrical bounding of natural geometries.

e Feretdiameters™: {d,}

e MinFeret: d. =min{d, |
e MaxFeret: d, =max{d,}
e Feret elongation: d. /d,

In image analysis it is common practice to use bounding rectangles. For analysis of 3D objects, bounding boxes

(axbxc) are used, see Figure 1.25 (left). The Feret bounding box is defined by the following operations: First

the overall MaxFeret diameter defines the first bounding dimension a, which then defines the first local
coordinate of a Cartesian frame, i.e. a — x. Then, the overall MaxFeret diameter of all cross-sections normal to
the x-dir. defines the second bounding dimension b and thereby the second Cartesian coordinate direction, i.e.
b—y. Finally, the third bounding dimension c is defined as the MaxFeret in the third direction z. The

measured size in terms of its geometric mean box (in yellow) is illustrated.

Parameters of analytic geometries are sometimes used as parametric boundings of natural objects, see Figure
1.25 (right). “Model 4” illustrates an analytic combination of two cone frustums out of a total of four models*.
These models were used in a study by (Sykorova et al., 2009) that looked at the size distribution of barley
kernels. It was concluded that “Model 4” provided the best approximation of the volume with all cultivars
when the measured average crease depth was taken into consideration.

*(“Model 1” - Symmetric combination of two parts of general ellipsoid and two cone frustums, “2” - Asymmetric combination of two

parts of general ellipsoid and two cone frustums, and “3” - Combination of two parts of general ellipsoid and cone frustum).

!> Feret diameter and various other measures of the size of irregularly shaped particles seen under a microscope are described in details
by (Walton, 1948). Technically, the Feret Diameter is found at each identified point of the outher boundary of any geometry as the
maximum distance from the actual point to all other points. The max/min Feret is the max/min distance between the set of all these
Feret diameters.
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1.3.33 Location and Orientation Representations
In 3D geometry, the location of a point on a tortuous surface S, is defined by a vertex VeR’, which is a

vector in a global Cartesian reference frame {ex,ey,ez}. In the following section, two local frames of unit

vectors, known as the Frenet-Serret frame and the Darboux frame for tortuous curves C_, are introduced.
These classical frames are used in differential geometry to describe the orientation of tortuous curves
embedded in surfaces S . The French mathematicians Jean Frédéric Frenet (1816-1900) and Joseph Alfred
Serret (1819 -1885) are referred to as co-discoverers of the Frenet-Serret formulas. In the following discussion,
the Frenet-Serret formulas and derived Frenet-Serret concepts are referred to by the name 'Frenet' only and
symbolized by {F}=[T N B]T (Ghommam, Mnif, Benali, & Derbel, 2009). A similar notation {D}=[T t u]T
is used to indicate an orthonormal right-handed Darboux frame, which was originally introduced by the French
mathematician Jean-Gaston Darboux (1842-1917). Although these frame notations are conceptually similar,
they are not to be confused.

In this paper the Frenet notation is used solely. At a particular location V" of an embedded curve C, c S_, the
unit vectors T,N,B are assumed to form a triple of local basis vectors {ef},ef},e?}}:{T(V*),N(V*),B(V* )}
which defines the orientation of the embedded curve C. at V". The triple of unit direction vectors is formed
by: the tangent T, the principal normal N, and the binormal B . The triple is sometimes called a trihedron and
denoted as TNB. In general, the triple is evaluated at a particular point V" =C, (s(t’)) of a tortuous space curve
C,.(s), defined by a parametric arc length function s=s(t). By default, the normal N of a trihedron is said to

define an instantaneous inward normal of C, at V.

Frenet-Serret Darboux
T 0 k.(s) o |[T T 0 k,(s) w,(s)|[[T
{F}=|IN'|=|-x.(s) 0 z.(s)||N]| (14) {D'}=|t' |=|-x,(s) O r,(s) ||| t]]| (L5)
B’ 0 -r.(s) 0 |B u| |-k,(s) -z.(s) O u
where where
K, (s) >0 is the Frenet curvature and K, >0 is the geodesic curvature,
T, (s) is the Frenet torsion K, >0 is the normal curvature, and

7, is the relative torsion (geodesic torsion)

The following relation rotates the Frenet frame into the Darboux frame

T 1 0 0 T
t|=|0 cosf sind ||N , (1.6)
u 0 -—sind cosf || B

where 4 is the unique angle which rotates N and B around T into t and u respectively. The Darboux vector
tis the tangent normal and u the unit normal.
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1.3.34 Frenet Curvature and Torsion
The Frenet curvature x, is a measure of the rotation of the Frenet frame about the binormal B, whereas the

Frenet torsion 7, measures the rotation of the Frenet frame about the tangent T . When the Frenet curvature
and Frenet torsion are simple numbers; the 3D path defined by the Frenet-Serret equations forms a helix. If the

torsion is positive, the helix is said to be right handed and left handed if the torsion is negative.

The curvatures used in the Frenet-Serret equations often are expressed in terms of their radii as: . = p_*

and
7, =0.', where p_ is the radius of Frenet curvature, and p, is the radius of Frenet torsion respectively. Finally,
the radius of curvature p_ is the distance between the points called the center of curvature V_, and a given

vertex V, which is located on the embedded tortuous curve.

V.=V, +pN=x.'N, x, >0 (1.7)

1.3.35 Special Curvatures
In 1874, the French mathematician Marie Ennemond Camille Jordan generalized the Frenet-Serret Formulas to

R" and introduced the concept of generalized curvature. y, (s), i=1,...n. However, for natural geometries in
R, only the first and second generalized curvatures are in use. The first curvature, the conventional Frenet
curvature (or simply the curvature) is usually denoted by x, =;g,(s), i=1. It expresses the spatial rate of
change of the tangent in direction of the normal x, =N-T'. The second curvature, the torsion, is denoted by
T, =;(,(s), i=2. It expresses the negative spatial rate of change of the binormal in direction of the normal

__'I
7.,=—N-B".

It must be mentioned that in conventional differential geometry other curvature metrics are in use. For
example, in the neighborhood of a particular point of an analytic regular C*-surface, an embedded Weingarten
map exists (also known as the shape operator) (O'Neil, 1997). It is expressed using; a symmetric (3x3) matrix
with a trivial eigenvalue corresponding to the Gauss normal; and two non-trivial eigenvalues defining the two

principal curvatures k,,k, oriented by the principal directions of the corresponding eigenvectors.

In relation to curvature invariance (see 2.2.12.5), it must also be emphasized that the mean curvature

Ky =(K1 +1<2)/2 is not invariant to isometric scaling, whereas the Gaussian curvature k; = k,x, is. The Frenet

curvature k, is not invariant to isometric scaling either.

For further details on embedded Weingarten map and its implications on subdivision surfaces see (Peters &
Reif, 2008). However, in relation to irregular geometry modeling in this study, only the first generalized
curvature and the second generalized curvature will be included.
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1.3.3.6 Frenet Planes

Individually, the Frenet vectors can be interpreted as normals to
three planes, called the Frenet planes, see Figure 1.26. Each of these
Frenet planes is fully defined if only a single pair of Frenet vectors is
given.

The special Frenet symbols, names and orthogonality characteristics
Figure 1.26: Frenet planes are listed hereafter for convenience.

. {F}NXB-The normal plane (NB) spanned by N and B perpendicularto T.
. {F}BXT- The rectifying plane (BT) spanned by B and T perpendicular to N.

. {F}TXN - The osculating plane (TN) spanned by T and N perpendicularto B .

At each particular point V' on a tortuous surface, at least one tangent plane passing through that point is
assumed to be definable. In general, many tangent planes with different normals exist at each point on a

tortuous surface. In the following discussion, it is assumed that any Frenet rectifying plane {F}BxT represents a

particular plane amongst these tangent planes. In other words, any point V®" on a rectifying plane {F}BxT

(see Figure 1.26) satisfies the following equation for a plane having the Frenet normal N as normal.
{(F}¥7: (BxT)o(V*T=V')=0, N=BxT — {F}={T,N,B} (1.8)

If the current vertex is designated as V, =V" and a new vertex as V, in the near neighborhood of A, then
point B is said to be located in the positive direction of the embedded curve if its arc length function s=s(t)

increases from A to B . This implies that a positively oriented chord direction vector d, exists which defines

the new vertex V, from the current vertex V, as
V=V, +d, (1.9)

For an illustration of this chord direction vector dl see Figure 1.26. Also, note the illustration of the first

generalized curvature y,, i.e. the Frenet curvature x, = y,. This curvature represents the reciprocal radius of

curvature in the osculating plane (TN). This means that Frenet curvature is a direct measure for the shape
variations along embedded curves.
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1.3.3.7 Shape Metrics
Shape metrics are often used to characterize volumetric shapes such as: stone particles, grains, natural

landscapes and others (Ahmadi et al., 2009; Fératlégil-Durmus et al., 2010; Sykorova et al., 2009; Mohsenin,
1970; Wadell, 1935). Some metrics that characterize the irregular distribution of point clouds, curve segments,
and surfaces are given below.

Point, pixels or voxels distribution metrics
e Lacunarity and fractal dimensions A, and D,

*For further details on lacunarity and fractal dimensions as descriptors for the complex geometry of natural world landscapes see

(Kirkpatrick & Weishampel, 2005). Various fractal dimensions are in use: Hausdorff-Besicovitch dimension DH, the Minkowski—

Bouligand dimension D, , Rényi dimension D, and others.

Curve segment distribution metrics

e Curve segment length (arc-length): L
e Chord length®: |,

e Tortuosity, the distance metric (arc-chord ratio) : T:L,I;(1

Tortuosity can be defined in a number of ways. However, it always measures the “twist” of a curve segment. In
a study by (Hart, Goldbaum, Cote, Kube, & Nelson, 1997), the distance metric tortuosity was subtracted by one,
as a result the tortuosity for a straight then becomes zero. In addition, six more tortuosity metrics were
introduced to measure retinal vascular twist. The seven metrics were then used to classify the tortuosity of
blood vessel segments and the tortuosity of blood vessel networks. One finding was that for automated
classification the conventional (distance metrics) showed best performance.

1 (Grisan et al., 2008) have also proposed a novel tortuosity metric called the
tortuosity density. The metric is based the idea of splitting a given 2D curve
segment into a number of turn curves and then defining the irregularity as an

average of each individual distance metric minus one over the entire segment.

The first two curves (top and middle panel) have very different tortuosity but
the same Length L and chord length. The second and last curves (middle and
bottom panel) have the same average angular difference despite their
different tortuosity. The curve in the bottom panel has a curvature integral of
1/2 whereas the one in the middle panel has curvature integral i, even if that
5 _ in the bottom panel is clearly perceived as more tortuous.

Figure and label: (Grisan et al., 2008)

Note that tortuosity metrics are always constrained by two non-coincing

Figure 1.27: Turn Curves reference vertices which span the chord.

'® The chord length notation using the Greek lowercase letter Chi as index is adopted from (Grisan et al., 2008).

56



Sometimes, the tortuosity metrics are also used as an abnormality metric. (Bullitt et al., 2003) measured the
tortuosity of the intracerebral vasculature from MRA images and categorized the observed abnormalities into
three classes of tortuosity abnormalities: Type |, Type Il, and Type Il

It is often difficult to measure the tortuosity. However, some practical methods for measuring the tortuosity
from binary or gray-tone tomographic reconstructions have been provided by (Gommes, Bons, Blacher,
Dunsmuir, & Tsou, 2009).

Surface distribution metrics

e Shape index®, (Koenderink, 2003): S/

e Sphericity of particle, (Wadell, 1935) ¥, = 71'% (6V)§ st

e Estimated sphericity (Mohsenin, 1970) ‘i’\l, =deF_m1ax

e Circularity”: x, =47A 0/
2 Shape index (Sl) is a curvature based number in the range [1, +1] that is scale invariant. In a study by
(Woodard, 2005), a novel approach for personal identification and identity verification using 3D finger surface

features as a biometric identifier was proposed. In this work, the S/ was used in a formula for a normalized
correlation coefficient. It was then used to compute a match score.

Table 1.1: Shape Index (S/)

Shape index intervals and associated surface classes

Surface tvpe Interval
Spherical cup [0, 0.125)
Trough [0.123, 0.23)
Rout [0.25, 0.373)
Saddle rut [0.373, 0.5)
Saddle [0.5, 0.625)
Saddle ridge [0.625, 0.75)
Ridge [0.75, D.875)
Dome [0.873, 1.0)
Spherical cap 1.0

Table and Label from (Woodard, 2005)

Also, in this study an explanatory table of the associated shape types with the actual range of SI-numbers was

given, see reproduced table above. Note that surface type refers to a surface segment in R*>.

® Circularity K, is a value in the range [0, 1]. Only a circular desk has the value one. Recently, the circularity

metric and the tortuosity measure play an important role in the description of a new shape descriptor for
asymmetries in distribution of roughness (ADR). Besides circularity and tortuosity, this study also refers to a
number of other shape metrics such as: Fourier descriptors; Zernike moments; moment invariants; and specific
metrics such as convexity, sigmoidality, orientability and elongation.

As demonstrated, a large number of metrics exist for curve distribution and for the classification of shape
patterns. Therefore, inclusion of such metrics in flexible modeling of natural objects is inevitable.
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1.3.3.8 Mechanical Properties
Often mechanical properties impact the geometrical properties. A list of such selected mechanical properties,

which are often referred to in studies on biomass and soil, is given below®’.

e Mass of kernel (particle mass) : m,

e Thousand seed weight (TSW): average kernel weight of 1000 kernels
e Estimated mean kernel mass: TSW

e Average bulk density (ABD), p,

e True density of kernel (particle density), Oy

e Average true volume: m,p;'

e Porosity (Mohsenin, 1970): ¢=1-p, 0y

e Moisture content: MC

e Fineness Modulus: FM, See (ANSI/ASAE S319.3, 1997)
: 2.00-4.00 [mm] — Fine aggregates — FM, typically around 3

: 2.00-8.00 [mm] — Mixed aggregate — FM, typically around 5

: 4.00-8.00 [mm] — Coarse aggregates — FM, typically around 7

More details can be found on many of these properties in a study by (Ahmadi et al., 2009) on Fennel Seed
(Foeniculum vulgare). Ahmadi et al. showed that the dependency between moisture content and many of the
geometrical and mechanical properties listed above was significant.

Apart from height and weight, the non-geometric property, aging was also included in a novel approach to the
manipulation of stochastic phantoms taken by (Baek & Lee, 2012). This was made possible by allowing age to
be included as one of the basic input variables for the PCA.

Therefore, novel approaches for modeling of natural objects must be able to handle interactions between
various physical properties and the phantom geometry. In other words, new meshing approaches must be
generic and flexible by nature!

iy comprehensive overview of many of the above properties related to seed measurements are found in (Ahmadi, Mollazade,
Khorshidi, Mohtasebi, & Rajabipour, 2009).
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1.3.3.9 Landmarks

Image localized 13-06-2012 at URL:
www.questbiometrics.com/biometric-facial-

recognition.html

Figure 1.28: Facial recognition

G ] Resul | Smiarty | RecodID_| Finger .
e |[127 icerted 521 19 1

[\ Prostam FleNeotechnology Ve inger 5.0 Eended Tr SOK B Wi idsWFSr )

Sreendump from the VeriFinger®, NEUROtechnology

Figure 1.29: Fingerprint identification

In Figure 1.30 (left), some facial
landmarks are illustrated and in (right)
A CAESER body scan mesh is shown. A
comprehensive  data  base on
anthropometric markers is provided
by (CAESER, 2012). Meshing based on
landmarks seems to be continously
developing and future natural master
meshes are likely to be based on an
even more extended set of landmarks.

In the following, the term landmark is used to cover biometric
identifiers, vector based identifiers, and curvature and torsion based
identifiers of natural objects and phenomena. A list dated from 1684
to 2006 of major developments in the theory and practice of
biometrics is provided by (Caslon Analytics - biometrics, 2012). From
this list the following key biometrics and their applications are
extracted and presented in chronological order:

Fingerprints (since 1798), iris-based identification (since 1936), hand
and voice identification (since 1976), computer recognition of faces
(1977), retinal identification (since 1978) authentication by keystroke
timing (since 1980) automatic signature verification (since 1983),
Jeffreys' Restriction Fragment Length Polymorphism (RFLP)
characterised as 'DNA Fingerprinting' (1984), forensic DNA profiling
(since 1985), iris-recognition (1987), palmprint recognition (1998),
biometric chips in passports (2005), and biometrics in national access
card (2006).

In Figure 1.28, an example on facial recognition is reproduced. Note
that this identification relies on facial traits forming a master
constellation.

In Figure 1.29. (See 7.2 for a company link), an illustration on
fingerprint identification using VeriFinger® is given. Note that the
identification relies on location vertices and orientation tangents.

Figure 1.30: Facial Landmarks (left), partial body mesh (right)
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LDX images of an osseous specimen with
unfused epiphyses used for comparison
between LDX and CT measurements, in frontal

(left) and lateral (right) views.

Figure and caption from (Gheno, Nectoux, & Herbaux,
2012)

Figure 1.31: Biometrics of lower extremity

Biometrics of internatal organs and skeletal parts are also in use.
One example is biometrics in the extremities.

In a study by (Gheno et al.,, 2012), the lower extremity using a
biplanar low-dose X-ray (LDX) device in children and adolescents was
examined. In two comparative measurements studies between a)
LDX 3D and CT 3D and b) LDX 2D and 3D a total of seven biometric
identifiers were studied:

e femoral length

e tibial length

e femoral mechanical angle
e femoral neckshaft angle
e tibial mechanical angle

e frontal knee angulation

e lateral knee angulation

It was concluded that: a) The 3D LDX were comparable with 3D CT;
b) Differences were observed between LDX 2D and 3D for femoral
mechanical angle, femoral neck-shaft angle, and tibial length.

New concepts introduced within stochastic geometry

2-point dataset A TED means of A

an infinite
family...

The infinite family of trees on the right are TEDY
means for the set of two trees on the left.

Figure and label from (Feragen et al., 2011)

Figure 1.32: Meshes for tree-studies

Stochastic geometry is a new research field which focuses on the
modeling of random shape fluctuations®™. It is a borderline mix of
mathematics and statistics. New properties such as means in spaces
of tree-like shapes have recently introduced (Feragen, Hauberg,
Nielsen, & Lauze, 2011) see Figure 1.32.

Also, studies on point patterns might be a dicipline which can be
adopted in Biosystems engineering models. A comprehensive set of
notes on spatial point patterns investigated by the free R software
package is provided by (Baddeley, 2010).

In future natural variation, modeling stochastic geometry might be a key player in the development of novel

methods to analyze data from advanced bioimaging and for the introduction of statistical landmarks.

'8 For a reference list on latest publications and further information on stochastic geometry see Annual Report 2011, Centre for
Stochastic Geometry and advanced bioimaging (CSGB) located at URL: http://csgb.dk/.
Y T1EDisan acronym for (Tree) Edit Distance (Heumann & Wittum, 2009).
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1.4 OBJECTIVE

1.4.1 The Research Gap
As described in the introduction, today’s scientific stage allows researchers to observe the geometry of natural

objects using advanced scanning technologies, and to fit meshes so that they nicely replicate the observed
geometry. Advanced meshing approaches are customizable by free-form modeling, and result in surfaces with
higher order geometrical continuity. Moreover, the novel Beck-Lee approach provides the opportunity for
stochastic phantom modeling where new phantoms are simulated using statistics generated from
measurements of full body surfaces. Beck-Lee phantoms are formed using a template so fitted phantoms
match one or more mesh constraints such as: height, weight, or age. This simulation approach is state of the
art in today’s field of advanced phantom generation. It is based on standardized landmarks and full human
body templates.

However, natural geometries for walnuts, grass, grains, cracks in soil, or trees, etc. are not smooth at all. They
are very complex and are often characterized by rough irregular shapes or hair. Covered surfaces, and their
interior, are often made up of tortuous pipes and interconnected sphere-shaped volumes. Even with the use of
the most advanced meshing tools it is not an easy task to simulate a walnut, the flow pattern over a grass roof,
or the cracks in the bark of a tree. Furthermore, it is not at all possible to simulate meshes in such a way that
each new realization is a unique representation of the natural geometry itself. We are currently unable to
produce rough phantoms which imitate the stochastic behavior of the underlying natural object in a systematic
way.

It is this gap between today’s deterministic or semi-deterministic geometry simulations and tomorrows
advanced stochastic simulations that are capable of extreme detail, roughness, and flexibility, which are the
focus of this study. Obviously, this very ambitious objective cannot realistically be achieved within the time
frame of such a study. However, the hope is to contribute piloting algorithms, which will provide the basis for
further research in simulation of stochastic phantoms. Such stochastic modeling approaches also point to the
need for new mathematical formulations that include natural uniqueness, life-cycle changes, deformable
structures, and other un-defined non-linear properties. Ultimately, new geometry generators must be designed
as modeling tools for latest multi-physics software and integrated with existing FE algorithms.

1.4.2  Scope
In this study, the objective is to define a unified 3D approach for extraction of parameters from natural

geometries for later use in the simulation of stochastic phantoms that imitate the stochastic behavior of a
natural object. Methodically, the scope is to adopt and mix theoretical elements from, object-oriented
programming, Finite Element Analysis (FEA), biometrics, subdivision, chemometrics, and optimization in a
multidisciplinary approach. Coloring and lighting techniques that enhance the expressiveness of phantoms are
beyond the scope of this study. The principal formulations are based on calculus of variations for enhanced
expressibility and applicability. In the following, spatial descriptions built on fundamental concepts from
differential geometry are combined with Cattmull-Clark subdivision. In terms of geometrical completeness, the
aim is to include tortuous curves, surfaces, and solids. Curves will be described and illustrated with high degree
of detail, and a high number of illustrations; surfaces with some detail, and some illustrations; and solids with
little detail and no illustrations.

The key focus of this study is on the modeling and parameterization of tortuous curves.
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1.4.3  Variables
The quantities that parameterize meshes are considered degrees of freedom variables (DOF-variables). Mesh

based models are discretized into domain elements and boundary elements as in standard multi-physics
software (like COMSOL® Multiphysics and others). Due to the complexity of the natural objects investigated in
Biosystems engineering, the conventional discretization model needs to be extended to include static
formulations, and also to support future time-dependent formulations. This means that extra variables need to
be included that relate to: clusters and subclusters; as well as group objects and scalar objects such as
curvature, torsion, and tortuosity.

1.4.4  Principles and Methods
Since natural objects are unique, direct validation of their imitations is not possible. Therefore, indirect

validation, based on measurable indicators, is proposed as an alternative validation strategy. In the extension
of such indirect validation, novel decision principles to control the parameter extraction and to handle the
stochastic reparameterization are also needed. Beyond this uniqueness problem a further complication is the
built-in complexity of natural geometries. A common funding is that natural geometries are highly resolution
dependent. This means that the geometry of any natural object usually differs significantly when the object is
seen under a microscope compared from when it is observed without magnification. To include this aspect,
multiresolution parametric subdivision is chosen to facilitate detailed discretization. However, even though
subdivision plays an important role in this study, the theoretical focus is on general parameterization
methodology rather than subdivision details.

1.4.5 Strategy
In prolongation of the novel Baek-Lee approach, an alternative generic approach is proposed and described in

details. It focusses on parameterization from independent landmark constellations for rough geometries. This
approach for rough geometries is intended to be generic in the sense that all scanned objects that exhibit
geometric variation from one object to another, or over time, are target for parameterization. The new
approach does not intend to explain why some parameter constellations appear as a kind of “geometric DNA”.
It simply anticipates that such “geometric DNA” constellations are extractable under certain circumstances and
that they act as a kind of parametric master template, similar to the human body template used by (Baek &
Lee, 2012) . The idea is that these master meshes can be reused later as the source for simulation of look-a-like
phantoms.

The outline strategy therefore consists of the following major parts:

- To develop a general methodology for parametric modeling of natural geometries and illustrate general features
from 3D meshes in the “Methods” part (chapter 2),

- To apply and validate this parameterization methodology via a case study on one hundred wheat grain cross-
sections in the “Results” part (chapter 3),

- To discuss the general approach incl. the case-study experiences, to list some un-answered questions discussion
further research and give an outlook in the“Discussion & Outlook” part (chapter 4).

- Tosummarize general and specific achievements in the “Conclusion” part (chapter 5).
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2 METHOD

2.1 INTRODUCTION TO METHODS AND PRINCIPLES

2.1.1 Key Aspects
In the following section, a novel approach called “natural parameterization” is introduced as a generic method

to model geometries of rough natural objects using customizable multiresolution meshes. Smooth
computational phantoms have been studied and controlled for decades (Xu & Eckerman, 2010), however,
parametric human body shape modeling based on user-defined body size was non-existent until the novel
Baek-Lee framework was proposed (Baek & Lee, 2012). Natural parameterization is very much in line with the
Baek-Lee approach, however, the geometry modeling of parameterized variations and roughness means that
natural parameterization aims at finding a geometric “master mesh” that is able to reflect the objects’
“geometric DNA”. Therefore, it has a different target. The input data for natural parameterization is gathered
by scanning either a whole natural object, or parts thereof, in the same manor used for existing approaches to
phantom creation. These input data are used for automatic identification of landmarks, which in turn enable
further extraction of size and shape parameters. These extracted parameters are stored in a parametric bank
for later stochastic phantom simulation. At the same time, the intention is to let the new parameterization be
flexible and customizable. As such, scaling and user-defined size and shape requirements can be included in the
simulation process. Abnormality modeling, life-cycles, and growth-modelling, are also enabled. Ultimately, the
intention is to model natural uniqueness, growth, and aging in one unified approach.

The uniqueness of natural objects is a key challenge. Technically, two objects which belong to the same class of
objects are said to possess the same properties.However, such observed value sets are never identical (except
for clones, of course). This means that uniqueness can be perceived as a state-property of a natural mesh.
Growth and aging on the other hand are time-dependent processes that require self-adjusting meshes with
non-stationary topologies. This means that novel meshing strategies need to be extremely flexible and detailed
while still remaining systematic enough to reflect characteristic mean-value processes. These demands are
included in the new approach by letting the output mesh be a multiresolution computational phantom that is
plausible to expert knowledge. Experts claim that any new phantom simulation belongs to the class of objects
that it imitates. Unfortunately, conventional concepts such as the “goodness of fit” or “maximum likelihood,”
which require template information, cannot be used directly in the effort to measure how well generated
unique objects imitate the original. Two new concepts that indirectly address this problem of “likeliness” are
included in natural parameterization. The first concept on “goodness of replication” is introduced for
parameter extraction based on replication of original objects. It defines how random parameters can be
extracted from a single observation mesh. The second concept on “goodness of imitation” is introduced for the
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simulation of “look-alike” phantoms from the extracted parameters so that samples of new phantoms (which
are all unique) carry the same underlying stochastic behavior as samples of the observed object itself. This
ensures that measurements of new unique phantoms will reflect the same stochastric characteristics as the
natural objects they imitate. These two rules on “goodness of replication” and “goodness of imitation”
constitute the theoretical base for the extraction of parameters as replication phantoms and simulation of new
phantoms as imitations.

The newly generated natural imitations must include multi-resolution features to ensure a high level of detail.
However, the level of detail is limited by the available input data and the computational capacity. Therefore,
new “look-alike” phantoms can be modeled only by a finite number of degrees of freedom as defined by
today’s finite element analysis. Consequently, this novel approach is based on a finite set of parameters (the
objects “geometric DNA”) that are first extracted and then later reused for stochastic simulations of new
objects.

In other words, the concept of natural parameterization introduces a forward operation for extraction of
unique parameters from observations (parameter extraction), followed by a backward operation
(reparameterization) that reuses these parameters to simulate “look-alike” phantoms with the same stochastic
properties as the natural objects themselves.

2.1.2  Statement of Problem
Following the key aspects outlined in 2.1.1, the following central problems have been identified.

e How are parameters extracted from natural geometries so maximum “goodness of replication” is assured?
e How is reparameterization into “look-a-like” imitations generated with maximum “goodness of imitation”?
e How are such “parameter extraction” and “reparameterization” unified in one generic approach?

2.1.3  Solution Strategy
To answer the central problems defined in 2.1.2, the following strategies have been chosen.

e To properly define the two novel concepts on “goodness of replication” and “goodness of imitation” in an
attempt to solve the two first central problems on parameter extraction and reparameterization as they have
been stated in 2.1.2.

e To introduce a set of new algorithms which automate the parameterization and reparameterization process
including size, bounding and landmark extraction, multiresolution parametric subdivision, systematic shape
parameterization, stochastic decomposition, chemometrics, and Monte Carlo simulation of look-alike phantoms.
By merging this set of algorithms into unified “natural parameterization” software having observation meshes,
and using expert knowledge as input and stochastic phantoms as output an attempt is made to answer the third
central problem in 2.1.2.
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2.1.4 Notation
In the following section, notations are accompanied by illustrations symbolizing generic objects. Illustrations of

tortuous geometries are based on vertices and faces generated by the MATLAB® built-in function ellipsoid
and have been post processed by simple perturbations as described in ANNEX 5. Note that these phantom
illustrations have not been generated by the novel subdivision algorithm presented later on.

2.1.4.1 Tortuous Meshes
Natural geometries are modeled by various types of tortuous meshes symbolized asM_ .

Natural Geometry Observation Mesh M_ .

Phantom M_ Limit Mesh M, n_=4  Iterated Mesh M?, k. =3 Iterated Mesh M’ , k_ =2

Figure 2.1: Tortuous meshes

The various mesh examples illustrated in Figure 2.1 are commented on in the following section. An observation
mesh M, is a digital representation of a scanned natural geometry. A master mesh M? is a coarse parametric
representation of the observation mesh, whereas a limit mesh M’ is a finer representation generated from
the master mesh. The level of refinement k, reflects the geometry’s multiresolution characteristics up to the
limit level of refinement n_, i.e. k. =1,..., n_. An iterated mesh M* is the result of a subdivision process and is
defined at intermediate levels of refinement k. =1,.., n_—1. A limit mesh M, k. =n_ is transformed into a
phantom M,phan that includes settings for graphics display such as: coordinate arrays for vertices; topology

arrays for faces; as well as color, light and opacity data.
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Replication vs. imitation phantoms

A replication phantom is developed to fit a single observation mesh, whereas an imitation phantom is based on
reparameterization from a set of random variables or stochastic processes originally based on a sample of the
natural geometry. Any phantom is supposed to contain enough information to be materialized into a physical
model by a 3D printer or other machines.

2.1.4.2 Tortuous Elements
Geometrically, a mesh is formed by a constellation of mesh elements. These mesh elements can be divided

into tortuous domains €2_ and tortuous boundaries 0Q_. The size of domain elements is symbolized by ||Q,

Tortuous
Domains
QT
Cluster X, Subcluster Q, Object/Species ¥,
Tortuous
Boundaries
oQ,
Surface 0'Q Curve 0°Q Vector 0°Q Scalar 0°'Q
(Tortuous) (Embedded) (Tangent, Normal, Binormal) (Length, Curvature & Torsion)

Figure 2.2: Tortuous mesh elements (domains and boundaries)

The element hierarchy presented in Figure 2.2 and Table 2.1 is adopted from COMSOL Multiphysics®3.5a 2011.
However, the domain elements; cluster, subcluster, object/species; are added as well as the boundary element
scalar. A scalar measure, called segment curvature, is also added to facilitate segment based subdivision.
Furthermore, the boundary element “point” used in COMSOL Multiphysics® is replaced by “vector” to facilitate
further distinction into location vectors and orientation vectors. In COMSOL Multiphysics®4.2a 2012 the term
subdomain is changed to domain. However, the term subdomain is kept here to emphasize that it is used to
subdivide an object/species volume into a finite number of discrete homogenous volume parts. The color
codes blue (tangent), red (primary normal), and green (binormal), are adopted from the FE software package
STAAD PRO® V8i-2012. They are used to identify the local axis of two-noded 3D members and triangular and
quadrilateral plates and solids respectively.
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Table 2.1: Classification and identification of mesh elements and their graphical description

Classification

Identification

Description

20

Name Symbol Name Symbol Discretization element(s) Symbol (Plot)
Cluster Z\y Heterogeneous volumes V¢ (patch)
Tortuous Subcluster Q\y Homogenous volume subset V¢ (patch)
Domain Q, Object™ v Heterogeneous subvolume set V¢ (patch)
Subdomain Q Homogenous subvolume V¢ (patch)
Surface o0 Set of Face elements F® (surface/patch)
Curve LEe) Set of Edge elements E® (line/edge)
Location vector V (marker)
Vector ’Q
Orientation vector T,N,B (arrow/line)
Segment curvature K,
Scalar 0*'Q Frenet curvature K,
Tortuous 8(')9 -
Boundary Frenet torsion T,
Tortuosity T
Lacunarity A,
Hausdorff-Besicovitch D
Dimension o°0 dimension H
Minkowski—Bouligand
) : D,
dimension
Rényi dimension D

2% plot functions refer to MATLAB®.
2 Eor biological objects the term object is sometimes replaced by the term species.
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Tortuous geometries
In general, tortuous geometries cover non-straight geometries that are either smooth, rough, or mixed

smooth-rough.

Solids
Tortuous solids €_ are constellations of volumetric segments V. discretized by volume elements V°. Volume

elements themselves are formed by face elements, i.e. V¢ ©DF°. A subdomain is a parametrically homogenous
solid, whereas objects, subclusters, and clusters, are formations of such subdomains.

Surfaces
Tortuous curves 0°Q are constellations of curve segments C_discretized by edge elements E°. Edge elements

are formed by tortuous constellation objects, called bi-meshes M, (see 2.2.8), i.e. E® oM, .

Curves

Tortuous curves 0°Q are constellations of curve segments C, discretized by edge elements E°. Edge elements

are formed by tortuous constellation objects called bi-meshes M, see 2.2.8, i.e. E oM, .

Location and Orientation Vectors

Vectors 0°Q are used here solely to model location and orientation.

Location vectors are used for the representation of vertices. A vertex V is assumed to be an instant
representation of a conventional parametric position vector, i.e. V=r(t). In FEA, such location vectors are

often referred to as nodal points or simply nodes.

Orientation unit vectors T,N,B are assumed to form a triple TNB of local basis vectors at a particular location

V of an embedded curvec,, i.e. {e{F} el egF}}:{T(V),N(V),B(V)}:{T{F},N{F},B{F}} where the individual

1 27%2
vectors are assumed to be Frenet-Serret vectors. The set of Frenet-Serret orientation vectors is assumed to
{F} .

form a local orthonormal system e, eiF} =0;, where o, is the Kronecker delta, and each frame is supposed

to be right-handed, i.e. !’ -(eiF} x el ) =¢,,, where &, is the Levi-Civita symbol.

When a natural surface is approximated by an analytic differentiable surface, its Frenet normal N'" is a vector

perpendicular to the surface tangent plane at a particular location. When a differentiable scalar function f, in
space is used to estimate a family of oriented level surfaces S, of fT for f =const, then from classical vector

differential calculus the gradient of f, at a particular vertex V is known to be a normal to that surface.
Therefore, a discrete Frenet normal for smooth surfaces can sometimes be thought of as a normal to such a

surface tangent plane, i.e. N/ ~—Vf. (V)/HVfT (V)H . However, from the point of view of differential geometry,
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a tortuous geometry is often characterized by its discontinuities, which complicate the direct comparison
between Frenet normals of smooth (continous) and rough (discontinuous) surfaces. Therefore, it must be
emphasized that in a discrete mesh formulation, a Frenet normal is conceived as an orientation vector for an
embedded curve passing through a vertex at that point. Consequently, many such Frenet normals are assumed
to exist at the same time at one mesh vertex where different embedded curves pass through.

Scalars
The scalar functions «,(s), 7,.(s), known as the natural equations for curvature x, and torsionz, respectively,

are used to represent the variation in orientation. The variation is measured at a certain location of an
embedded tortuous curve C_ defined by the arc length function s(t) at a particular parameter value t, i.e.

C, =C.(slt)).

An additional curvature called the segment curvature «,is introduced to assist in the formulation of

parametric subdivision, relative to a segment chord of a tortuous curve segment (see ANNEX 6.1). In general,
the segment curvature is a Frenet type curvature.

Dimensions
Dimension descriptors such as Hausdorff-Besicovitch dimension, Minkowski—Bouligand dimension, Rényi

dimension; and metrics such as tortuosity, lacunarity and others (see 1.3.3) are used to describe the
distribution of geometric characteristics.

Tortuous Segments

A tortuous segment is symbolized by O_. In Figure 2.3 such a
planar tortuous segment is illustrated in white. It is defined as a

region of a cross-section enclosed by the chord C, =AB with

length [, =HA_B

, unit direction vector e, and a directed tortuous

TendEnd

curve C, . It is directed so that A=C__ and B=C 2. To

indicate the segments planar section properties conventional

moments of area metrics are used. Typical metrics are area,
centroid, centroid moments and principal moments. For further

information on such natural indicator metrics for cross-sections
Figure 2.3: Tortuous segment (white) see ANNEX 3

2 The special “BegEnd”, “EndEnd” direction notation is taken from the FEM software package STAAD.Pro®V8i-2012.
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2.1.4.3 Data Flow Indications
In accordance with (ISO 8000-2, 2009), the two set notations xe A and A>x both mean that the member “x

belongs to A”. However, in the following discussion, both variants are used to emphasize two different kinds of
data flow.

The notation x e A is used for parenting: “The child x is set to belong to the parent A” i.e. it is not possible to
get x before A is created. The notation A> x is used for grouping: “The group A is formed by the member x”,
i.e. x must exist before A can be created and set.

A similar data flow indication is implied from the two inclusion notations Bc A and A>B. They both mean
that the subset B is included in A. The notation B A is used to indicate that B is a subset of the declared set

A, whereas A o B indicates that the declared set A is extended with, or formed by the subset B.

2.1.5  Main Hypotheses
The theory behind natural parameterization is founded on three hypotheses:

e Size and shape of natural geometries might be dependent but uncorrelated.

e Shape can be modeled by tortuous meshes from independent parameters.

e Amongst feasible meshes which all model the same natural shape, the particular mesh that possesses the
smallest tortuosity is an extremal.

2.1.6  Principles & Methods
The two key concepts behind natural parameterization, namely the concept of goodness of replication and the

concept of goodness of imitation, are formulated as variational problems (Dacorogna, 2004).

The nature of the first concept on goodness of replication (see 2.2.2) is deterministic. It is used to define an
indirect replication method for the extraction of parameters from observation meshes (see 2.2).

The second concept on goodness of imitation is stochastic (see 2.4.3). It is used to control the imitation of new
stochastic phantoms as a reparameterization of the extracted parameters.

As a bridge between parameter extraction and reparameterization a stochastic decomposition method is
introduced for decomposition of random variables into semi-stationary and fluctuating parts (see 2.3.2). This
decomposition is useful for Monte Carlo based stochastic simulation of the natural parameters.

The unified approach comprised of parameter extraction, stochastic decomposition, and reparameterization is
the essence of a dedicated set of algorithms, called natural parameterization.
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2.2 PARAMETER EXTRACTION

2.2.1 Replication Problems

Obs.:

When the efficiency of replication
is high it is difficult to differentiate
between the observation and the
replication meshes.

First, let a sample of n,,  objects from an observed class of objects be

S

represented by a set of meses {M },i=1, n. in R?® called observation

obs_ ***7 " obs

i

meshes. Thereafter, let a set of replications be generated as new meshes, called

replication phantoms {Mphanﬁ } , i.e. Mphan,,, <—Mobsn ,i=1,..,n,.. To measure the

goodness of fit, a new measure 77, e[O;l] called the efficiency of replication is

introduced as
n.=1-¢., (2.1)
where the complementary measure &, is called the fault of replication.

Next, let a variational problem be defined as to minimize a tortuosity functional

J_ over a tortuous segment O_ of a phantom M so the fault of replication

phan,z;

&, is constrained by an upper bound ¢,

T

.p and a set of end conditions given by

phantom parameters {q;;h } and observation parameters {qf,Ih } .

min -’r :81(Mphan'MobS)S Erupp 7 0, {q’?"nhan } = {q'?"obs } (2.2)

Such a problem is called a replication problem. The set of meshes which satisfies
the constraints in (2.2) are called feasible replications of the natural object.
Compared to a conventional formulation of a variational problem, (2.2) loosens

the stationarity criterion §{J.} =0 by a limit approach lim 0|5{J,} 0.

€7 upp !

Finally, a particular mesh l\_/lphan which has the minimum tortuosity 7 amongst
the feasible meshes with highest efficiency of replication is called a replication
extremal to (2.2), i.e. I\_/IT is a solution to the replication problem and its

efficiency of replication is 77, =1-¢,.(M,,. ,M,,.) .

Figure 2.4: Replication meshes are intended to“fit” the observations meshes with high efficiency of replication
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In this first study, the definition for the fault of replication &, in (2.2) is related to segment properties and is
inspired by conventional CT scanning where sliced data sets are the typical output. These data sets carry
information on planar geometries and their cross-sections. Therefore, metrics like moments of area (see ANNEX
3) and other metrics (see 1.3.3) are natural candidates as indicator parameters. A proposal for slice-based fault
of replication modeling and its details is given in ANNEX 2.

2.2.2  Goodness of Replication
The concept behind the deterministic criterion outlined in 2.2.1 is referred to as goodness of replication. The

goodness of replication concept ensures that the selected phantom mesh possesses the lowest tortuosity
amongst all feasible meshes, even though other feasible meshes may have even higher efficiency of replication.

In general, feasible tortuous meshes are found by numerical procedures. However, an analytical solution can
sometimes be found when the replication problem is simplified into a form called its ordinary form.

2.2.3  Ordinary Replication Problems
An ordinary replication problem is a problem where the fault of replication is identically zero. This

simplification automatically implies that the stationarity condition must be fulfilled exactly.

€5y =0 — 0{J.}=0 (2.3)

z,upp

Therefore, an ordinary replication problem only contains equality constraints. In other words, an ordinary
replication problem is a conventional variational problem for minimizing a tortuosity functional with a set of
equality constraints. This implies that it can be solved with standard procedures from calculus of variations.
Consequently, the smoothness criteria required by conventional variational problems must be fulfilled for

ordinary replication problems. This smoothness requirement implies that an ordinary tortuosity functional J.
must be expressed by an Euler-Langrage function of the form L =L (&,M,,M.), where variations of first order
are taken into account. For an analytic geometry, first order analytic continuity is required L, e C" [éA,ég] .Fora
discretized geometry, first order geometric continuity is required at discrete points L eG' [§A,§B]. However,

in both situations the tortuosity functional can be defined by

s
JAM =L (em, M )de, (2.4)
éA

which is a real-valued functional J, with a definitionset D, .

This functional represents a mapping from a set of tortuosity functions to the real numbers and is expressed by
a definite integral of the mesh and its first derivative.

J, L >J L}, L eD

T

, . {Lr}eR. (2.5)

]r
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For these ordinary replication problems only a set of n equality constraints are relevant, i.e.

s
J.LUl,(f,MT,M;)dézluy,, i=1,..,n, (2.6)
a

where [, are scalar constants indicating properties of the considered segment©.

According to the fundamental lemma of the calculus of variations (Dacorogna, 2004), a necessary condition to

find a particular solution I\_/IT amongst all feasible solutions M_is accomplished if the variation of the tortuosity

functional J, becomes stationary 5{JT} =0 by satisfying the set of simultaneous Euler—Lagrange equations:

L d oL, (2.7)
dM_ d& oM.

where the function L in (2.7) is given by
n,=1
L=L, = ALy, (2.8)
i=1

Note that the extra coefficients 4;, are determined from the side conditions.

2.2.4 Dido’s Problem and the Reversed Dido’s Problem
In the following section (see 2.2.4), some of the key aspects of parameter extraction and reparameterization

are given a theoretical perspective by exploring a classical variational problem known as Dido’s problem and a
variant called the reversed Dido’s problem. After this mathematical problem formulation, an analytic solution is
derived in 2.2.4.3. Thereafter, as an entrance to numerical solution by parametric subdivision, some simple
numerical solutions are briefly defined in 2.2.4.4 and a principle numerical solution is finally presented in
2.2.12.2.

2.2.4.1 Dido’s Problem
In the following section, focus is on the classical variational problem known as Dido’s problem and a variant

called the reversed Dido’s problem. The well-known analytical solution to Dido’s problem and the solution to
the reversed Dido’s problem are important to consider because these solutions serve as the basis for numerical
solutions. The introduced notation for tortuous meshes defined in 2.1.4 is applied on the classical Dido’s
problem as well.

Dido’s problem is an isoperimetric area maximization problem defined in R”. Its tortuous subdomain Q is an
area and its boundary 0Q a tortuous curve C,. The historical formulation is as follows: "In Virgil’s Aeneid,

Queen Dido of Carthage must find the largest area that can be enclosed by a curve of fixed length" (Stone &
Goldbart, 2002). Mathematically, Dido’s problem describes how to maximize the area of a region with a fixed
perimeter. Its formulation as a variational problem is often termed the isoperimetric problem (Ashbaugh &
Benguria, 2010).
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Figure 2.5: The solution to Dido’s area-maximization problem is a half circle

Mathematically, Dido’s variational problem is defined as finding a particular curve Er amongst a set of feasible

curves {CT} which maximizes the area A_ (called the functional) between the curve with fixed arc length L

and the chord C, with fixed chord length Icl .

In a polar (r,H) coordinate system, with the polar axis parallel to the chord and the pole located at the

midpoint of the chord, the planar area A_ to be maximized is given by the functional

5 =]
0

and the constraining arc length by

L. =]£,/r2 (0)+r"(0)do (2.10)

The problem can be solved by calculus of variations and its well-known solution expresses that the extremals

N |-

r*(0)do (2.9)

are represented by curves which form circles with tangents T,,T, perpendicular to the chord at the ends

(A,B) . The extremal curve C, is a half circle O

circ half *

2.2.4.2 The Reversed Dido’s Problem
Now, let Dido’s problem be "reversed" in the sense that the "reversed" task is to find a particular curve C_',

LC

amongst a set of feasible curves {CT} which minimizes the arc-chord tortuosity given by 7 = when the area

Sy

A, is kept fixed at an observed value A, between the curve with arc length L. and the chord C, with the

given length /. .

Furthermore, let the chord ends be bound at the same distance /Cl /2 to its middle point. The problem is

described in rectangular coordinates x =x(t),y =y(t), where t is a parameter. The vector r=r(t) = (x(t),y(t)) is

a position vector representing the points on any feasible curve C, .
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Figure 2.6: The analytic solution to the reversed Dido’s problem is a circular segment

The reversed Dido’s problem is solved analytically (see 2.2.4.3) as well as by a principle numerical solution, see
2.2.12.10.

2.2.4.3 Analytical Solution to the Reversed Dido’s Problem
It is shown in ANNEX 4 that the analytical solution to the reversed Dido’s problem which infact is an ordinary

replication problem represents a circular segment O centered at

circ segm

1 1,

— ), 2.11
I 461) (2.11)

(x,y)=(0,-

where 4 is a constant. The extremals are circular segments as expected. However, note that additional
geometrical information on the ends of the extremals can be extracted from this solution. At the chord ends

(A,B) the curve is specified by its end tangents T,,T;, end normals N,,N;, and embedded end curvatures

(r,,5,)=(x,,x.).

2.24.3.1 Shape Indicators

An additional observation from the analytical solution (2.11) is that geometrically the area A_can be regarded
simply as a descriptive quantity acting as a shape indicator since it implicitly provides information on whether a
solution to the reverse Dido’s problem is almost feasible or far away from being feasible. To simulate a feasible
geometrical shape of a natural object is by nature impossible since nature is unpredictable. However, some
shape indicators of the simulated natural geometry (like the area) can be used to indicate whether the
simulated shape is feasible or not. It is assumed that goodness of replications is measured implicitly by
comparing such indicator values from the replicated meshes with the observed meshes. The differences

between such indicator metrics are the segment faults 58”, Vie[l;na]. In this study, the indicator metrics m;,

used are: area, moments of area, perimeter, and other standard cross-section properties. This implicit
formulation of goodness of replication is the key stone for the formulation of numerical solutions.
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2.2.44  Simple Numerical Solutions
Now, a simple solution to a reversed Dido’s problem is demonstrated by very simple means. From a numerical

point of view, feasible curves {CT} can be simulated by any curve generator that enables random

perturbations and at the same time fulfills the boundary conditions of the problem. Geometrically, such

feasible curves are represented by polyline meshesM_ .

Tortuos Half Circle - Pertubation level- P=0 Tortuos Half Circle - Pertubation level: P=0.02 Tortuos Half Circle - Pertubation level: P=0.1 Tortuos Half Circle - Pertubation level: P=0 5

12 12 12 16
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Figure 2.7: The four generated curves are feasible solutions to the reversed Dido’s problem of finding a curve with a
fixed segment area of /2 and a chord that equals two.

In accordance with the concept of goodness of replication, the curve (left) is a feasible curve which possesses
the smallest tortuosity and a high efficiency of replication. Therefore, it is selected as the extremal, i.e. the
numerical solution. Also, it is noted that it converges towards the analytic half-circle solution. Curve generators
that include random perturbations can sometimes be realized by very simple Monte Carlo simulations of some
iterated parameters of the mesh like the tortuous ellipsoid in 2.1.4.

2.2.4.5 Advanced Numerical Solutions
It must be emphasized that when the concept of goodness of replication is applied on the reversed Dido’s

problem it ensures that the numerical solution, after a number of iterations, converges towards the analytical
solution if the approximating curve®” has a proper parameterization. Aspects of such advanced
parameterizations are defined in the following section.

A novel approach, which intends to include such features, will now be introduced. This novel approach has its
roots in the above problem and has been designed so that it is still able find an answer that converges towards
the analytical solution of the reversed Dido’s problem. Unfortunately, problems including complex geometries
such as tortuous curves, surfaces, and solids require advanced numerical solutions that are often difficult to
control.

2.2.5 Tortuous Mesh Generators
In this paragraph, focus is on the development of a new subdivision based tool to generate complex tortuous

geometries. The strategic approach is to combine classical subdivision theory with a special parameterization
technique based on Frenet vectors. The novel mesh engine presented is called Frenet subdivision and it is
defined as a multi-resolution parametric variant of the classical Catmull-Clark approach. The dedicated purpose

23 For a brief introduction to basic perturbation modeling, see ANNEX 5 where the example-algorithm behind Figure 2.7 is defined. This
simple approximating curve is based on a half circle and its perturbations are created as radial variations. However, controlled
perturbation modeling of more complex geometries requires extended flexibility and generality of the parametric setup.
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for Frenet subdivision is to generate rough geometries that can be manipulated by a set of parameters, which
are measurable and intuitive. Furthermore, it is developed to include perturbation modeling as a tool to model
extreme conditions such as natural abnormalities. When Frenet subdivision is used in conjunction with the
concept of goodness of replication it is finally shown that the novel algorithm iterates a numerical solution to
the reversed Dido’s problem which matches the analytical solution.

Definitions and outline

A tortuous mesh generator is an algorithm which is able to generate tortuous meshes. For 3D geometries the
generators introduced are designed to generate tortuous curves, surfaces or solids. However, most details are
put on the tortuous curve generator since it also forms the basis for the surface and solid generators. One

milestone is to explicitly include orientation vectors 6°Q and curvatures 0*Q. In paragraph 2.2.12, a tortuous
curve generator for edges 0°Q) is defined. Based on this curve generator, paragraph 2.2.13 defines a tortuous
surface generator for faces 0'Q). Finally, in paragraph 2.2.14, a general tortuous volume generator for tortuous
domains €2 such as subdomains Q, species ¥, subclusters €, and clusters X, is introduced. First the

various generators are presented in a deterministic formulation. Subsequently, in 2.3 these mesh generators
are extended to include stochastic simulations as well. This occurs in conjunction with an introduction of the
concept of goodness of imitation 2.4.3. The above geometry generators have a common theoretical basis,
which is described in this sub-section. Key elements are tortuosity poles, bi-poles and bi-meshes. In the
following subsection the parameterization aspects are described.

2.2.6  Tortuosity Poles

Figure 2.8: Random tortuosity pole located at the origin V= (0, 0, 0) with pole valence equaling two
Let the tortuous boundary O0€ at a location of a tortuous mesh be defined from vector elements
8392{[V,T,N,B]T} and scalar elements, i.e. curvatures 9‘Q o {X} . The superset containing such vector and

scalar elements is called a tortuosity pole P.. A tortuosity pole is therefore a hybrid primitive composed of

boundary elements of different order.
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P ;{839,649} (2.12)

Note that the composition of vector elements 0*Q of a tortuosity pole, i.e. the quadruple consisting of one
location vector and three orientation vectors, is identical to the well-known composition of the Darboux
trihedron (or triedre) {D}=[V T t u]Tfor embedded curves, see (1.5). However, the orientation of a

tortuosity pole is not defined from the unit normal and the tangent normal as for Darboux frames but uses the
Frenet principal normal vector and the Frenet binormal vector instead. Furthermore, a tortuosity pole does not
require all its elements to be present. Algorithmically, a tortuosity pole is simply a dynamic information
container which stores one location vector and one or more orientation vectors from a finite number of Frenet
frames. Also, their natural equation values (conventional curvature and torsion) taken at that point are stored.
The number of Frenet frames that are active during a meshing operation at a current level of refinement is

called the pole valence ny., atthat level.

At minimum, a tortuosity pole must contain one location vector, i.e. a vertex and at least one orientation
vector, i.e. a Frenet unit vector. The minimum pole valence is therefore one. The introduced curvature vector

X' :[Kz K, 71] is formed from the segment curvature «, €5'Q) (see ANNEX 6.2) and the two generalized
curvatures y; €6'Q), j=1,2 derived at the pole vertex for the particular Frenet frame. In the following the
notations x, €y,, kK, =y, and 7,=y, are in use for segment curvature, conventional curvature and

conventional torsion respectively. The segment curvature supplements the two generalized curvatures
Z €6'Q, j=1,2 and is used for segment based extrapolation of a new pole. Details on the segment curvature

can be found in ANNEX 6.1.

The three curvatures K, K/ Tp, which form the vector ¥, are called curvature coordinates and are assumed to

be given. However, if the segment curvature is not explicitly defined it is estimated (see ANNEX 6.1). In the
following discussion, all coordinates encompassed in V,T,N,B,x for a tortuosity pole are therefore referred to
simply as the pole coordinates. In matrix notation, a tortuosity pole that includes only one Frenet frame, i.e.

N =1 is conveniently organized into a five-by-three coordinate array.

P =|NFIT (2.13)
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Frame index

In general, the pole valence of a tortuosity pole is greater than one. The listing number in which a frame

appears in the frame list is called its frame index f, e[l, n{F}].

Simplest form

2yl

08
06
~ 04

02

o
0702

Figure 2.9: Random tortuosity poles in their simplest form with valence=1, 2, 3 (Left, Middle, Right)

When a tortuosity pole is solely defined from its pole vertex V and Frenet tangents T it is said to be in its
simplest form.

However, still more than one tangent can be included in the pole. In Figure 2.9 three random tortuosity poles
with three different pole valences are illustrated.

2.2.7 Bi-Poles
A constellation of two tortuosity &

poles P_, and P_, is called a bi- Cflﬁ
pole. A master bi-pole (k, =0) is )

symbolized as POVAB ={P§A,P§B} A

T

bi-pole is an oriented

e
constellation since any %

orientation vector for a Frenet
frame TYN"B c¢5°Q bound

to a tortuosity bi-pole is said to v,&

be “negatively” oriented if its
scalar product with the chord

direction vector e, is negative. Figure 2.10: Ordinary bi-pole (left). Bi-pole in its simplest form (right)
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2271 Bi-pole directionality
A bi-pole direction vector dZ =(VB —VA) , see (1.9), controls the positive direction of a local coordinate axis &,

along the segment chord AB by a unit chord vector e, defined as:

d
e, =+ (2.14)

el

Any vector related to a bi-pole is said to be positively directed if its inner product with the chord vector is not
negative.

Algorithmically, this positiveness is expressed from a number n,y For an arbitrary Frenet vector, el s

defined as

- (2.15)

EXAMPLE 1 Positive bi-pole tangent

Let a chord unit vector be given as e, =[O 0 1] and a Frenet tangent at a bi-pole EndEnd as T;[F} = [\/5/2 0 \/5/2]

. Then the tangent T;F} is said to possess positiveness relative to the bi-pole since the inner product <eZ,T§F}>:\/E/2

is a non-negative number.

2.2.8 Bi-Meshes
Definition: A constellation object formed solely by a master bi-pole P:AB Z{PTO,A'PTO,B} and two frame indices

{]‘T‘?A,ffg} is called a master bi-pole mesh M?, 5 {PTOIAB,f:A,fT(fB} , or simply a master bi-mesh. Furthermore, an
iterated bi-mesh M, > {Pf’;‘s,j’rf;‘,frfg} is the outcome of a subdivision process and defined at a specific level of

refinementk, .

In FE terminology, such a bi-mesh constitutes a two-noded element where the poles P’, P’, are said to be
located at the “BegEnd” A and the “EndEnd” B respectively. From a subdivision point of view bi-meshes serve

as the source to iterate new tortuosity poles, i.e. M';;’l - Prk; , Vk_.

This iteration process and its requirement for adjustment of sign of tangents is described hereafter.
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2.2.8.1 Bi-mesh convexivity
The following bi-meshes are assumed to be locally end convexive. This means that their end normals always

show positiveness relative to the bi-mesh.

> = r<—el,N§f?> =+1. (2.16)

However, when applying the Frenet-Serret formulas on tortuosity bi-mesh based extrapolation, see ANNEX 7,
the Frenet frames are adjusted so the orientation tangents are also positive.

This means that any tangent is directed so it has a positive projection on the bi-mesh chord. The adjustments
are defined as:

= {r} — (F}
TA - r<e,,T,iF)> A TB = r<—eZ,T,§F>>TB (217)
NA = NAF} ’ NB = NBF} (2.18)
B, =T,xN,, B, =T;xNg, (2.19)

These adjusted vectors are called bi-mesh orientation vectors. In Figure 2.9 the illustrated bi-mesh is identical
to its corresponding bi-mesh since its tangent and normal vectors need no adjustments.

The illustration (left) represents a general bi-mesh whereas the illustration (right) represents a bi-mesh in its
simplest form.

2.28.2 Frame formation from a rectifying vector
In situations where a full frame with normal and binormals is required, it can alternatively be formed from its

simplest form by a rectifying vector d. as

N=-(T><dc)/||(Tde)

, B =TxN (2.20)

Note that the rectifying vector used must not be parallel to the tangent.
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2.2.9  The Recurrence Relation

In this paragraph a parametric recurrence relation algorithm which is able to

iterate tortuous bi-meshes My in R’ from master bi-meshes M; in R’ is

introduced. In general, this algorithm is able to generate tortuous meshes which
model curves, surfaces, solids or mixed geometries when dedicated subdivision

rules are applied. However, the simplest bi-mesh variant which is described first in
this paragraph generates tortuous curves only.

Mathematically, the algorithm having as central part the following recurrence relation:

My =SeMe (2.21)

Toi  Thi

The notation used in (2.21) is taken and combined from (Warren & Schaefer, 2004) and (Zorin, 2006).

Specifically, in this relation the iterations are initiated from a master bi-mesh bev with adjusted bi-mesh

vectors, see (2.17) to(2.19). The master mesh is assumed to be parametrically generated from its master
parameters before the iteration process (2.21) is started.

The iterations in (2.21) are said to “run” over k_ =1,...,n_and to “terminate” at the limit level of refinement n_.

Recursively, it predicts new tortuosity bi-poles from preceding tortuosity bi-meshes and adjusts them into bi-
meshes. At each recursion the prediction of new tortuosity poles is based on a sequence of extrapolations,
interpolations and pole translations which are parametrically controlled.

The subdivision operator S';b’ for bi-meshes controls the iterations at any level of refinement and each mesh
M';; at any intermediate level k, =1,...,, n, —1 represents a new set of tortuosity poles, bi-poles and bi-meshes.

In FE terminology the limit mesh M';; for k. =n_ is a mesh which includes an ordered set of two-noded edge

elements formed by an ordered sequence of vertices V. However, it will be shown that a limit mesh M’;;_ also

can be designed to include TNB triples and curvatures X .

Furthermore it will be shown that in terms of geometric continuity a limit mesh M in general possess explicit

G' continuity and asymptotically G* continuity.

The recurrence relation (2.21) is defined to form a multiresolution parameteric approach and operationalized
by a new subdivision technique which is built on systematic parameterization. Therefore, the systematic
parameterization is described prior to the actual subdivision approach.
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2.2.10 Parameterization
The set of parameters that control the recurrence relation (2.21) are, as a whole, called natural parameters. In

this subsection all parametrical details for these natural parameters are provided. First, some general
parameterization aspects are introduced followed by dedicated parameterization of tortuosity pole based
geometries.

To represent the degrees of freedom of any natural geometry, a set of independent parametric quantities g,
called natural parameters, are now going to be defined in detail. They define (in full or in part) a
multiresolution mesh that is able to model the object with the same underlying stochastic nature as observed

from the natural geometry itself since they are extracted from observation meshes M, of the natural object.

S

Theoretically, natural parameters are considered generalized coordinates.”® Their observed values and
statistical parameters are assumed to be stored in a parametric bank.

Master parameters and iterated parameters

In (2.21), the subset of natural parameters used to control the master bi-meshes be‘ are called master
parameters q°. The subset used to control the iterated bi-meshes M';; are called iterated parameters q“.

Natural parameters g are formed by master parameters g° and iterated parameters g respectively.
q>{q°,q"} (2.22)

Master parameters q° are discussed in detail in paragraph 2.2.10.1 and iterated parameters 9" in2.2.10.3.To
allow for customized perturbation modeling, additional sets of modification parameters q§ for master

parameters and a set qi’ for iteration parameters are included too. These additional parameters are called

perturbation parameters and are intended for deterministic or pseudo-stochastic modeling only.

Since natural parameters are an indirect representation of the model they can be regarded as a parametric
template of the object. However, the interpretation of such a parametric template is henceforth included in
what is understood as a parametric bi-mesh.

f; is first used to

During the iteration of a tortuous bi-mesh, i.e. M';; =S'§;M'§;_1, the subdivision operator S
control the master mesh bei through master parameters q°. Thereafter, at subsequent levels of refinement

k. =1,...,n_ it controls the iterated meshes Mi; by iterated parameters g* .

To provide an immediate overview of master parameters qo, iterated parameters qk’ , and perturbation

parameters, a list is presented in Table 2.2.

** In the classical meaning as they were originally introduced in Lagrangian mechanics by Joseph-Louis Lagrange in 1788
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Table 2.2: Natural parameters are divided into master, iterated and perturbation parameters

Parametric . A
. Parametric Sub-Classes Description
Main-Classes
Name Symbol Name Symbol
Used to to control the size through a transformation
Size 0 . .
q, parameters oy of observation vertices V,, . €M, from global
Master q° coordinates to centered dimensionless coordinates.
parameters - . .
Landmark 0 Used to to control location and orientation of master
S n
.% 3 parameters G poles P° in bounding coordinates &,&), & .
[
2 £ Used to control the locations for iterated tortuosity
£ 5 Location qs oles P* after local axis &, £, £5 by translations
& o parameters d P : 1752 153 DY
Iterated qk, from one location C to another C'.
parameters ) . Used to define the extrapolation of Frenet frames
k Orientation k, .
'IN parameters q, from segment ends. A subsequent non-parametric
bi-mesh interpolation predicts a new tortuosity pole.

The following sections describe master parameters and iterated parameters in two separate paragraphs.

2.2.10.1  Master parameters
Parameterization of bi-meshes Mfbi is the process of redefining the coordinates of the tortuosity poles from a

bi-mesh mesh M° a{PﬁA,P,OIB,ffA,fT‘fB} into a form that is expressible by master parameter q°. Here, this

7,bi

parameterization is performed by reference, i.e. all tortuosity pole elements are defined relative to a length

reference Iqu. Three types of master parameters are used: size parameters (see 2.2.10.2.1), landmark

parameters (see 2.2.10.2.2) and master perturbation parameters (see 2.2.10.2.3).

Size parameters qHOQ\

Tortuous domain

Bounding box

Landmark parameters q?

Tortuous domain Bounding & Location Parameters Orientation Parameters

(Centered & Volume Normalized)

(Vertices) (Tangents, Normals , &
Curvatures)

Figure 2.11: Parameterization by size and landmark parameters
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2.2.10.1.1  Upper Semi-range
A simple length reference called the upper semi range is used to achieve non-dimensional references for

bounding box based parameterization. This semi range is a nominal length value defined to be bigger than the
maximum semi-range of the bounding box found amongst all sample objects, see Figure 2.11. This nominal

value, called the upper bounding semi-range r° , is loosely defined by claiming that the probability of

upp /

exceeding it for any box dimension in any extended sample is very small, i.e.

Pr[maxrb? >ru(:)p]—>0 , Vie{l,., g}, (2.23)

Where r. is the observed maximum bounding box dimension for sample object i .

2.2.10.2  Natural parameter range
The upper semi-range is a simple way to let the modeler define the realization limits for natural parameters. In

this presentation, natural parameters are defined within one-sided positive ranges qe[O,l] or double-sided

ranges g e[-1,1].

NOTE Technically, the modeler can define the upper semi-range by an “n-sigma” definition or as a nominal value. This
means that the distributions for natural parameters in principle are finite. However, if the variation of a natural parameter is modeled
by an infinite distribution, normalization by upper semi range might exclude extreme value realizations not present in the sample.
Therefore, such extreme values resulting from natural abnormalities are intended to be modeled by a separate set of parameters called
perturbation parameters. These perturbation parameters are allowed to include values beyond the natural limits through controlled
incrementations. In this presentation such perturbation parameters are included in synthetic phantom generations.

2.2.10.2.1  Size parameters
Size parameters q‘h are introduced to normalize and define the overall size of domain objects (cluster,

subcluster, object and subdomain). Size parameters form a sub-set of master parameters, i.e. g° Q{q\\%\\} and

they might be non-linearly related to the shape of the geometry. However, size and shape is assumed to be
uncorrelated.

Size normalization parameters

Size normalization parameters are used to normalize vertex coordinates of observation meshes by first

integrals, i.e. [dQ.
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EXAMPLE 2 The well-known first integrals of volume V/, cross-section area A and arc length L are:

v=[dQ,=[dv(£,&,8) A=[dQ,=[dAE,&) L=[dQ =[ds(&) (2.24)

Here, and in the following example, such first integrals are assumed to represents regular geometrical properties with

. . . 3 . . .
non-negative values. In general, observation meshes in R’ are size normalized by volume. Its volume parameter is
therefore defined as

Gx,;
0 _ Ji . .
Aoy, =vis + JElL23), Vi, (2.25)

i

where Gx| is the j™ global coordinate of a vertex from observation mesh Mops.i ie{l, ey nobs} with volume V.. The

. . . . . . 2 1 .
volume parameter is a simple coordinate scaling factor. However, for observation meshes in R® or R" the size
parameterization can be based on area or arc length references respectively.

GX. . Gx, .

0 ij 0 ij .
0 =, gty =—tL, Vi (2.26)

I, A e, L

This size normalization transfers the geometry from data coordinates in observation space ij,j=1,2,3 into

dimensionless bounding coordinates x].,j =1,2,3 in parametric space. When curvatures are in use, it must be noted that

they are not invariant to isometric size scaling and their physical dimension is Lt

EXAMPLE 3 Curvatures are reversely scaled.

If a curvature x is not extracted from a size normalized mesh but from the global mesh then its value in size normalized
coordinates can be found from its global coordinates as

K
K — _gobal (2.27)

normalized — 0

I
Dimension parameters

After size normalization the dimensions of the bounding box are usually defined by the half of its length,

breadth and height. These dimension parameters are symbolized as q‘ﬁl“bl,q‘ﬁlubz,q‘%um respectively, and

represent simple proportions of the actual bounding dimensions. The bounding box and dimension parameters
are illustrated in Figure 2.11. Dimension parameters indicate locale size of bounding dimension in contrast to
size parameters, which indicate global size scaling in terms of volume. Sometimes natural geometries are
characterized by their dimensions. This means that apart from indicating local dimension, these parameters are
also candidates to be used for classification.

In conclusion, it must be emphasized that dimension parameters are simple scaling factors that, in principle,
are defined in size-normalized rectangular coordinates xj,je{1,2,3} . Of course, dimension parameters obtain

the same values if they are determined from global coordinates instead.
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2.2.10.2.2  Landmark parameters
Landmark parameters g° are introduced to control the geometric constellation of master poles P,0 from a

finite number of degrees of freedom?. They represent a sub-set of the master parameters i.e. g° > {qr?} . In this

approach, it is assumed that expert knowledge is used to identify characteristic geometric quantities such as
characteristic vertices, Frenet vectors, and curvatures from a set of observation meshes. If the same set of
characteristics from every single observation mesh in the sample can be identified, then such characteristics
are called landmarks.

NOTE In the introduction landmarks from iris scanning, finger prints, face recognition and more are mentioned. However,
in relation to natural parameters, the identification of landmarks in some situations is solely defined from the convex hull of the natural
geometry or from its bounding box. In such situations it is possible to identify landmarks automatically by extreme value identification
relative to the convex hull or bounding vertices. Examples of such are landmarks identified by tortuosity poles from the maximum
distance to the convex hull and poles where the bounding box is constrained to a normal or poles with extreme curvature or torsion.

Master location parameters

Master location parameters qf are landmarks that are used to parameterize vertices located on the edge of
the bounding box, or those landmarks inside the bounding box. These parameters are defined in rectangular

bounding coordinates x;,j€{1,2,3} as
gt ==L, Vi, je{1,2,3}, a7 >{a}} , (2.28)

Where r,,, is the upper semi-range. The landmark bounding and location parameters are said to define the

vertices of a master mesh by a set of local rectangular dimensionless coordinates {ff,éf,ﬁf}, referred to as

bounding coordinates.

Landmark orientation parameters

In situations where orientation vectors such as tangents, normals, and binormals are useful for
parameterization, they can be defined from angular coordinates. Since only unit orientation vectors are

considered here, they are defined by spherical coordinates 06{1,3,(/)}. Therefore, these coordinates can be

normalized relative to an upper angle semi range

9, =—— , Vi, as{a,}, Oel-x, 7l (2.29)

% It is assumed above that landmark parameters are extracted after the origin of the size normalized coordinates is translated to the
bounding centroid and the standard atan2 function is used for the angle determination. Hereby the mean values of the orientation
parameters can be restricted to the range from minus one to plus one.
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0 . . . . . .
where q, are landmark orientation parameters, and 1, ,,, is the upper angular semi range which is set to

rH,upp =7

Figure 2.12: Spherical coordinates for orientation vectors

Since orientation is independent of the radial component (see Figure 2.12), only two angle coordinates {3,(p}

are needed for parameterization of tangents, normals, and binormals.

x =rsin(9)cos(¢) (2.30)
y =rsin($)sin(¢) (2.31)
z=rcos(9) (2.32)

NOTE To supplement orientation vectors, curvature and torsion are sometimes relevant as orientation measures. Like

orientation vectors, curvature and torsion are also candidates for parameterization by upper ranges. However, in this presentation
curvature and torsion are kept as non-normalized parameters derived from osculated circle fitting of embedded curves of the
observation mesh.

2.2.10.2.3  Master perturbations

A master perturbation g is a modification of one, or more, size or landmark parameters. Master parameters
are assumed to be modified incrementally as a whole, in groups, or individually. Size normalization and
dimension parameters are incremented by size perturbation parameters. Modifications of landmark
parameters are performed as translations or rotations for location and orientation parameters respectively. In
general, master perturbations are an alternative subset used to customize the master parameters.

Master perturbations allow the modeler to control the master shape and abnormality modeling. It also opens
for the opportunity to model time dependent shape changes included in lifecycles, kinematics, and more. In
this study, the master parameters are used as customizable design parameters.
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2.2.10.2.4

OVERVIEW of Master Parameters

Table 2.3: Master Parameters - Overview

Parameter Classification Parameter Parameter
Identification Description
Name Symbol Name Symbol k.=0
L 0 Controls the size normalization of
length normalization parameter CI'HQHL o 1
size geometries in IR™ by a length reference
normalization 0 area normalization parameter qO Controls the size normalization of
parameters 2l P Iof geometries in R? by an area reference
S o 0 Controls the size normalization of
I volume normalization parameter CIHQHV L 3
geometries in R’ by a volume reference
z first di . ¢ qo Controls the relative bounding
E Irst dimension parameter 2l dimension in the first direction
dimension qO second dimension parameter qo Controls the relative bounding
parameters 2l P 22 dimension in the second direction
- . 0 Controls the relative bounding
third dimension parameter e, dimension in the third direction
first master qo Controls the location of pole vertices in
landmark location parameter a the first axis direction
L location qo second master qo Controls the location of pole vertices in
A parameters ¢ location parameter & the second axis direction
'; third master qo Controls the location of pole vertices in
M orientation parameter & the third axis direction
A first Controls the orientation of free frame
R . . qy tangents, normals and binormals in the
landmark master orientation parameter 1 . L
K orientation @ first angle direction
S parameters 0 second Controls the orientation of free frame
. . q‘; tangents, normals and binormals in the
master orientation parameter 2 second angle direction
. . 0 o .
p size perturbation parameters Qjacy Controls the customization of size
E location perturbation parameters q° Controls the customization of the
R landmark P P 45| Jocation of coordinates
T perturbation qg
A
U parameters orientation perturbation Controls the customization in
R : q. orientation of tangent, normal,
parameters AF ) .
B. binormal and curvature coordinates

Table 2.3 gives an overview of the master parameters and their subsets.
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2.2.10.3  Iterated parameters
The iterated parameters qk’ will now be defined as the second subset of the natural parameters, i.e.
g €q, k_=1,.., n_. As for master parameters, iterated parameters q“ are used to control the location and

orientation of the geometry. However, iterated parameters in particular, are designed to control the interior
shape spanned by the master poles.

The parameterization of a tortuos curve which is spanned and iterated from a master bi-mesh is now
introduced to include up to nine different parameters. Three of theses parameters, which are designed to

. k . . . ..
control the location q., are called iterated location parameters. The six remaining parameters qu, are called

iterated orientation parameters. The six orientation parameters qﬁf operate with three parameters at each
end of the bi-mesh. More specifically, they are associated with a particular frame index of a tortuosity pole. For
a bi-mesh they operate at the “begin end” with the frame index fgegena , and at the “end end” with the frame

index fEndEnd-

2.2.10.3.1  Iterated location parameters
The location of a new tortuosity pole found from a bi-mesh subdivision is assumed to be controlled by the

subdivision operator. However, often it is relevant to modify the pole vertices using a set of location
parameters. Here, these location parameters, which define simple pole translations, are modeled by a set q;"

of up to three parameters for each level of refinement. More details on parametric location modification are
given in ANNEX 11. The iterated location parameters are organized as

k ke
qgr :|:q'f1 qu qggil ’ qE[—l,l], nDOF:3 (233)

Formally, this set of individual parameters is termed iterated location parameters, since they specify the
change in location coordinates of a tortuosity pole. However, the idea is to define the iterated location
parameters as a control set for the entire iteration process. This is obtained by defining a degrees of freedom
array to control the on/off impact at each level of refinement.

[ z1 1 1]
§1Dor §2DOF §3DOF
2 2 2
§1Dor §2DOF §3DOF

Spor = (2.34)

k k k
§1DTOF é:zoror 53[:0F

o G S |

The individual degrees of freedom values are represented as Booleans. Furthermore, to accomplish individual
pole translations, each new tortuosity pole should be assigned with its individual length reference /, , see

ANNEX 11.
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2.2.10.3.2  Iterated orientation parameters
Iterated orientation parameters are designed to control the orientation of the TNB frame of a new tortuosity

pole.

These orientation parameters are formed as a set of up to six iterated parameters qﬁ’ per bi-mesh, as defined

in detail in ANNEX 9.

This six-tuple of parameters is conveniently organized into an array q}kf , formed by a concatenation of two 3x1

arrays (one from each pole) of a bi-mesh with “TripleTriple” numbers of degrees of freedom.

k. ke
qI}T z[qu qu] =|:qTA an, 9., s, O, qu} » q€l0,1], Ny =6 (2.35)

The iterated orientation parameters indirectly control the extrapolation of new control-frames during a bi-
mesh subdivision process.

In summary, the parameters for the tangent, the curvature and the torsion influence the orientation of the
new subdivided poles.

The higher the values for these parameters, the more impact the iterated orientation parameters have on the
final TNB orientation. On the contrary, if the orientation parameters are all zero, they have no TNB impact on
the orientation of the new pole.

2.2.10.3.3  Iterated perturbations
As for iterated location parameters, an additional set of orientation perturbation parameters qZ’ can be

defined at each level of refinement to provide the modeler with tools for modeling synthetic phantoms.

Technically, this process is often identical to location modeling. However, modelers in perturbation modeling
are free to design arbitrary parameter values even outside the range defined in (2.33).
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2.2.10.3.4 OVERVIEW

An overview of the influence of iterated location and orientation parameters on new iterated subdivision poles
is given in the following table.

Table 2.4: Iterated Parameters

Parameter Parameter Parameter
Classification Identification Description
Name Symbol Name Symbol k. >1
S . k. Controls the translation of an iterated pole
First iterated location parameter q. . . A P
Iterated a in the first local axis direction
location k, Second iterated location K, Controls the translation of an iterated pole
q: q: . S
parameters parameter 2 in the second local axis direction
Third iterated location qk, Controls the translation of an iterated pole
parameters & in the third local axis direction

First iterated orientation qk, qk, Controls the influence from the segment
parameter .77 | curvature from the ends of a bi-mesh chord
. . . Controls the influence from the
Iterated Second iterated orientation ko k. .
. . k an, - An conventional curvature from the ends of a
orientation q; parameter AT e .
parameters bi-mesh chord
s . . Controls the influence from the
Third iterated orientation ko ke . . .
ds’ ,qg conventional torsion from the ends of a bi-
parameter A" Ve
mesh chord
lterated Iterated location perturbation qk, Controls the customized perturbation of the
] x parameters as iterated location parameters
perturbation qy
parameters Iterated orientation perturbation qk, Controls the customized perturbation of the
parameters Af iterated orientation parameters
COMMENTS The three-tuple of location parameters represented by the array q, = [q‘§1 /4,4, J

simply translates the tortuosity pole into a new location in local segment coordinates. This is almost identical to
“the local frame at a vertex” introduced by (Tobler et al., 2002). In the original work by (Overveld, 1990), a

parameter set including four parameters {a,b,a,ﬂ} for the cubic Bezier curve was introduced. The Overveld
parameter b can be compared with q., - Usually, the parameter q., is referred to as the control for normal
translations and it controls translations directed by the normal. The three-tuple of orientation parameters
q; =(qT,qN,qB) at each end controls the influence on the shape from the curvature coordinates included in the

tortuosity poles at these ends. The first orientation parameter g, controls how much the segment curvature
influences the shape in the region between the central part and one of the ends. The Overveld parameter a is

comparable with g;. The second orientation parameter g, controls the influence of the conventional

curvature close to that end. The third parameter g, controls the influence from the conventional torsion near

that end. As for master perturbations, the iterated perturbation parameters qZ’ are introduced to

accommodate life-cylce modeling and other time or stage dependent phenomena.
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2.2.11 Frenet Subdivision

In this paragraph a simple geometric approach for the generation of a new iterated tortuosity pole PTij is
introduced. First, a geometric construction is introduced to give a simple overview of the vector compositions.
A detailed description of the Frenet subdivision algorithm follows.

2.2.11.1  Geometric Construction of Frenet Subdivision
A special property of Frenet subdivision is that it can be defined from a simple vector construction where a new

tortuosity pole “C” at the level of refinement k_ is defined from two existing tortuosity poles “A” and “B” at

the previous level of refinement k_ —1.

o From each end “A” and “B” two new control poles “A1”

and “B1” are extrapolated with respect to the torsion and

B, curvature at these ends. Then, from these new poles two
:7732 more control poles “A2” and “B2” are extrapolated from
/ the curvatures only. Finally, two other control poles “A3”
e and “B3” are extrapolated from the tangents at “A2” and
S “B2” respectively. A chord between “A3” and “B3” is then
constructed and the orientation TNB¢ of a new tortuosity

’//Al\ 5 pole at “C” is now defined from the direction of the chord
‘Tlf,;NA x and a “rectifying vector” denoted “d” using the cross

products.
Figure 2.13: Geometric Construction of a new tortuosity pole at “C” between “A” and “B”

Finally, the location vertex V. is found as the intersection between the plane through the center of the bi-mesh
chord “A1B1” and the new chord “A3B3”. This pole location V. can then be further translated into a new
position C’ if desired. From a parametric perspective, the TNB extrapolations are controlled by orientation
parameters, whereas the TNB translations are controlled by location parameters. After this standardized
iteration process both orientation and location can be further customized by perturbation parameters.

2.2.11.2  Algorithmic Construction of Frenet Subdivision

Let it be assumed that a bi-mesh Mt;'l is given at a “previous” level of refinement k_—1 with chord AB. Then,

a new tortuosity pole P*_, at a central location C between the chord-planes through A and B, is formed by

7,C 7’

three successive parametric constructions. This enables multiresolution subdivision and ensures approximate
G’ continuity in the limit. Therefore, the multiresolution subdivision which is going to be defined is a natural
descendant of the approach introduced by (Tobler et al., 2002).

However, the approach introduced here includes Frenet-Serret frames explicitly. Infact, this justifies the name
Frenet-Serret subdivision which can be even further shortened to “Frenet subdivision”.

In brief, the methodic steps which are going to be defined in details in the following can be outlined as:
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Multiresolution parametric Frenet subdivision M = S*M*™

0
is initiated from a master mesh MT and at each step kT >1 itisiterated by
extrapolations | followedby | interpolations | andfinalizedby | pole translations.

= After N_steps this results in a new limit mesh M:’ with asymptotic G~ continuity.

=>  This limit mesh can be used for FEA or transformed into a graphical representation called a phantom.

NOTE In this setup Srb’_ is a multiresolution parameteric subdivision operator, which algorithmically controls the

subdivision process at every level.

Multiresolution aspects

In multiresolution iterations, the iterated parameters are applied with different settings at relevant levels of
refinement. Multiresolution is in general non-homogenous. However, in special situations (which are in general
unlikely for natural geometries) the same settings for iterated parameters are applied at all levels of
refinement. Such homogenous multiresolution settings are especially usefull in synthetic modeling.

Extrapolations

From each end of the chord AB a sequence of parametric extrapolations A —>A —A, B —>B —B,

controlled by the iterated orientation parameters [qg;,qy,d, ]I [G:,0x.9s ]Z , define two new control vertices

’
A

Vv

A3/

V,; , which then form a new chord A,B, . See ANNEX 9 for more details on extrapolations.

Interpolations

The new chord A,B,, and a rectifying direction vector d., control the interpolation of a new central tortuosity

pole Pk, =[V.T.NB X, ]T. Its subdivision vertex V., is defined as the intersection between the normal plane

through V, and A;B, . The normal and binormal are defined as N. =—T, xd. —B. =T. xN., where the vector

d. lies in the rectifying plane and is called the rectifying vector. To define the orientation vectors it must be a

real valued vector non-parallel to the tangent. Unless actual information on the curvatures is available all

curvature coordinates of X. are set equal to zero, i.e. x? :[O 0 O]T, k =1,..,n_—1. However, the two

segment curvatures at the limit level of refinement (I%;;, l?;;) are estimated from osculating circles at any
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level. At the limit level of refinement k =n_, the embedded curvature is estimated as their average i.e.

;
Xy = [0 K OJ , K =0.5(k) +x7 ). See ANNEX 10 for further details on subdivision pole interpolation.

Pole translations

Finally, the interpolated pole Prkjc at C is translated into a new location C’. This translation is controlled by

k. .
iterated location parameters [qﬁl 4, ,qé] at the current level of refinement k. =1,...,n_.

Limit iterations

When pole translations are avoided at the last levels of refinement, i.e.
q;f :qg :q’g =0; k, €(..,n,—3,n,—2,n_—1,n], the estimated limit curvature K becomes a better
estimate of the target curvature. The estimated pole triple T.N.B_ also becomes a better estimate of the target

Frenet frame T.'NI'BY” when the number of non-perturbed limit-iterations increases

n n, K+ K
lim (TCNCBC)’—>(TC{F}N{CF}B{CF}) , lim M—mﬁr (2.36)

n, —w n, —o0

n

The corresponding center of curvature V,, is defined from the second local base vector e, as

) ch —VZ/2H>O (2.37)

T

1 V.-V
V =V __enf , ki >0, e"f :C—m
K C n, [ T = V V

K c z/2

In a situation where the curvature is zero, or the central vertex lies on the chord, i.e. ”VC —VZ/ZH =0, the second
base vector e is defined from a prediction rule based on the control poles {PT,A3'P1,B3} or, alternatively, it is

generated as a random unit vector not parallel to e .

Graphical representations

The limit mesh can be used for FEA or transformed into an appropriate® graphical representation.

%% |n this presentation, curves are plotted by the the MATLAB® graphics objects 1ine or by arrows. Later, triangulated surface plots are
handled by the MATLAB® patch object. Future volumetric displays are planned to be handled by a combination of these two graphics
objects or by the dedicated MATLAB® s1ice object.
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Construction of subdivision bi-meshes
In this paragraph, details for algorithmic implementation of the Frenet subdivision approach are given.

Algorithmically, at any recurrence level k_=1,...,n_, Frenet subdivision is defined by a non-linear mapping

P,kjc <—{Pf;;1,P,kygl} as described in Table 6.1 below. The input is assumed to be initiated from a master bi-mesh

7T, 7

be_ 3{P2,PZ}, and the minimum input includes at least one vertex V and one tangent T at each of the two
tortuosity poles {P;l ,P,‘:} as well as an optional rectifying vector d.. Furthermore, it is assumed that the chord

unit vector e, , and the first local axis e, , coincide i.e. e, =e . The local (&.,5,,&,)-frame forms an

orthonormal right handed base i.e. e, =e, xe, .

However, this local frame is first defined after the central interpolation vertex V. is found, and before pole
translations are applied. The rectifying vector d. is used to define the central orientation triple T.N.B. .
However, if the rectifying vector d. it is not defined it can be estimated at the limit level of refinement as

nT ~ n‘! nT
d™. ~—e; xe;,see (2.37).

The theoretical background is given in ANNEX 5 - ANNEX 9. Within these annexes, details are given for the nine
prediction functions included in parametric Frenet subdivision.

An overview of these nine prediction functions are given here:

Prediction functions Parametric Scope
Three extrapolation prediction functions: 1. fFN 3 fFa (qg’ ) ) %FN (qN) , %FT (qT) see2.2.11.3
Three interpolation prediction functions: f, f, f, Non-parametric See2.2.11.4

Three pole translation prediction functions: f, f, %Hg le (qg1 ) , %Hz (qu ), st (qé) See 2.2.11.5

Briefly summarized, the extrapolation functions %F , are developed by applying the mean value theorem on the
Frenet formulas. The extrapolation functions are used to generate three control poles from each end of a bi-

mesh.

The interpolation functions fG, are defined by geometrical averaging of vectors and used to define orientation

and location of a new iterated tortuosity pole.

The pole translations %H, are defined as simple orthogonal translations of the new pole to obtain a new
location. The extrapolation and perturbation prediction functions are controlled by iterated parameters
whereas the interpolation is non-parametric.
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To initiate a Frenet subdivision process a master bi-mesh is required.

“EndEnd”

“BegEnd”

Figure 2.14: Initiation of a parametric bi-mesh subdivision

Figure 2.14 and Table 2.5 illustrate the initiation of a bi-mesh subdivision process, i.e. k. =0.

Note that a bi-mesh is defined by two particular frame indices of the two tortuosity poles respectively. Also
note that curvature and torsion are explicitely included in the two selected frames at the BegEnd and at the
EndEnd respectively.

Table 2.5: Bi-mesh constellation for a tortuous curve

Chord vector

Edge | Vertex | Frenet vectors | Curvatures Bi-mesh Chord
. VA TA,llNA,llBA,l XA,l « X B « B - eo :M
j=1 T CANAAS N ) BT B T
VB TB,l ’ NB,l ’ BB,l xB,l

In the following paragraphs extrapolations, interpolations, and pole translations are defined one by one.
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2.2.11.3  Extrapolations

.
Let a tortuosity master pole at a node A be given as PTij =[VA T,N,B, X, ] . A prediction rule that

T
determines a new tortuosity pole PfjAn =[VA"TA"NA"BA")(AJ in the neighborhood of A, is called a Frenet

extrapolation at the k_ level of refinement. When a maximum of three successive extrapolations are
performed, i.e. n<3, the successive extrapolation is called near-field. Otherwise, when n>3, it is called a far-
field extrapolation. If the parameterization is based directly on the arc length function, it is called direct Frenet
extrapolation. If it is based on quantities that indirectly define the arc length function, then it is called Frenet
extrapolation by reference.

Extrapolations defined in this paragraph for bi-meshes are all near-field extrapolations and are based on the six
parameters g, ,q; ,qy,.dy, »9s, 9, Previously defined in An overview of the influence of iterated location and

orientation parameters on new iterated subdivision poles is given in the following table.

Table 2.4. Furthermore, every single parameterization is applied by reference from one of three length

references /q N
B,A

s ’la .- The general background theory for Frenet extrapolation and the applied prediction

ar

functions is given in ANNEX 9.

A ~

In the approach that follows, Frenet extrapolations are represented by three prediction functions %FB fFN fFT .

They sequentially generate three new tortuosity bi-mesh estimates (PTM,PTM),(PTM,PTM),(PTAS,PTBS), from the

two tortuosity master poles PP - This Frenet subdivision DOF-setup is called “TripleTriple” since it is

,TB

defined from three parameters at the “BegEnd” and the “EndEnd” respectively.

(I B A (Y (A AN WA WY ) (2.38)
(P, PP )=t (?FN (“FB (Pl ) e, ),/qw ) (2.39)
“EndEnd”

L

“BegEnd”

Figure 2.15: The extrapolations for a Frenet Subdivision. DOF-model: ‘TripleTriple’. Right: with chords.
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Figure 2.15 illustrates three such Frenet extrapolations from each end of the bi-mesh, initiated from two

tortuosity master poles P ,P. .
Left: Plot poles are labeled (A,,A,,A,,A,),(B,,B,,B,,B,) respectively.

Right: The master chord and the three new control chords are also illustrated.

During the extrapolations, the information on curvature coordinates is reduced at each step.

A ~

f:xlz[/cl K, TT]T - fFN:xzz[/c K, OJT - ?FT:xaz[K 0 OT (2.40)

Fa X V4

The embedded curvatures are therefore formed at the two control points A3, B3 as
0" Qs 2 {Xs )

0" Q3 2 { X3}

Finally, the two new control poles are formed as

=2 {83QA3 , 849A3 }

2{0°Qy,,0'Q, |

It is rational to use a unified prediction function, which is called Frenet extrapolation %F, to incorporate the

three previously defined functions as nested functions.

As such, the predictions of the two extrapolated control poles P, ,P_ are expressible as:

7B

>

o
I

(“BegEnd” extrapolations) (2.41)

=f, (PTA Ao ol )

>

O
1

(“EndEnd” extrapolations) (2.42)

=f (PTB o ool )
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2.2.114 Interpolations
Let two tuples of tortuosity poles be given such as (Pr,“ soP ),(P yoP ), (m,n)e Zi . Then, a prediction rule

7,1

which determines a new central tortuosity pole (complete or in parts) is called a Frenet interpolation.

The Frenet interpolations defined in this paragraph are all non-parametric. The background theory is given in
ANNEX 10.

The applied interpolations are divided into three parts. They are represented by the three interpolation

functions fGo ,%Gl '%sz , Which sequentially generate a complete tortuosity pole estimate P_as

f(fe (PP PP dc))). (2.43)

“EndEnd”

“BegEnd”

Figure 2.16: The interpolation in the second step of Frenet subdivision.

In Figure 2.16 the rectifying vector d. is yellow. Left: When the rectifying vector is represented by a regular

unit vector, d. #0, a full Frenet frame T.N.B, is predicted.

Right: However, when the rectifying vector is a null vector, d. =0, only the Frenet tangent T, is predicted.

The first function fGZ relates to G continuity and predicts the normal N. and the binormal B, in the interior of

the chord A,B,. However, zero normal and binormal vectors are returned if the rectifying vector is a zero

vector.

The function %el relates to G' continuity. It predicts the tangent, T., as a unit vector along the chord A,B; .
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“EndEnd”

“BegEnd”

Figure 2.17: Non-parametric location interpolation in the second step of Frenet subdivision.

The function fGo relates to G° continuity. As illustrated in Figure 2.17 above, it predicts a central vertex, V.

(marked in green), in the central plane of the chord A,B, .

Conclusively, location and orientation vectors depend on the existence of the rectifying vector as follows:

)

d #0: &°Q ;{[vc TN By | } (2.44)
T

d =0: 0&°Q, ;{[VC 170 0] } (2.45)

Furthermore, if the rectifying vector is a zero vector at the limit level of refinement n_, the limit curvature is

approximated as the average of the segment curvatures for P, ,P

TB3

respectively.
d =0: a“QC;{[o R oﬂ (2.46)

Otherwise, curvature coordinates are all set to zero.

Finally, the new interpolated pole is formed as

3 4
P 2{0°Q.,0'Q}.
It is rational to use a unified prediction function, which is called Frenet interpolation fG, to incorporate the
three previously defined functions as nested functions. In this case, the prediction of a non-perturbed

tortuosity pole P_is expressible as:

P =f (P, P P, P, d). (2.47)
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2.2.11.5 Pole translations
Let a tortuosity pole be given at a node C such as P_.A prediction rule that translates this tortuosity pole into

a new location at node C' is called a pole translation.

Pole translations defined in this paragraph are all based on the three location parameters d: 4: 4, previously

defined in Table 2.4. The parameterization is applied by reference from the three length references
Lol

’
Girer * Torer * 93 e

k., ie{1,2,3} as

respectively. Furthermore, the length parameters are defined from individual bounding factors

k.l ie{1,2,3}, (2.48)

a1 :q§1 Iql,ref 4 Iq;z :q§2 qu,ref 4 qus :q§3 Iqa,ref ’ Iquef = Sx?
where l,is the bi-mesh chord length.

The background theory for the length references I/, , and the prediction functions is given in ANNEX 11.

Bounds for the individual bounding factors ké, i€[1,2,3] used in the preceding examples and illustration are

given in ANNEX 12.2.

“EndEnd”

“BegEnd”

Figure 2.18: Location parameters translate the interpolated pole from a known location C to a new location C’

The third and final subdivision step includes three pole translations %51 122 ﬁ;g which translate the central

tortuosity pole to a new location V. in space from three orthogonal increments. The translations are oriented

corresponding to the respective local coordinate axes see Figure 2.18.

P. = %Hg (%HZ (%Hl (P,C o, )/q ),I,,% ) (2.49)

The theory provided in this paragraph supports the use of bi-mesh subdivision as the basis for more complex
multi-pole modeling of tortuous curves, surfaces, and solids. This will be further described in the following sub-
sections.
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2.2.12 Tortuous Curves
In this sub-section, details on tortuous curve generation by Frenet subdivision are given. First parametric

subdivision examples based on iterated Frenet extrapolations are presented. Next, these simulations are
extended with pole translations. Thereafter, reduced degrees of freedom non-parametric subdivision, order &
invariance, simplest form, null form, geometric continuity and finally a principle numerical solution to the
reverse Dido’s problem are presented.

2.2.12.1 Parametric Subdivision
The various demonstration curves are generated on the basis of input data sets where the variance of each

parameter is zeroed. The tortuous demonstration curves generated are all synthetic.

EXAMPLE 4 Refinement process for synthetic curve generation with Frenet extrapolations.

The bi-mesh array used for simulations throughout this example is the same and set to:

Vv 0.45 -0.40 0 -0.35 0.50 0.00
T 0.00 031 0.95 0.00 -1.00 0.00
M, =N -1.00 0.00 0.00 1.00 0.00 0.00
B 0.00 -0.95 031 0.00 0.00 1.00
X 0.00 2.00 1.00 0.00 1.00 2.00 |

Figure 2.19: Tortuous curve refinement, n,= 6. Left: At k.= 1 the “TripleTriple”extrapolations are indicated

NOTE The synthetic curve is generated from master tortuosity poles in their simplest form where the normal and binormal
vectors are defined by a vertical rectifying vector. The normals are defined from (2.20) and sign adjusted by (2.15).
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In Figure 2.19 a full “TripleTriple” extrapolation is illustrated. On the far left, the individual Frenet extrapolations are
indicated. Each of the yellow chords represents the basis for the subsequent extrapolation, like the illustrations provided
in ANNEX 12.3. In order to illustrate the refinement process, the tangents (in blue) are subsequently plotted for each level
of refinement k., =1,2,...,6.

Additionally, five different sets of iterated orientation parameters are now going to be applied. Individually, each of these
sets is used to control the impact from the actual TNB vectors at the ends of the bi-mesh. Geometrically, “low” TNB impact
means that the influence from the end conditions on the iterated shape of the curve is low. Similarily, “high” impact
indicates that the TNB vectors influence the shape of the curve and especially the fitting in the neighborhood of the ends
to the TNB vectors and the curvature and torsion to a high degree. The previous tortuous curve in Figure 2.19 was
simulated with “medium” TNB impact. The five sets of orientation parameters, which are going to be used further, are
reproduced in the table below.

Table 2.6: Five data sets for the orientation parameters

N° “TripleTriple” Orientation Parameters TNB Impact Descriptor
YN SR M vk,

1 {0.05, 0.05, 0.05, 0.05, 0.05, 0.05} “low”

2 {0.25, 0.25, 0.25, 0.25, 0.25, 0.25} “medium low”

3 {0.50, 0.50, 0.50, 0.50, 0.50, 0.50} “medium”

4 {0.75, 0.75, 0.75, 0.75, 0.75, 0.75} “medium high”

5 {0.95, 0.95, 0.95, 0.95, 0.95, 0.95} “high”

"medium low”

"medium”

"medium high”

”high"

Figure 2.20: Tortuous curves with different TNB impact but the same bi-mesh.

”oa ” o«

Left to right: “low”, “medium low”, “medium”, “medium high” and “high” TNB impact
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EXAMPLE 5 Refinement process for synthetic curve generation with pole translations.

Pole translations parameterized by location parameters are controlled by the degrees of freedom array defined in (2.34).
In this example, six individual runs with three degrees of freedom, defined at different levels of refinement, are
performed. The same bi-mesh data as for the preceeding example is used with “medium” TNB impact factor. The degrees
of freedom arrays are listed in the table below. The data in the list follows the general syntax in (2.34) and the plotted
orientation parameters are equally specified.

[ 21 1 1
glnop gzoop 5300»:
2 2 2

S S Sy

é:DOF =1 sk

=q. =q, =0.10
- ékr §3kDTQF & =)

_glnoroF 52”[:0F §3n[:0F _
Table 2.7: DOF-arrays for illustration of the £,&& location impact. (Note: Run 1 is defined with npoz= 0)

Run 2 Run 3 Run 4 Run 5

O O »r OO O o o
O O »r O O O O o
O O »r O O O O O
O O O O O o +r»r O
O O O O O o +r»r O
O O O O O O +»r O
O O O O O O O =
O O O O O O O K
O O O O O O O K

O O O o » O O o
O O O o » O O o
O O O O » O O o

Figure 2.21: Tortuous curves based on the same bi-mesh with location impact at different levels.

It appears clearly from the runs that the location impact at high level of refinement has a small global effect on the overall
shape, but a high local impact (see Run 2). At lower levels of refinement, the global effect increases whereas the local
effect diminishes (see Run 3, 4 & 5). (The appearances recall Fourier decomposition).
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2.2.12.2  Tortuous Curve Fields
Geometrically, the generation of tortuous curves C_ by Frenet subdivision is designed to ensure explicit G

continuity at any level of refinement and asymptotic G* continuity at the limit level of refinement n_. The
estimation of natural variations is controlled by a set of iterated parameters {qu}see 2.2.10.3. To ensure

multi-resolution capability, iterated parameters are made customizable at any level of refinement k, =1,..., n_.

T

In terms of conventional parametric subdivision terminology, the novel Frenet subdivision scheme includes six

intermediate control vertices (vfl;l,v;;z,v;;yv;;z,vjjgl,vfjgs) that are manipulated at each level of
refinement by a six-tuple of iterated parameters (qTA,qNA,qBA,qTB,qNB,qBB) and a three-tuple of iterated pole

translation parameters (qé,qé,qé). Typically, tortuous curves are represented by one of the following

representations.

A location field, i.e. a poly-line of a vertex sequence

V, ={V0 e VTV VLV (2.50)

T T,A?*"? Y, A 2 V¢, C? Tr,B 7ttt
An orientation field of tangents, i.e. a field of tangent vectors of a tortuous curve

TAV) = {1 T T, T T (2.51)

T,A?*** “r,A 2 "z, C? T, B 70"t
An orientation field of normals
N, (V) ={ND e N N N NG (2.52)
An orientation field of binormals

B,(V.)={B),,...BY," BB, .., B, ] (2.53)

AV, A P, C?P e, B 10t
A Frenet field including all orientation vectors of the tortuosity poles.

From an object oriented programming point of view, any new bi- mesh M'j;_ is formed by a parent bi-mesh

Y/ 3{Prkljl,Pij'l} by generating a new central child pole {Pkr } into the sequence of tortuosity poles as

Tpi 7,C
{Prkl;\'l,PTij,Pij'l} . This new constellation is then subdivided into two new bi-poles {Prkl;\'l,PTkjc} and {Prkjc,PTk;l},

which are used to form two new parent bi-meshes I\/I';;a{P;’A’l,PTij} and Mt;a{PTij,P;’B’l}. At every

intermediate state the new poles are used to define subsequent poles. Later it is illustrated how bi-meshes are
parametrically manipulated.

2.2.12.3  Reduced Degrees Of Freedom
The introduced model has nine parameters, which gives extensive control over the subdivision and allows for

detailed roughness simulations. Sometimes, it is relevant to reduce the degrees of freedom. A few comments
on reducing the degrees of freedom (DOF) are given in ANNEX 12.4.
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2.2.12.4 Non-parametric Subdivision

In a non-parametric form n[ﬁgF =0, the generated shape from Frenet subdivision can be interpreted as a

pendant to an analytical shape function known from FEA. This can be realized by letting all parameters be
substituted by constants, i.e.:

nSBF =0 —)((751 /e, 19, Ay, 1A, 98, /91, 19N, 1 D8, ) = (2.54)

(Constr:l ,Const‘fZ ,Consté ,ConstTA ,ConstBA ,ConstNA ,ConstTB ,ConstBB ,ConstNB )

In this special situation, Frenet subdivision can act like an analytic two-noded non-linear C*-shape function

N(&) with second order geometric continuity in the limit. However, such a Frenet shape function N_(¢&)
requires a master bi-mesh M7, as input whereas a conventional two-noded C?-shape function requires end

position vectors r,,r, and their derivatives r;,r,, r;,r, asinput.

nk =0 — N_(EM° )= lim (M = Skme
DOF T (é ‘rb‘v) mr%w( T Thi T ) (255)
~N(Er, 00 ,0,r), N G, NeC’

For more details on analytic FE shape functions see (Shivaswamy, 2010).

2.2.12.5 Order and invariance

A master mesh defined solely by vertices {[V]T} is said to be of the zeros order. Master meshes which also
include tangents {[V,T]T} are of first order. Such first order meshes are defined from tortuosity poles in their

simplest form. Master meshes including normals and curvatures{[V,T,N,B,x]T} are said to be of second order.

Conventional zero-order master meshes are not included in this presentation. Frenet subdivision from first
order master meshes is invariant to any coordinate transformation.

Frenet subdivision from second order master meshes is invariant to translations and rotations, but not to
scaling since curvature is size dependent. Therefore, for general second order models size normalization is
required.
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2.2.12.6  Simplest form
Especially for a first order master mesh, Frenet subdivision is said to represent a mesh generator in its simplest

form when each iterated location parameter g, goes towards zero, i.e.

a.={a;.9. .9, | >{0,0,0} (2.56)

At the same time, the orientation parameters q; are all defined as ones

q; ={%, 9, s, Gy, 0, %, | ={L11, 1,11} . (2.57)

2.2.12.7  Null form
A parametric Frenet Subdivision generator is said to be in its null form if all of its iterated parameters are

zeroed, i.e.
qf = {qTA quA rqBA ’ qTB quB quB } Z{O,O,O, 0'0;0} . (258)
In this special situation the output mesh is is represented by bi-mesh chords, i.e. straight line segments. Such

curves might be usefull for man-made objects but it is unlikely to be usefull for natural object modeling.

2.2.12.8 Geometric continuity

Figure 2.22: Frenet Subdivision possess asymptotic G’ continuity

The Frenet subdivision algorithm for tortuous curves is designed to possess explicit G continuity at
k. =1,.., n_ and asymptotic G® continuity at the limit level of refinement k.=n_ under the following

assumptions.
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Let it be assumed that three poles (P:,EZ'P:,E'P:,%Z) at the limit level of refinement k =n_ exist. Let their

average direction cosine and direction sine for the tangent directions relative to the chord be defined from

— TAz .elz +TBz .eZz — C'glAz + C9r32

c, = —s, =.]1-¢& . 2.59
05 avg 2 2 05 avg 0 avg ( )

Further, let it be assumed that in the limit n. — o0, the vertices and tangent vectors of these three poles share

T

the same osculating Frenet plane {F} ™ and that an osculating circle exists, which fits these three poles

exactlyie. c, =T, e =T, e .Then,atanyfinite level of refinement n.€Z_, the interpolation of the limit

central pole an,’c is designed to possess explicit embedded G' continuity and approximate embedded G

continuity. However, in curve regions where no singularities are generated, approximate G continuity is
obtained by defining an estimate of the central curvature as

2,/1-¢}
=t (2.60)

‘ /}(2
In other words, when Frenet subdivision is applied in its simplest form, the generated geometry asymptotically
goes towards a circular segment, which is indeed the solution to the reversed Dido’s problem, see 2.2.4. This
means that Frenet subdivision in its simplest form generates discrete geometries that possess minimum
tortuosity at a scale corresponding to the limit level of refinement. Naturally, curve generation with only G°
continuity can be designed. The modeling of singularities is a feature which is incorporated in Frenet

subdivision through multi-valence modeling.

Explicit G1 continuity is obtained by defining the rectifying plane as an approximation to an analytic rectifying
plane:

T, x(T, +AT,)

o b L (2.61)
||TC x (T, +ATC)||

N, =—n,:M, (T.)3P (T, )~

where the central normal N, and the analytic Gauss normal n; are equal up to sign.

NOTE When a local radial axis is in use as «*:2 it is oriented in the same direction as the Gauss normal ng.

Approximate G® continuity is assured by assigning the vertex field in the neighborhood of V. to the same

approximate rectifying plane:

((V, +AV,) -V, )N,

im = (2.62)
W0 (Ve + AV, ) =V |
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The approximate central normal N, is asymptotically perpendicular to the vertex field V(MT) in the

neighborhood of V. and still an approximation to the Gauss normal N. =—n;.

In the current osculating Frenet plane {F}T"N through V. eP; the limit value for the secant curvature used to

form a new central tortuosity pole C is given by

2 /1—(C3§,m )2 sy 63

lim k™ = =
,C
moe £ 72 2

However, this only holds if Frenet subdivision is applied in its simplest form at the many last levels of
refinement.

k.€[...n.—2,n.—1,n_] (2.64)

T

NOTE It must be stressed that the central secant curvature in (2.63) represents a single curvature related to one specific
osculating plane through the bi-meshes of a tortuous limit mesh (see Figure 2.22).

2.2.12.9  Multi-Valence Curves

Figure 2.23: Tortuous curves with increasing roughness. The orange tortuosity pole has valence two

Figure 2.23 illustrates a series of tortuous curves based on there poles (one orange and two green). The orange
pole has the valence two, which is used to form a discontinuity. Note that this discontinuity is modeled by two
frames that share the same tangent. The curve furthest to the left is generated by Frenet subdivision in its
“simplest form”. From left to right: Theses curves are generated by adding increasing random roughness as
synthetic pole translations.

2.2.12.10 A Principle Solution to the Reversed Dido’s Problem
As will be demonstrated by the following principle example, a numerical solution to the reverse Dido’s problem

(see 2.2.4) can be found by multiresolution parametric Frenet subdivision.
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EXAMPLE 6 A principle solution to the reversed Dido’s problem

Let a reversed Dido’s problem be defined numerically by a chord with length /, =2, centered at the origin,

along the first axis of a global Cartesian coordinate system. The two observation vertices (V,,V;),. are
assumed to be given. Furthermore, the enclosed area in the osculating plane of the observed curve is defined
to be 7 /2. Sets of feasible curves are generated by parameteric Frenet subdivision. To illustrate the capability
of Frenet subdivsion, and to give an impression of the numeriacal convergence, some selected plots are given.
Parametric location modeling is first illustrated for location parameters alone, then for orientation parameters
alone, and finally for some mixed selections for location/orientation parameterization. Finally, the particular
curve which possesses the minimum arc-chord tortuosity, i.e. the replication extremal, is selected as the
solution. Numerically, the problem is defined from a replication problem (2.2) where the fault of replication is

bound by the fixed observation area A, =7/2 as

‘Aphan - Aobs

81 (Mobs'Mphan) = gr (Aobs'Aphan): (265)

— “z,upp
obs

Fullfilling the side conditions {q,‘\’,Ih }={‘7.3| i } for the two end vertices and their vertical tangents means that

the numerical phantom has the same values as for the observed geometry.

{ql(\)/l }:{ql&obs} - (V;'V;)phan :([1’0’0]’[_1'0’0])’ (T;'TBT)phan :([0'0’1]’[0’0’1]) (266)

bhan

More specifically, the bi-mesh for the phantom curve which is intended to be generated by Frenet subdivision,
is specified as

M, ={P. P}, (2.67)

where its two tortuosity poles are

e e
T. T
P = , P= : (2.68)
X4 ] X |

Note that the two vertices V,,V, are fixed due to the nature of the reversed Dido’s problem. In principle, the

T T . . . .
tangents T,,T; are variables, whereas the master normals, binormals are not in focus here as variables. The

curvature is however kept active, i.e. their identical values are defined as one divided by the radius of
curvature, which equals one in this situation. Tangent variability is already illustrated in EXAMPLE 5. Therefore,
tangents are here kept fixed with the values defined in (2.66). Thus, the parameterization includes only iterated
parameters. Furthermore, this is a planar problem, and due to symmetry considerations only two degrees of
freedom are considered.
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EXAMPLE 6 A principle solution to the reversed Dido’s problem (Continued)

n =8 These are: the location parameter for the

“gz = location parameter” second local axis q., (see plots in Figure
S 2.23) and the orientation parameter for
hed tangential impact g; (see plots in Figure
019, 2.24) which is supposed to have the same
L value for both ends. The iteration space is
D 01 0; L.
010 limited to:
|
R
: s (a,,,a+ ) ([-1.00,1.00]x[0.00,1.00])
: i e
T 01 0
010:;
| . 3] However, only a small number of the high
0 but finite numer of generated curves are
N reproduced here. The few curves displayed
Eatm e are supposed to illustrate the numerical
0 5100 convergence towards the solution. The
01 0;:
F e following value sets are used for the
g illustrations:
‘ q. €{-0.75,+0.75}
(0]
[0 0 0s g, €{0.05,0.25,0.50,0.75,0.95}
N 00 0;
0 914
E o1o The  accompanying  location  and
01 0; . . o .
R 01 0] orientation bounds, are defined in
G accordance with ANNEX 12.2.
E [0 0 0; ) nd L. .
N goo In this example, the 2™ local axis is defined
C 99%  to be identical with the global 2" axis, i.e.
E e all pole translations are performed in the
Y vertical direction.
00 o0;
l Soo. The numerical replication problem
00 0: .
000; includes only two degree of freedom. The
01 0:
g limit level of refinement is selected to
eight. Expressed in terms of the set of
1000 iterated parameters this gives:
00 0:
205 {6,995, Gr,.0x, .96, Gr,Gn, s, | =
0 0 0;
CUI g 3: {orqulor qullll qulrl} , N, =8
01 0]

Figure 2.24: Convergence towards a solution to the reversed Dido’s problem from a single location parameter
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EXAMPLE 6 A principle solution to the reversed Dido’s problem (Continued)

“qgr = orientation parameters”

C
(0]
N
Vv
E
R
G
E
N
C
E

=

*The plots for the various values of the location
parameter @, also include a series of assymetric
runs where the parameter on the far right is fixed at
g, =0.95. The other end is impacted by the values

from the list above. These extra plots are included to
illustrate that in many situations prior knowledge on
symmetry is not likely to be apparent. Therefore, the
assymetric plots indicate that in such situations an
extra degree of freedom must be incorporated:

{0;q§210; q-rA;l,lr qTallll} g nl[;E)F =3

where q: = 0, see Figure 2.24.

In principle, Figure 2.24 and Figure 2.25
illustrate separately, and as a whole, the
direction of convergence for a multivariate
optimization problem iterated by a
dedicated replication algorithm.

Conclusive remarks

The reversed Didos problem can be given a
numerical solution by finding a single curve
amongst a high number of generated
curves which possess the smallest
tortuosity, i.e. a curve which satisfies a
replication problem with a high efficiency
of replication. Specifically, when
multiresolution parametric Frenet
subdivision is used as curve generator then
in the limit the numerical solution
converge when its parameter set goes
towards:

{qgllqulqgs, qTAIqNAIqBAI qTBinBiqBB}Z
{0,0,0, 1,1,1,1,1,1} , n >

Multiresolution parametric Frenet
subdivision is designed in its “simplest
form” to generate solutions to the type of
variational problems defined as reversed
Didos problems.

Figure 2.25: Convergence towards a solution for the reversed Dido’s problem from orientation parameters
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2.2.13 Tortuous Surfaces
In this sub-section, details on tortuous surface generation by Frenet subdivision are given.

£
Vs

hoiiin

Vv

Figure 2.26: Tri-mesh (left). Quad-mesh with medium location perturbation (middle) and large (right) at k,=1

Tortuous surfaces are generated in two variants. One variant is based on a master tri-mesh (see Figure 2.26,
left) and the other variant on a master quad-mesh (see Figure 2.26, middle and right). A tri-mesh includes three
edges whereas a quad-mesh includes four edges. The subdivision scheme for any surface is initiated from such

a master tri- or quad-mesh mesh Mf. The target at each iteration step is to iterate new tortuosity poles
{Prkcf },Vkr from the preceding tri- or quad mesh. This means that the subdivision principle is the same as for
the tortuous curve generator.

During iteration, some of the new tortuosity poles are defined from the first subdivision of the master edges.
These new poles are called edge poles whereas other new poles at the interior are called face poles. The
definition of the face poles is not straightforward. In general, the individual tortuous curves used to form the

interior shape do not intersect at one single point (see Figure 2.29 and Figure 2.33). Therefore, the face poles

are found by solving the following minimization problem. Find a vertex VCﬂ of a new pole PTﬂ so that the sum of

squared distances d, between any of the vertices of the n; tortuous curves C,_, je[l,nj} is minimized.
v, minY d; =minY d(V,,C, ) (2.69)
j=1 j=1

The index beta is used to indicate that the n; curves are all generated by Frenet subdivision in its simplest
form. The new pole P,ﬂ is said to be beta-iterated and it is defined as a new tortuosity pole with vertex Vc/, . ts

pole tangents are adopted directly from the involved curves in their “simplest form.” However, its normals,

binormals, and curvatures are left undefined. To take into account this numerical error, the new pole Prﬂ is

anticipated to carry a small part of the variance of the overall statistical dispersion modeled by the location

parameters g, of that pole (see 2.3.22).

With the exception of the perturbations introduced in the red quad-surfaces at the first level of refinement

k. =1, the three meshes are generated with Frenet subdivision in its simplest form at all levels of refinement.
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Simplest form surfaces

Even in its simplest form Frenet subdivision can be used to shape various
geometries. Figure 2.27 illustrates an irregular surface called, the “paper mache
mouth,” so called because of its appearance. This surface is generated from ten
tortuosity poles in their simplest form using a tri-mesh constellation. The patch
graphics in in this model have been added at each master tri-mesh individually.

The shadows on the triangular inter-edges make the skin look like paper marche.

Figure 2.27: The “paper marche mouth” is created by Frenet subdivision in its simplest form

The following section introduces a parametric subdivision algorithm, which is able to generate discretized
surfaces, as illustrated in Figure 2.26, from a tortuous tri-pole (left) or quad-pole (middle, right) master mesh in
R’. Mathematically, the algorithm is an extension of Frenet subdivision for tortuous curve generation. As a
central part, the following recurrence relations for tri-pole and quad-pole meshes are used:

My =S M (2.70)
M/Tf, :Sl;qzuad M’;r—l (2.71)

Specifically in these relations, the iterations are initiated from a master tri-mesh

m?° 3{P2,PZ,P2}}={P2,P2,P2} (see Figure 2.28) or a master quad-mesh I\/Ifquad 3{P2,PZ,P;,PZ} (see Figure

Turi

2.33) respectively. The subdivision operators Sf{’

ri

and S , can control the iterations at any level of refinement.
qua

In the following section, the blue tri-mesh in Figure 2.26 (left) is used to describe how the multi-resolution tri-

k,
T

pole based subdivision operator S_° , and the multi-resolution quad-pole based operator S';' _» controls the
; qua

iterations.

Multi-resolution parametric surfaces

For natural geometries, it is unlikely that meshing from tortuosity poles, in their simplest form and with a low
number of degrees of freedom, is able to model irregular rough surfaces with a high level of detail. Therefore,
surface models based on multi-resolution parametric Frenet subdivision will be introduced.

More specifically, in the formulation of the master mesh, it is anticipated that at least a single parameter at one
level of refinement exists.
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2.2.13.1  Tri- and Quad Mesh Subdivision Surfaces

The final phantom mesh M, =M} represents a constellation of tortuosity poles. The vertex-face

constellation is graphically illustrated by patches (see Figure 2.26). From an object oriented programming point

of view, any new set of tortuosity poles Mff 3{Prkjc} are created as a child object of its parent constellation of
tri-meshes or quad-meshes. At preceding levels of refinement, quad-meshes are also subdivided into quad-
meshes. However, at the limit level of refinement quad-meshes are finally subdivided into tri-angulated patch

for graphics display. At each level of refinement, the tortuous curve generator generates edges. The rectifying

vectors {dc}m or {dc} are assumed to be pre-defined or are estimated during the iterations. Tri-meshes are

quad
generated from a refinement approach. This approach is comprised of the formation of a tri-pole master
constellation, followed by a subdivision into quadrilaterals as illustrated in the following series of figures.

Figure 2.28: Master tri-mesh

Let a master tri-mesh M?{ B{PT?,PO PZ} be defined from three master poles and their connectivities to three

0,1

oriented segment chords as illustrated in Figure 2.28 and specified in Table 2.8

Table 2.8: Tri-mesh for a tortuous surface

Chord vector

Edge | Vertex | Frenetvectors | Curvatures Master bi-mesh Chord

e o e SRS
e o m SR
e ek e RS
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Thereafter, let three new tangents be defined at the three corners as the average of the existing tortuosity pole
tangents.

PT.,S Fra
1 1
0.8 0s
06 ' 06
N N
0.2 0.4
0.2 0z
i P[IQ DZD Fra
i] 02 i}
P
P 04 Woog 04
06 06
ns 0.8 05 0.8

Figure 2.29: Master tri-mesh ABD, k,=0 (left) subdivided into new poles ABDC,C,C;, k,=1 (right)

During the first iteration, a tri-pole constellation is extended by new orientation vectors at the existing poles as
well as three new central poles C,C,C; at the middle of each of the master edges. The original poles ABC are
extended with new tangents based on an average of the existing tangents. The three new tangents T ,T. ,T.

of the central poles P, P. P, located at the three edges j=1,2,3 are defined from rectifying vectors d, _

Tc Tc

dlc2 dics , or they are estimated as the average of the tangents from the two adjacent master edges. At this

7,

stage the constellation represents a (six-noded) tortuous triangular element. In the following section a new
central pole, called a beta-iterated tortuosity pole, will be defined.

Beta-iterated tortuosity poles

Figure 2.30: Tortuous curves C,D, C,A, C;B (left). One new B-iterated tortuosity pole at k=1 (right)
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From the three new poles P:“ P:“ P:“ , which are connected by the chordsC,D C,A C,B , three new bi-
meshes are used to generate three new curves (left) and to define the beta-iterated tortuosity pole chﬁ (right)

from (2.69). Hereby, four poles P:l,Prlz,Pja,Prlw with n'! >3 and three poles P, ,P. P, with n''>2 are

formed.

15 Figure 2.30 illustrates the values of the full distance for the three
4 ] interior curves which are used to define the interior beta-iterated
’* tortuosity pole Prlﬁ. In Figure 2.31, the abscissa holds the array
3 C,

25 | indices for the pole combinations from the three curves. It is based
2 ] on a subdivision by a local level of refinement set to five. This gives
h | four thousand nine hundred and thirteen combinations. The
o ordinate holds the corresponding beta values defined by (2.69).

0 L L L L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 2.31: Full | 8]-distance array

The plot of the full distance array clearly indicates that many local minima exist, even for curves generated by

Frenet subdivision in its simplest form. The global solution index (marked in red) is used to locate P:Cﬁ at the

centroid of the corresponding vertices, see Figure 2.30 (right) and Figure 2.32.

NOTE Fundamentally, the beta-iteration is defined as a Catmull-Clark split (Catmull & Clark, 1978). However, since the

surfaces are not regular tri- and quad faces the splitting relies on an iteration, which converges towards a singular vertex Vcﬂ for each

split point rather than an NURBS based rule. This built-in non-linearity complicates the later imitation modeling by stochastic
simulations. Later, in the stochastic parameterization, see 2.3.2.2, these “small” beta-perturbations are taken into account in the

general stochastic formulation.

3

Figure 2.32: The seven tortuosity poles at k,=1 in solid blue and its triangular patch representation at n,=5

To obtain the iterated tri-mesh n_=5, seen in Figure 2.32, further subdivision for k_>1 is based on three

quad-poles formed by the seven tortuosity poles Prll,Pl2 P! P:Cl,Pl P! Prlc at k_=1.

R’ Tcp? T3’
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2.2.13.2  Subdivision Quad-Meshes
Quad-pole meshes are generated from a refinement approach which comprises formation of a master quad-

mesh followed by a subdivision into four new quad-pole constellations. The subdivision process is finalized by a

triangulation at the limit level of refinement see Figure 2.32.

Figure 2.33: Quad-Pole ABDE (left) subdivided into four new central poles C,C,C;C, (right)

Let a master quad-pole mesh M‘T’quad a{Pg,Pg,P;,PZ},n{F} >2 be defined by four master poles and their four

segment chords AB: BD: DE: EA , as specified in Table 2.9 and illustrated in Figure 2.33. (Note that this quad-
pole is assumed to be a child of the master tri-pole in Figure 2.32, (left)).

From the quad-pole master mesh (Figure 2.33, left), one Frenet subdivision for each of the four sides (right)
generates four new tortuosity poles. As a result, two new bi-meshes {P3c1'P3c3} , {P;’ICZ,PTO“} , with ' >2, are

formed. The settings so far represent an eight-noded tortuous quadrilateral master element.

Figure 2.34: Tortuous curves c,;3and ¢, 4 (left). One new interior tortuosity pole at C (right)

Subsequently, two bi-meshes {Prcl,P 3}, {PTCZ,P }, with chords C,C, C,C, (Figure 2.34 left) and rectifying

vectors, are used to iterate a new interior tortuosity pole le'(f k. <n_ at C, with n'f! >2, by Frenet subdivision

(see Figure 2.34 right). This process results in four new master quad poles.
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All details for the quad pole constellations are given in the following table:

Table 2.9: Quad-pole constellation for a tortuous surface

Chord vector

Edge Vertex Frenet vectors Curvatures Master bi Pole Chords
VA TA,l' NA,l'BA,l Xan 0 (VB B VA )
=1 M >{P°,p° AB: | T v.ov
/= Thi,a Tl g AB: ||VB _VA”
VB TB,l'NB,l’BB,l Xs1
VB TB,Z ’ NB,2 ’ BB,Z xB,Z 0 (VD - VB )
=2 M 5{P°,P° BD: | 2TV v
j= I N.B a2 2 1P Py BD: IV, = Ve
VD p,2'Np2,Pp Xo,2
VD TD,3'ND,3'BD,3 Xo,3 0o _ (VE _VD)
j=3 M° 5!p° p° nE - €Tl vl
Thia ! DE . VE _VD
VE TE,S'NE,3'BE,3 Xe,3
Vv, TN ,,B,, Xea o (V,-V,)
0 0 po —_— =
= . A4
j 4 Mrbm 3{ Te IP‘rA } EA . ¥ ||VA - VE ||
VA TA,4'NA,4'BA,4 Xaa
Pm‘s
AN
R
AT
o oA AR A i
e AT AR
SR D=y
V2T
08 S s
LSS T i
e ey
06 ! ﬂ'%%’é“%%%‘g‘a‘ﬁ“:‘ﬁ
B A S
R e o R,
G ey LA T i A i
H b R PR A,
ot A ey ‘“E‘;’ﬁ‘r}éiﬂ"* T
0.2 i ?xmr‘a?{%g}"
R S ekt UZD Fra
o }
F'L1 0 0.4

Figure 2.35: Quad-pole meshes are transformed into triangular patch graphics at the limit level n;

For further quad subdivision, the strategy illustrated in Figure 2.34 and Figure 2.35 is simply repeated for

k.€(...,.n,—2,n.—1,n_). Finally, at the limit level of refinement, where k_=n_, each of the generated

quadrilaterals are subdivided into eight non-tortuous triangular faces sharing the same pole Pr';’ .

As will subsequently be demonstrated, texture (i.e. irregularities and roughness) modeling is performed as

master perturbations, as iterated perturbations, or as a mixture of both.
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2.2.13.3  Master perturbations

Single-perturbation modeling

Frenet subdivision allows for master shape modeling by simple master perturbations. The constellation of a
master mesh is modified through master perturbations. This means that one or more of the tortuosity pole

components(V,T,N,B,x), of one or more tortuosity poles, are manipulated. For constellations defined by

master parameters, these parameters are manipulated instead of the actual vertices.

_____

b) c) d) e)

Figure 2.36: A six-poled master sphere (a) and four vertical master perturbations (b-e)

Figure 2.36 illustrates the impact from a vertical master location
perturbation of the top pole (marked in green), of a six-poled master
sphere (a). The impact from four different perturbations is
illustrated for two downward and two upward perturbations
respectively. All mesh generations are performed from Frenet
subdivision in its simplest form. The actual perturbations are applied
as follows: (b): downward, (c): significantly downward, (d): upward
and (e): significantly upward.

Multi-perturbation modeling

Figure 2.37 shows the same six-poled master sphere as above but
now with two vertical perturbations. The vertical perturbation at the
top is similar to the perturbation in the image on the far right side of
Figure 2.36. The second perturbation at the lower pole is of the
same size, however, it is performed in the opposite direction (Here,
this is in the downward direction).

As demonstrated, perturbation modeling is a free form tool that can
be used by the modeler for single perturbations as well as for multi-
perturbation modeling.

Figure 2.37: Double perturbations of the six-poled master sphere. One upward perturbation and one downward
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2.2.13.4  Iterated perturbations

Multi-resolution modeling

Frenet subdivision allows for iterated perturbation modeling. In such modeling the iterated poles are
manipulated directly by the modeler though the degrees of freedom array (2.34) applied at the beta-iterated
poles.

Figure 2.38: Random perturbations applied on a master quad-mesh at different levels of refinement

(Compare with the curves in Figure 2.21)

Surface perturbations are controlled by iterated perturbation parameters. As with curves, they are defined
using local coordinate axes, see (2.34). For surfaces, the local axes are usually based on a common rectifying
plane defined in the near neighborhood of a beta-iterated tortuosity pole. As an example, the first local axis is
defined from one of the embedded curve tangents. The second axis is then oriented as the Gauss normal of
the rectifying plane, defined by all or some of the embedded curves. Finally, the third axis is given as a cross
product of the two.

At this stage it is too early to make definite conclusions about which local coordinate system is most useful. It is
likely, that for each curve, surface, or volume of a natural object a prefered choice of local coordinates exists
which would potentially optimize the modeling of its characteristic patterns.

2.2.13.5 Limit Curvatures of Tortuous Surfaces
During the last levels of refinement, when Frenet subdivision is applied in its simplest form, a limit tortuosity

pole PT':’ automatically specifies a unique approximate Gauss normal n; =—N.. More precisely, the limit edges

connected to this pole lie in the embedded osculating planes which all share the same normal. In the limit, the
individual edges connected to the tortuosity pole possess asymptotic G> continuity. However, the distinct
curvatures for each osculating plane must not to be confused with the analytic principal curvatures.

Obviously, particular regions designed to reflect geometric discontinuity by multi-valence poles with different
orientation frames, do not fall into the category of regions where G* continuity exists in the limit.
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2.2.14 Tortuous Solids
This paragraph explores how a tortuous solid generator can be defined using Frenet subdivision. Further details

on the generation of solids by Frenet subdivision will be revealed in future studies and does not form an
integral part of this study. Therefore, no illustrations are provided in this introduction to tortuous solid
modeling. The following considerations are presented solely to complete the description of natural
parameterization as a general tool for modeling tortuous curves, surfaces, and solids.

Here, subdivision from two mesh constellations called tetra-meshes and hexa meshes are described. For both
subdivision approaches the separation into beta-simulations followed by alpha simulations occurs in the same
way as for tortuous surface modeling. It is assumed that a solid observation mesh exists and that it has been
discretized into a tetrahedral mesh.

In Frenet subdivision each tetrahedron represents a volume element made up of six edges and four faces. In
principle, the subdivision scheme for volume follows the same strategy as for curves and surfaces since it is

initiated from a master mesh M? that can be subdivided into finer and finer iterated meshes M*, k_=[1,n_].

The target at each level of refinement is to find a new set of central poles { P, } . These poles are used to form

new volumetric constellations defined as hexa-elements. Each new hexa-element includes twelve edges and
eight faces. In Frenet subdivision each of these edges and faces are assumed to model tortuous curves and
tortuous surfaces respectively. As such, the volumetric element that is formed represents a tortuous variant of
the well-known quadrilaterally faced hexahedron. After each recurrence each hexahedron is subdivided into
eight new hexahedrons. At the limit level of refinement the hexa-mesh is finally formed back into tetrahedrons
for FEA based solid postprocessing.

Proposed algorithms

The following section proposes a parametric Frenet subdivision algorithm, which is able to generate a
discretized solid as a tortuous mesh M_> {PT} in R*. Mathematically, the algorithm is a logical extension of the

tortuous curve and tortuous surface generators defined in 2.2.12 and 2.2.13 respectively. As a central part of
the formula, the following recurrence relations are used:

Me =8 Mt (2.72)

T Ttetra  ©

M =k Mk (2.73)

Tetra-meshes

Tetra- meshes are subdivided from a refinement approach that involves the formation of a master tetra-pole
constellation followed by a subdivision into new hexa-pole constellations at the first level of refinement.
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Let a tetra-pole mesh M; 3{PZ ,PZ,P;,PZ},n{F} >3 be defined by four master poles with valence three that
are inter connected with six oriented segment chords. At each of these six chords, six centrally located edge

poles {P:E1 ,P,lf2 Pt P P! Pls} are defined as the first subdivision of the corresponding tortuous curves.

Te3 ! Tea ! Tes T

Subsequently, four new face poles P, P. P P, which are centrally located at each of the four faces of
the tri-mesh, are beta-iterated. The settings so far represent a (fourteen-noded) tortuous tetrahedral master
element, i.e. four poles located at the master poles, six edge poles centrally located at the master edges and

four face poles beta-iterated at the four triangular faces. Finally, a new central volume pole P:C is estimated

using the four face poles P P' P' P! and the four opposing master poles. This new beta-iterated volume

Tca Tcp T3z Tca

pole has valence n,, =4 . The new volume pole and the fourteen existing poles are then formed into four new

hexahedra. As will be described, each hexahedron can be further subdivided into new and finer hexa-meshes.

Hexa-meshes

Hexa-meshes are subdivided using a refinement approach comprised of the formation of a master hexa-mesh,
followed by a subdivision into new finer hexa-meshes. At the limit level of refinement, these meshes are
eventually subdivided into sixteen tetrahedrons per hexahedron for FEA postprocessing.

Let a hexa-pole mesh M; 3{P:A,P:B,P:D,PTIE,P:F,P:G,P:H,P:/} be defined from eight master poles with valence

three and its internal connectivities by twelve corresponding bi-meshes. First, twelve edge poles

{PTZH,PT2 p2 ,p? P2 P2 P ,P* ,P* P2 PP P } are defined like for the tetrahedron bi-meshes. Then, the

e2’ Tes? Tea? Tes! T Ter ! Teg ! Teo ! T ! Tenn ! Tem

six new face poles PTZCl PTZCz Pfcs Pf“ p? PZCe , are beta-iterated at at each of the six quadrilateral faces. The

s T

settings so far represent a (twenty-six-noded) tortuous hexahedral element. This means that twelve edge poles,
six face poles, and eight master poles, centrally located at the master edges as well as six central face poles

have been generated. Finally, a new central volume pole Pfc is estimated using three bi-meshes formed by

opposite pairs of the six face poles PZC P> P> P> P2 P

Tci Tcp Tez Tea Tcs Tc

.- The new tortuosity pole has the pole valence

n, =3.

(R
iFy

From this volume pole and the twenty-six existing poles, eight new hexa-meshes are formed. In subsequent

subdivision k. =3,...,(n_—1), these hexahedrons are subdivided into new and finer hexa-meshes following the
same procedure. At the limit level of refinement k. =n_ four new bi-meshes are formed from the diagonals of

the hexahedron. Eventually, a central volumetric pole P is beta-iterated from these bi-meshes. The new

pole has the valence four. This central pole is ultimately used as a common pole for the formation of sixteen
non-tortuous volumetric tetra-elements. The total mesh of these tetra-elements can then be imported and
postprocessed by FE-based multiphysics software.
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2.2.15 SUMMARY - Parameter Extraction

Let a set of observation meshes {Mobs} be examined by experts and then let a three step parameterization
chain be defined as follows. First, all vertices of each observation mesh are size normalized and set of size

parameters {qH(;lH} are obtained. Then, landmark parameters {qf}, defined by expert knowledge, are

identified. Subsequently, a set called master parameters are formed as {qk’} . Constellations, defined by

tortuosity poles and segments, are then organized into a master mesh. From these master meshes, iterated

parameters {qk’ } are finally extracted using Frenet subdivision in accordance with the concept of goodness of

replication.

The parameter extraction chain

refr

— Bounding, Segmentation and Subdivision — The Master Mesh

Figure 2.39: The parameter extraction process

The overall parameter extraction chain is defined as
My} >{a’} > {d"}, {a}3{a’.d"] (2.74)

The outcome of a parameter extraction process is a set of natural parameters {q} . These natural parameters

are formed by a subset of master parameters {q"} and a subset of iterated parameters {qk’} .

Formalization of parameter extraction through Frenet subdivision

The following section summarizes the application of the concept of goodness of replication to Frenet
subdivision and highlights some of the most important achievements.
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Let it be assumed that the observations of a sample of natural objects are organized in observation meshes
{M,,,} InR>. Further, let it be assumed that these observation meshes are replicated by phantoms {Mphan},

which have been generated by multiresolution parametric Frenet subdivision after applying the concept of
goodness of replication. Finally, let it be assumed that there exists a unique set of natural parameters g in R’

which are determined from observations.

These parameters are real valued quantities, determined for each single object during its replication, and
represent the DOF variables of the model. The natural parameters are divided into two subsets:

The first subset, called master parameters {qo}eq, control the size, bounding dimensions, as well as the

location and orientation of landmarks.

The second subset, called iterated parameters {qk’}E{q} , control the tortuous shape of the subdomains by

curves, surfaces, and volumes generated by Frenet subdivision (see Table 2.4).

Frenet subdivision is a general approach for tortuous mesh generation. It enables the parameterization of
meshes that can be generated in the limit with explicit G* continuity and asymptotic G* continuity. However,

the simulated tortuous mesh M’ at the limit level of refinement is retransformed by an affine transformation

into its original coordinates as a phantom M, _ .

M™ —>M (2.75)

T phan

The parameterization is performed in order to achieve minimum tortuosity of the mesh, in accordance with the
concept on goodness of replication.

Tortuosity poles as the basis for mesh generators

Operationally, Frenet subdivision is controlled by a master mesh, l\/l? . The master mesh is expressed in terms

of natural parameters g, which are further divided into master parameters q0 and iterated parameters qk’ .

Technically, these operations are defined by tortuosity poles, which are paired into bi-poles. Each of these
bipoles is then used to define bi-meshes from selected frames of the tortuosity poles.

All'in all, various constellations of tortuosity poles can be formed as the starting point for meshing.
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A few such master pole constellations are in use:

e Master bi-poles are used to represent constellations of two tortuosity poles forming one edge.

e Master tri-poles and quad-poles represent constellations of three or four tortuosity poles forming one
face with three or four edges respectively.

e Master tetra-poles and hexa-poles represent constellations of four or eight tortuosity poles forming
four or six faces with four or twelve edges respectively.

Tortuous mesh generators are developed with the following characteristics:

e Tortuous curve generators are based on bi-meshes and simulate tortuous meshes of line elements
having location vectors, orientation vectors, and curvatures as children.

e Tortuous surface generators are based on tri-poles or quad-poles and simulate tortuous meshes of face
elements having tortuous curves as children.

e Tortuous solid generators are based on tetra-poles or hexa-poles and simulate tortuous meshes of
volume elements having tortuous surfaces as children.

The concept of goodness of replication applied to Frenet subdivision is a deterministic approach dedicated to
parameter extraction. The following paragraph focuses on how to reuse these extracted parameters for
stochastic simulations.

In a multi-resolution parameter extraction process, the iterated parameters are extracted at relevant levels of
refinement only.

q< = {qgf q } , Vk e {k } = {k1 yrky } ) Mt €[1,0,] (2.76)
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2.3 STOCHASTIC PARAMETERIZATION

In this section, the set of natural replication parameters is used as a sample for modeling corresponding
random variables from stochastic processes. It is assumed that these natural parameters can be stored in a
data bank, which is continuously updated so objects are better and better described over time (see paragraph
2.3.1). A stochastic decomposition approach, relevant for parametric subdivision, is introduced in paragraph
2.3.2. Following this, a strategy for stochastic simulation of natural objects is formulated based on Monte Carlo
simulation (see 2.4.1). Finally, a novel concept called goodness of imitation is introduced as a criterion for
“stochastic fitting” (see 2.4.3). It is intended to ensure that the stochastic variations of newly simulated
phantoms do not differ significantly from the variations observed in the real objects.

2.3.1  The Bank of Natural Parameters
The set of natural parameters {q} resulting from replication are assumed to be the outcome of experiments

and they are modeled as random variables Q: {q} — Q.. Both the first moment (the mean ) and the second

central moment (the variance o) are assumed to exist for each variable. The probability density function

(PDF) for each parameter is also required for later Monte Carlo simulation.

If a parameter is observed by association through another parameter, such as the time, it is assumed to be
modeled by an indexed set {Q(t) , teT} of random variables Q(t). These variables are all defined by the

same sample space Q_, with the indext belonging to an index window T . Such statistics are stored in what is

called a bank of natural parameters, or simply a parametric bank, symbolized as a(t) The general analysis of

the parametric bank by multivariate data processing, i.e. chemometrics, is not covered by this study. However,
a piloting principal component analysis (PCA), for detection of outliers from parameters in the wheat grain case
study of cross-sections, is reproduced in ANNEX 22-23.

2.3.2  Stochastic Decompositions
This paragraph discusses the rationale for decomposing the natural parameters from the parametric bank into

both a steady, and a fluctuating component, during the imitation process of natural geometries. Based on the
well-known Reynolds decomposition, an altered version, called alpha-beta decomposition, is introduced. This
altered decomposition allows for small variations to be included in the steady component. It is important to
notice that the previously defined master meshes now are seen as geometrical constellations, which are
parametrically invariant to geometrical dependencies. This means that although size, form, and shape may be
dependent, the parameters used for modeling are assumed to be independent and therefore uncorrelated.
This assumption is also assumed to be valid for all types of natural parameters, i.e. all types of master
parameters and iterated parameters.

128



23.21 Reynolds Decomposition
The historic Reynolds decomposition®’, named after Osborne Reynolds (23 August 1842 — 21 February 1912)

and introduced in 1851 by Sir George Gabriel Stokes, 1st Baronet FRS (13 August 1819-1 February 1903),
represents a stochastic decomposition. It is frequently used in an Eulerian description to decompose stochastic
fluid flow into two parts as

Q=Q'+ py, (2.77)

where Q=Q(t =t®) is the stochastic field vector defined at a particular instant t© of the parameter, t (usually

time). Q’:Q’(t:tg) is the time dependent fluctuation modeled as a random variable with zero mean z, =0

and /4, its time average over an appropriate time window.

2.3.2.2 Alpha-beta Decomposition
For surface modeling by Frenet subdivision, the numerical complication in the determination of the beta factor

(see (2.69)) must be accounted for. This numerical difficulty, which arises from lack of information, introduces
an error. In an attempt to compensate for this error, the use of dedicated stochastic decomposition is
introduced. More specifically, a variant of Reynolds decomposition is proposed.

It will be illustrated that for extreme value modeling there is a general need for flexible decomposition tools
that allow for pseudo-stochastic parametric subdivision.

Let it be assumed that a stochastic process of a natural parameter Q(t) is extracted from a natural object and
made available from a parametric bank Q(t), i.e.

~

at)«<Q(t) , (2.78)

where {Q(t) , teT} is an indexed set of random variables Q(t) . These variables are all defined on the same

sample space Qq with the index t 28from an index window T .

Further, let it be assumed that Q(t) is defined with mean value function u, (t) and variance function o7 (t).

27 | latest CFD software Reynolds-decomposition is used to form the so-called time averaged RANS equations which is an abbreviation
for Reynolds-averaged Navier-Stokes equations (ANSYS®14, 2012). For further details on RANS and a general introduction to
Computational Fluid Dynamics (CFD) and the finite volume method see (Versteeg H.K. & Malalasekera W., 2007).

?® For natural objects the index t might represent the time in a life-cycle or an index for a natural evolution stage.
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Then, at an instant t=t®, an alpha-beta decomposition of Q=Q(t=t®) is introduced as a simple linear

combination of two independent random variables®:
Q=Q,p, +Q, , (2.79)

In (2.79), the variable Q,, is called the alpha variable, p, is called the perturbation level, and Q, is called the
beta variable. The multiple Q,p, usually models the dominant fluctuations, whereas Q, models the non-
dominant (small) fluctuations, i.e. Q, is usually semi-steady. The alpha variable Q, is defined as a
dimensionless random variable with zero mean u, =0, and a variance of one o’ =1. It represents a

standardized random variable, whereas Q, is defined with a real valued mean x, and a variance 0/23 which is

usually smaller than p? . The perturbation level p, reflects the standard deviations of the dominant variations.

Therefore, it has the same physical dimension as Q.

dimp, =dimQ (2.80)
The mean value for Q is now defined as

Mo =M Py +Hg=Hs , M,=0 (2.81)

Since the two decomposed random variables are independent, i.e. Cov[Qa,Qﬁ] =0, the variance for Q is

o, =0,p, +0, +2p§Cov[Qa,Qﬂ]=(1+ra2ﬁ.) p., o-.=1, (2.82)

where the (small) factor

2
2 _9
ry=—<1 (2.83)

is denoted the variance ratio. It defines the ratio between the non-dominant and the dominant standard

deviations of the fluctuations, i.e. r, =+/r’; =o,p,’.

However, any variable Q=Q,p, +Q, where its alpha component stabilizes around a zero mean, i.e. x, -0
can be represented by two alternative input parameters. They are: the perturbation level p,, and the variance
ratio razﬂ. In accordance with (2.81) and (2.82), the simple transformation from original to alpha-beta

decomposed input parameters is given by:

%% In this presentation techniques for the determination and convolution of the PDFs for the two decomposed parts are not covered.
However, if the PDF for the original variable follow the normal (or Gaussian) distribution then both decomposed parameters follow the
normal distribution. In the following, it is anticipated that the PDF used are well-defined and mathematically modeled as a function
fola) with a set of input parameters as arguments. As an example the normal (or Gaussian) distribution for a variable Q requires the

two input parameters: mean value and standard deviation and is symbolized as f, (q) = f,(#,,0,) -
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% (2.84)

Hy=Hy, Py =——2—
roe J1+r2,

Note that alpha-beta decomposition is statistically identical to the wellknown Reynolds decomposition when

. . 2 .
the variance ratio raﬂ IS zero.

From a simplified geometric point of view, the statistical mean location , of the semi-steady factor Q,
affects the central appearance of the underlying natural geometry, whereas its standard deviation o, affects

its small deviations around this central appearance. The dominant statistical dispersion is governed by the
dominant fluctuation multiple Q,p,, which affects both the variations of the current shape, and ts local

dimensions. Technically, alpha-beta decomposition enables customized imitation modeling since the modeler
can control the two parts either by the variance ratio or by the perturbation level. Because the alpha and beta
parts are also independent, the realizations q,,q, can be simulated either by two independent runs, or, by

scaling from one run using the original (non-decomposed) input parameters. As mentioned earlier, in principle
the perturbation level is an instrument proposed for application as a technical tool to handle numerical errors
induced by beta-simulations of new tortuosity poles of surfaces and solids. Furthermore, the perturbation level
is a rational factor in synthetic phantom generation where data is not available for a full stochastic imitation. In
these situations, the modeler may need to supplement the data set with deterministic or semi-deterministic
values. Then during subsequent simulations, the perturbation level can be changed and the immediate effect
on the generated phantom can be inspected. In fact, this type of synthetic modeling is evident in all of the
examples and illustrations, including perturbation modeling, throughout this presentation.

EXAMPLE 7 Alpha-beta decomposition of a location parameter for a surface generated by Frenet subdivision

Let it be assumed that parameter extraction by Frenet subdivision from observations of a surface, result in a set of natural
parameters. In this example, one particular location parameter is in focus. Now, assume this parameter to be modeled by
a random variable. If Frenet subdivision is applied during parameter extraction then, in accordance with (2.69), the
location is found from a minimization of a distance error. This error varies in two ways: along the local directions, and
from replication to replication. This error is represented as a random error-vector. One of its error-components is

assumed to be modeled as a random variable Qﬂ .

After having performed a high number of replications for similar surfaces,

Q *(Q,p,

. . . 2 .
Q/} estimates for its mean ,U,B and variance G'ﬂ are assumed to exist. Furthermore,

= + 2
S T /\/\“';\A\P%v > “Hy during the many replications, a mean value (yapa) and variance (Gapa) are

assumed to be extractable from alpha replications where the actual alpha

>
' location parameter is modeled as a variable (Qupa ) .

Consequently, if (yapa ) —0 and 0'; =1, the location parameterization through alpha-beta composition can be said to

reflect an alpha-beta decomposition Q=Q,p, +Q, with variance ratio r,=o.

-2
5 ﬁ(aapa) and perturbation level

_ -1
P, =04l
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Extreme value modeling

In other situations, synthetic modeling can be based on statistical information that is deterministically
manipulated. This type of geometry generation is called pseudo-stochastic perturbation modeling. For this type
of modeling, the perterbution level is not restricted to its usual limitations. Rather, it can be defined freely to
fulfill modeler’s requirements. It is not seen as a strict PDF input parameter, but as a tuning factor for forced
extreme value generations. Furthermore, since the perturbation level is allowed to go beyond its natural limits,
it allows the modeler to simulate forced natural abnormalities in all their forms. This is, for example, the case
for geometrical forms that appear with extremely small probability and which are unlikely to be realized, even
if the simulation includes a high number of runs. For an example of modeling extreme values, compare the
abnormal egg illustrated in a), Figure 1.7: Geometrical abnormalities of eggs, with the synthetic (i.e. pseudo-
stochastic) simulation in Figure 2.26 (right).

132



2.4 REPARAMETERIZATION

This section begins by focusing on stochastic simulation of master and iterated parameters for the generation
of imitation meshes (see 2.4.1). Hereafter, a novel concept called “goodness of imitation” is introduced to
accommodate stochastic simulations from natural parameters (see 2.4.3).

2.4.1  Stochastic Simulations
Realization of any random variable Q, from a numeric random number function* is denoted as §. By applying

alpha-beta decomposition on Q, a realization g can then be seen as the outcome of a Monte Carlo simulation

generated in two tempi as

4=4,p,+4,, (2.85)
where the simulation of the beta factor is run first, i.e.

Gy < F o, (Hg T pP,) (2.86)
and the simulation of the alpha factor is run next, i.e.

G, < fq (0,1). (2.87)

The total run g=4,p, +q, is called an alpha-beta simulation. Individually, the first run g, is called the beta-

simulation and the second run ¢, the alpha-simulation.

In general, various rules can be applied for any parameterization. In the following algorithm, location
parameters are resimulated at level of refinement where they are active. The values of orientation parameters
at the first level are kept active at all of the subsequent levels of refinement.

Alternatively, when the non-decomposed input parameters (t,,0,) are available, and beta-simulations are

not required, then the parameter simulation can be performed simply as
G« foltt, 0g) (2.88)
This simplified simulation strategy (2.88) holds for curves generated by Frenet subdivision.

*NOTE A "hat" over a PDF such as f Q(') is used to emphasize that it is a random number function® for that PDF.

3% Random number functions are provided by various software packages. In the MATLAB® 2012a Statistics Toolbox the betarnd (Beta
random numbers), binornd (Binomial random numbers), chi2rnd (Chi-square random numbers) represent the first three random
number generators from a long list of such built-in functions. Up till three input parameters are in use for some of the MATLAB® built-in
random number generators.
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EXAMPLE 8 Principle pseudo-stochastic simulation of rough half-circle by post-perturbations

Let an approximation of a half circle geometry be alpha-simulated by a Frenet
subdivision, i.e. I, =0.0 at the levels k. =1,...,3. This means that the total
number of simulated vertices in the approximating polyline s
n =2 +1=2>+1=9. Let it be further assumed that the radial perturbation
of each of the corresponding nine vertices is modeled by the same Gauss
distributed random variable Q with an estimated mean value of 1, :O[m].
The rough half-circles are simulated by varying the perturbation levels from one

simulation to another: p, e[pm,1 =0, p,,, pm] [m]

Since the variance ratio is set to zero r,; =0.0, the stochastic decomposition

here is identical to the conventional Reynolds decomposition.

Figure 2.40: Principle of pseudo-stochastic simulations of rough half-circle at three different perturbation levels

Therefore, geometric simulations based on alpha-beta decomposition give exactly the same results as
simulations based on Reynolds decomposition for the same underlying random variable. However, the
perturbation level assists in the modeling of arbitrary rough geometries and acts as a tool to generate pseudo-
stochastic realizations when little or no statistical information is available. By setting all variance values to zero,
purely deterministic geometry generation can be performed as well.

In conclusion, alpha-beta decomposition can be said to be a unified technical tool that enables simulations to
be run in a variety of ways; from full stochastic simulation of rough surfaces, to pseudo-stochastic perturbation
simulation, to purely deterministic geometry generation.

NOTE The naming “alpha-beta” refers to the interpretation of the alpha-beta decomposition as a crowd of lines passing

through a point (O,,uﬁ) and points (1,5[0( ) ina (pa ,ﬁ) realization space where (?a represents the “slope” for each realization and

Hp, the “constant” when I, 5= 0.0 . Therefore, realizations can intuitively be displayed in a (pa ,é) diagram as in Figure 2.40.

(o7
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2.4.2  Imitation Problems
A parametric master mesh is said to be “badly-shaped” if its parameters are not mutually independent, i.e. if

geometric symmetries or anti-symmetries are not decoupled despite the fact that they are not statistically
correlated. In this sub-section it is the aim to develop a unified decision rule to test the following hyphothesis:

e  “The stochastic behavior of the alpha-beta simulated imitation mesh does not differ significantly from the
stochastic behavior of the underlying natural object”.

It will be demonstrated how alpha-beta decomposition is integrated into such a decision rule. Mathematically,
the formulation of this rule is formed by what is called an imitation problem.

Let it be assumed that the underlying observation domain (cluster, subcluster, object or subdomain) is size

normalized (see 2.2.10.2.1). To measure the goodness of imitation a new measure nimie[o,l], called the

efficiency of imitation, is introduced as n =1-«,,,. The factor «,,, is a significance level for a two-sample

two

test which compares the distribution of values in two data vectors. Furthermore, let it be assumed that a

sample of observation meshes {Mr,obsl_},i=1,---,nobs and a set of alpha-beta simulated phantoms
{M,,aﬂi},i=1,--.,nphan exist at predefined levels of refinement k, €[1,...,n.]. Further, let there exist two n-

tuples of indicator metrics for each segment. One set m,, i :(m represents indicators for the

Oobs1 77" O obsngps

~

observation mesh segments, whereas the other set m, , :(mU Yo, M ) represents indicators for the

e
apa G ap nphan

phantom. Similarily, let there exist two n;-tuples of first integrals. One set JonbS :(J‘onbsll,...,J‘onbslnm)

represents first integrals for the observation meshes, whereas the other set Janﬁ :(deaﬁ',l""'_[anﬂ,npm)

represents first integrals for the phantoms. A stochastic meshing process is said to imitate the underlying
object if:

a) The distribution of the alpha-beta simulated phantom indicators rhU ﬂvfor the mesh segments does not
differ significantly from the distribution of the observed indicators m;; . in a two-sample test.

b)  The distribution of first integrals of the alpha-beta simulated phantoms J.anﬂ does not differ significantly

from the distribution of the first integrals of the observed meshes Ionbs in a two-sample test.

These two conditions are unified and incorporated in the following variational problem:

Ciwo <a , Viel,...,naﬁ, h C#£1, (2.89)

. = twoy,, imi
1 himi

mlnjw.

where 5 is the beta functional, ,,, is an upper limit for the significance level,* and h,, is an imitation test

Oupp

factor defined in ANNEX 15.

The efficiency of imitation is said to be “high” if & is not bigger than five percent.

two
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A low value for the imitation test factor ensures that the overall size is well represented. This means that the
used master mesh is not badly shaped in respect to average size replication. The test parameterh,  is used to
identify significant differences between the distribution of a set of indicator metrics for the real object, and its
imitations. If the test factors equal zero for all compared pairs of imitation metrics, the shape dispersion of the
imitations does not differ from the shape dispersions of the real objects. (For more details see ANNEX 15).

2.4.3  Goodness of Imitation
The numerical testing of the two criterions included in (2.89) is the essence of what is referred to as the

concept of goodness of imitation. It is designed to ensure that imitated meshes do not differ significantly from
the original geometry in terms of location and dispersion. In general, the dual purpose is to stabilize the mean
shape of the domain while at the same time to controlling boundary variations. As with the concept of
goodness of replication (see 2.2.2), the concept of goodness of imitation is built on indirect comparisons of

indicators, i.e. it is indicative only.

2.4.4 SUMMARY - Reparameterization
Reparameterization is the process of generating phantoms that imitate a natural The Master Mesh

object. By reusing the parameters from a bank of natural parameters, alpha-beta
simulation aims to imitate the underlying stochastic nature of the natural object.
By applying the concept of goodness of imitation it is assured that the reused
master mesh represents a feasible model. The following process chain defines the
entire reparameterization process from a parameterized master mesh to its

stochastic phantoms.

Stochastic Phantoms Chemometrics

— )
Bank —/‘A—/ —“{\,w?f /\/\/\«j\{f:

Stochastic Decomposition &
Monte Carlo Simulation

Imitation Meshes Iterated Meshes

Figure 2.41: The reparameterization process
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Mathematically, the reparameterization process illustrated in

Figure 2.41 can be defined as

{0} >1Qup. Q) > (a=dup, +d5) > (M) o (M, | w5, () (2.90)

In (2.90) it is assumed that a set of master meshes {MS} and their natural parameters g are size normalized
and extracted from a set of observation meshes {M,b } Thereafter, these natural parameters g are modeled
as a set of random quantities {Q} - {q} , Which belong to some stochastic processes {Q(t)} . They are treated

by chemometrics and for each degree of freedom their statistics are stored in a parametric bank Q(t).

Later, they are redrawn Q<—Q(t) <—Q(t) for stochastic simulations. It is anticipated that each of these random
DOF quantities Q are decomposed into two artificial random variables Q ,Q, by alpha-beta decomposition

Q=Q,p,+Q,. Here, Q, is the alpha factor, p

a

the perturbation level, and Q, the beta factor. The

decomposet variables are then Monte Carlo simulated and a set of realizations all defined as §=4g,p, +ﬁﬂ are
formed. The master parameters are used to form a realization of the master mesh {57} —>{MS} . Subsequent

alpha-beta iterations of this master mesh, controlled by the iterated parameters, form the limit mesh {Mmﬂ} .

The algorithmic determination of the alpha-beta iterations, and the following reparameterization into
stochastic imitations, is controlled by an imitation problem. This imitation problem is mathematically
formulated as a variational problem.

Technically, some of the imitated phantoms are not feasible imitations and must be rejected. However, the
remaing set of feasible stochastic phantoms are said to be good imitations of the underlying object.

Finally, by size re-normalization these imitations can be transformed into a set of physical phantoms {Mrphan } .
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2.5 NATURAL PARAMETERIZATION

2.5.1 The Overall Validation Dilemma
Unfortunately, phantoms imitating natural objects can never be directly validated since natural objects are

unique. Therefore, phantom validation can only be performed indirectly. In natural parameterization, such
indirect validation is performed by a comparative analysis of measurable properties. For example, if the
natural object is represented by an observation mesh, then properties such as length, width, height, surface
area, cross-section moments of area, volume, tortuosity metrics, and others can be compared to the same
metrics of the generated phantom. However, even when big samples of natural objects are investigated and
compared to corresponding phantoms, the comparison will only be a statistical indicator.

2.5.2  Key Elements and Historical Roots
The conglomerate of parameter extraction, stochastic decomposition, and reparameterization is what lies in

this piloting concept called natural parameterization. The fundamental idea behind the approach is founded on
a long scientific tradition of two-way approaches®. However, natural parameterization is not as sophisticated
as some of the famous historical two-way approaches fostered by famous scientist such as Gottfried Wilhelm
von Leibniz, Sir Isaac Newton, Jean Baptiste Joseph Fourier and Pierre-Simon, marquis de Laplace. In natural
parameterization the first step is extraction of geometric data (i.e. parameter extraction) from natural objects.
The second step is stochastic simulation of the same object as imitations (i.e. reparameterization). However, a
statistical interface including parametric decomposition is required to bridge the two steps. This involves
reducing an infinite set of quantities of the natural object to a finite set, which is then reused to generate
imitations of the original set. Methodologically, it is based on the same discretization strategy, which is one of
the fundamentals behind the Finite Element Method (FEM). FEM discretization has been used since the 40s
(Courant, 2007), (Stein, 2009) and ever since to refine models of primarily “man-made objects”. However, in
natural parameterization, the search aims to identify a feasible set of parametric quantities for natural objects,
which can be organized as a unique geometric constellation in a normalized space for later reparameterization
and generation of new phantoms in the original space. Any natural geometry is assumed to carry its own
feasible parameter set, referred to as the master mesh (or the parametric DNA) of that object. These unique
master meshes are the source for generation of multi-resolution “look-a-like” imitations of the natural objects
themselves. Technically, the stochastically generated meshes represent imitations. The set of procedures used
to obtain this parameterization, starting with the observation of natural objects to the transformation of final
imitations into computational phantoms, are unified into one two-way algorithm with an interfacing
parametric bank.

32 The fundamental idea behind many historical two-way approaches is to introduce a "forward" operation and a "backward" operation. In the forward
operation the original problem which is defined in its original space is simplified into a new but simpler problem in a new space. Reversely, during the
"backward" operation an inverse method is used to produce a solution in the original domain from the simplified problem. This idea is fostered and
applied by famous scientists in various scientific areas during the last centuries: The inventors of modern calculus Gottfried Wilhelm von Leibniz (1646 —
1716) and Sir Isaac Newton (1643 — 1727) introduced a "forward" process of finding the derivative of a function and termed it differentiation and an
accompanying "backward" operation anti-differentiation today known as integration. In signal analysis, Jean Baptiste Joseph Fourier (1768 — 1830)
introduced the Fourier transform as a "forward" process decomposing a function in a time-domain into a set of oscillatory functions in a frequency
domain. The accompanying "backward" operation known as Fourier inversion recovers a function in its time domain from its Fourier transform. In
differential calculus Pierre-Simon, marquis de Laplace (1749 — 1827) introduced a "forward" operation known as the Laplace transform which replaces an
original function f defined in a t-domain of a certain problem with a new and simpler function F defined in a new domain known as the s-domain.

After solving the simpler problem for F in the new s-domain one uses a "backward" operation, the inverse Laplace transform, to find a solution for the
problem of f in the original t-domain.
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2.5.3 SUMMARY - Natural Parameterization

In this chapter, the novel method called natural parameterization has been introduced as an approach for
parameter extraction from natural geometries and later reparameterization by stochastic simulation into
“look-a-like” imitations. In Figure 2.42 the seven steps in natural parameterization are illustrated for a symbolic
natural object in 3D:

Natural parameterization is a two-way approach based upon a "forward" operation and a "backward"
operation. Its "forward" operation, called parameter extraction, retrieves geometric size and shape information
from an observation mesh of a natural object in original space and transforms this information into a master
mesh in a non-dimensional parametric space. The "backward" operation, called reparameterization,
regenerates imitation meshes of the original observation meshes back into the original space from the
information stored in the parametric bank. Imitation meshes can be materialized into physical models or
computational phantoms, called phantoms. Finally, the concept of goodness of imitation is used to decide if the
meshing approach used imitates the underlying stochastic behavior with a good efficiency of imitation or not. If
the meshing approach is not rejected then it is said to be a natural tortuosity generator of that object. This
means that from the set of independent and uncorrelated natural parameters it models an underlying natural
object with a good efficiency of imitation.

Between the forward parameter extraction process and the backward reparameterization process, parametric
decomposition is applied. In this intermediate process it is verified that parameters are un-correlated or almost
uncorrelated. If parameters are found to be correlated, another mesh approach must be applied. After this,
decomposition acts as a starting point for random number generations. The data can be used for both mean
value simulations, as well as stochastic perturbation modeling. To ensure continuous knowledge building, the
extracted parameters are continuously saved and updated in a bank of natural parameters.

Table 2.10: Typical reparameterizations

Class Mesh ID Description
Name Tag Symbol Mater and Iterated Parameters
Replication One-to-one Moran {qghan} - {ngs} ’ {qgﬁan} - {qggs}
Phantom Mean value E[Mphan} {q,?han} ={E[ngs ]} , {CI:Lan} ={E[qus]}
Imitation Beta MZ/J {qo} - {qZ} ! {qk, } - {q; }
Mesh Alpha-beta M:;ﬁ {qo} = {qgﬂ} ’ {qk’ } = {qf, }
Stochastic Beta Monan, {qs*‘a”} - {ngsﬂ } ’ {qg;‘a”} - {qggsﬂ }
Phantom Alpha-beta Mohan,, {q;’han} = {ngsaﬁ } , {q,f;an} = {q:f@saﬁ }
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Figure 2.42: The seven steps in natural parameterization

A pre-processing procedure forms the observation meshes in the observation space.

2. Size and landmark parameters are identified and extracted to form the set of master parameters.

3. Iterated parameters are extracted according to the concept of goodness of replication. Together the master
parameters and the iterated parameters form the set of natural parameters, which define the master mesh.

4. Master and iterated parameters are stored and accumulated over time in a parametric bank. Alpha-beta
decomposition and chemometrics is applied and stochastic master meshes are formed in the parametric space.

5. The modeler is able to customize the parametric master meshes by adjusting properties such as length, volume,
and more. Also, pseudo-sochastic perturbations can be applied for extreme value or abnormality modeling.

6. New imitations are then generated from the customized master mesh by reparameterization. Monte Carlo
simulation is used and the set of imitation meshes are tested in accordance with the concept of goodness of
imitation. The procedure 1-6 is repeated if high efficiency of imitation is not achieved.

7. Finally, the new meshed are transformed back to the observation space as stochastic phantoms. These “new”

phantoms are ready made for graphical representation, further FE post-processing, or 3d-printing.
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Mathematically, natural parameterization evolves from a classical variational problem known as “Dido’s
Problem”. After a simple reformulation, a “reversed” Dido’s problem is shown to be suitable for the
understanding of replications from imitation parameters and the use of tortuosity metrics as functionals. Later,
this deterministic approach is extended into cover stochastic parameters, which are decomposed into semi-
stationary and fluctuating parts. The beta part is essential for mesh generation, which builds on tortuous
Frenet subdivision for surfaces and solids. Therefore, numerical treatment of biometrics, FEA, subdivision,
optimization, and chemometrics all complement each other in a unified algorithm for natural

parameterization.

Software packages used for the development of algorithms

A number of commercial software packages for algorithm development, plots, and formula deployment have
been used in this first approach. All algorithms were developed within the MATLAB® R2012A
(www.mathworks.com) environment. Testing of code fragments was performed by MathCad 15 2012
(www.adeptscience.com), and color codes for Frenet directions and other de facto FE notations were adopted
from STAAD PRO V8i 20012 (www.bentley.com).

In chapter 3, the natural parameterization approach is applied in a case study on a sample of one hundred
wheat grain cross-sections.

141



3 RESULTS

3.1 PARAMETER EXTRACTION

In the following case study the natural parameterization
approach was applied on a sample of wheat grains in
accordance with the method outlined in Chapter 2. For
reasons of simplicity, the objective of this piloting case study
was to apply the approach on an object/species with a
single characteristic landmark. Mechanical or physical
properties were not modeled, i.e. only geometry was in
focus. Details on geometric discretization of wheat grains
are found in ANNEX 17. Wheat grains are described in 1.1
and the sampling of one hundred grains in 3.1.2. The natural
parameterization approach is applied in its three main parts:
First parameter extraction in 3.1, then chemometrics in 3.2
and finally reparameterization in 3.3.

3.1.1 The Bow-line
In this results chapter, grain of wheat (Triticum aestivum)

was used as a case study object for the validation of the
natural parameterization approach. Experts and farmers
state that wheat grains possess one characteristic geometric
landmark known as the “bow-line”. This means that the
number of free landmarks is restricted to one — which
makes wheat grains particularly simple objects for shape
identification.

3.1.2  Sampling of one hundred wheat-grains
From a cluster X, of wheat grains (Triticum aestivum) with

impurities, a subcluster Q,, was taken, cleaned, and stored

in a plastic bag. From this bag one hundred objects/species
{¥,} were drawn randomly to form a sample without

impurities (see Figure 3.1).

142

Case Study on Wheat Grains (Triticum aestivum)

Figure 3.1: Sampling of one hundred grains

NOTE Evidently, this single data set is not
sufficient for a general validation of the method. In
the future, more application objects are planned to
be studied for enhanced validation and for
improvements of the approach.



3.1.3 Materials and Data Preprocessing

3.1.3.1 Samples preparation

Using a scalpel, each of the wheat grains was cut in the middle region,
perpendicular to the natural longitudinal axis of the grain. Thereafter,
each grain was positioned on the microscope base perpendicular to the
lens direction. The lighting settings were adjusted individually to obtain a
fairly contrasted outline. Then a high-resolution image was shot. In the

case where the contrast was not satisfactory, the procedure was
Figure 3.2: Wheat grain cross-section  repeated with altered settings.

3.1.3.2 Equipment Specification
The photos were captured using a stereo-microscope with the following specifications:

e Leica MZ 125 with 12.5:1 zoom and Res.: 16x_4d mounted with a digital camera:

e  Leica CLS 100 X: Res.: 150x150 points per inch.

e  Pixels: 2088x1550.

e Image format: JPEG.

. Localized 26 March 2012 at URL: http://www.leica-microsystems.com/products/stereo-microscopes-macroscopes/.

The digital representations of each of the wheat grain cross-sections, taken with the stereo-microscope, were
assembled into a collection of one hundred JPEG images. Furthermore, various test photos of sub-samples
from the one hundred wheat grain cross-sections were captured using a flatbed scanner with the following
specifications:

. Canon CanoScan 5600F
e  Optical Resolution: 4800 x 9600 dpi.
e  Adjustable Resolution: 25-19200 dpi.

e  Localized 21 March 2012 at URL:
http://www.canon.dk/For Home/Product Finder/Scanners/Flatbed with Film Scanning/canoscan 5600F/index.aspx?specs=1

Digitalized Data

A001.JPG A011.JPG A100.JPG

Figure 3.3: Selection of three cross-section images from the sample of one hundred stereo-microscopic images33

** The one hundred image files captured by the stereo-microscope are named: "A00L.jpg ... A100.jpg" respectively.
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3.1.3.3 Outline Detection by Image Recognition
In Figure 3.3, a selection of three such cross-section images captured by the stereo-microscope (see 3.1.3.2)

are illustrated. Note that the cross-section outline is very diffuse in every image. The following section includes

comments on the complications arising from automatic outline detection by image recognition.

Figure 3.4: Light Background

Figure 3.5: Dark Background

Figure 3.6: Self-distortion

Background Settings

The images to the left illustrate a selected cross-section with different
background settings. The images were captured by flatbed scanner.
Further images of a subset of cross-sections are given in ANNEX 18.

In Figure 3.4 the cross-section image was captured with a light
background by letting the flatbed cover be closed. In this situation
shadows are captured.

In Figure 3.5 the cross-section image was captured with a dark
background by letting the flatbed cover be open. In this situation no
shadows are captured.

However, none of the scanned cross-sections are free of self-distortion
in the sense that the background constitutes regions of the natural
object itself. This means that the grey-color intensity is not uniquely
defined by the outline boundary and the background, but by non-
outline regions and the background.

Self-Distortion

In general, capturing a section plane of a natural geometry without
capturing surfaces from other parts of the geometry with almost the
same grey-scale intensity is not possible.

As seen, the cross-section images are distorted by the object’s own
natural background. In Figure 3.6 it is seen that self-distortion for
wheat grain cross-sections occurs at the external boundary.

However, self-distortion is also observed in the interior of the cross-
section. Therefore, to enhance the ability of achieving a contrasted
outline, post treatment might be required for automatic outline
recognition.

In the following section, post-treatment by coloring of the cross-
sections is briefly commented on.
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Figure 3.7: Water Color

Figure 3.8: Correction Fluid

Post-coloring

To achieve a more contrasted outline, post-treatment by coloring is
applied to the cross-section surface. The result of two treatments, one
with water coloring and the other with correction fluid, was captured
by flatbed scanner.

In Figure 3.7, the result from a first water coloring treatment is
illustrated. Note that the water coloring is absorbed differently across
the section. Unfortunately, some interior dark regions produce the
same grey-color intensity as the bran outline. Therefore, this strategy
does not improve the contrast conditions significantly. On the
contrary, it disturbs the outline. Water coloring was therefore
rejected as post-treatment.

A second post-treatment with standard liquid fluid was then applied
manually. However, due to the small dimensions (2.5 — 4.5 mm) it was
difficult to apply the liquid fluid without also marking geometry
regions outside the actual cross-section, see Figure 3.8. Therefore, the
contrasted outline is not improved by this post-coloring either.

In conclusion, post-coloring wheat grain cross-sections using either of the two coloring methods applied was

not useful.

It did not improve the separation between the interior and exterior regions

Piloting outline detection was performed with MATLAB® Image Processing Toolbox. However, the relatively

poor contrast between the grain outline and the surroundings is problematic; see Figure 3.9 and Figure 3.10.

The extracted data are not at all representative for the natural edges observed by the human eye.
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Figure 3.9: White background

3

Figure 3.10: Black background
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Table 3.1: The Influence from the Threshold Level

B0OO1 B001_80 B001_100 B001_120 B001_140 BO01_160

B002 B002_80 B002_100 B002_120
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de

¢
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3 VIS
3

B002_140 B002_160

L4

BOO03_80 B003_100 B003_120 B0O3_140 B0O03_160

3
3
3
3

B004_80 B004_100 B004_120 B004_140 B004_160

>
>
>
>

B0O05_80 B0O05_100 B005_120 BO05_140 BO05_160

d
d
d
L]

BOO6 BO06_80 B006_100 BOO6_120 B006_140 B006_160

NOTE Originally, it was intended to use a standard image recognition procedure. However, standard software that was
able to identify a satisfactory outline was not found. For the wheat grain cross-sections examined, the variations in color do not vary
significantly enough to perform robust and automatic outline recognition. Results from such a promising detection procedure by
(Jorgensen, 0. 2012, AU) are reproduced in ANNEX 20. However, the correct outline was detected more precisely, by manual inspection
(using the human eye).
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3.1.34 Observation Vertices
From the stereomicroscopic images, the 2D cross-section outline is observed and manually fitted by a set of n,

polygonal vertices V., ,i.e. V... =(x,,y,)eR? , i=1,..,n,.

Figure 3.11: The cross-section outline is illustrated by a closed polygon

As indicated in Figure 3.11, the numbering is performed counter clock-wise. The number of vertices fitted to
each polygon varies due to variations in the irregularity of the shape and the manual fitting process. The

n, ] =[75,137].

vV,

o
obs,min

number of polygon vertices lies in the range: n, € [n

3.1.3.5 Observation Tangents and Normals

Oriented tangents T

obs

(blue) and inward normals N,
(red) are determined from the polygon directly*. The
orientation of tangents is governed by the counter clock-
wise numbering of the vertices V.

*Normals are automatically found by MATLAB® as patch graphics vertex
normals after the polygon are transformed into a strip of quadrilateral
patches by adding mirrored vertices in the out-of-plane direction.

Figure 3.12: Tangents and normals

3.1.3.6 The Observation Mesh
Conclusively, a tortuous observation mesh M_ s formed from the vertices, tangents, and normals:

M, >{V,T,N}

Tobs obs

For each wheat grain its tortuous mesh is stored along with its image data.
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3.1.4 Landmarks
For grains of wheat, the aim is to develop one or more dedicated algorithms that are able to identify subjective

characteristics, as stated by farmers and other experts. These routines are crucial to obtain a robust and
objective identification from subjective information. Such landmark identification algorithms must be able to
identify the same set of characteristics for all sample objects. At this stage, subjective landmark information is
assumed to rely on experience, i.e. expert knowledge.

3.14.1 The bow line Landmark

The characteristic bowline (marked in blue in Figure
3.13) is a unique landmark for wheat grains. Therefore,
this landmark is used as a starting point for automatic
parameter extraction. However, the bounding window
depends on the raw data frame and an automatically
recognizable domain frame.

Figure 3.13: The bow-line landmark for wheat grains

3.1.5  Bounding Window

3.1.5.1 Bounding Frame
The choice of a unique reference frame for natural geometries is a study in itself. In general, the idea is to

identify a frame from simple measurements of the sample objects. However, at this stage, generalizations
cannot be made. The limited experiences gained from examination of wheat grains are the only background for
the following comments.

The digitalized data are measured in a global data frame. Here, this global vector base {el,ez,e3}global is

measured in pixels. The third dimension is included as a pseudo direction to ensure a base in R®. Within this
global frame, an identification algorithm is designed that can define a dedicated local bounding frame in

{e,,e,,e,}, in R® from the digitalized data. First, the orientation of the domain is identified and then its origin

is fixed. Finally, within this local frame, a boundary window is defined.

NOTE In general, it must be assumed that a number of such domain frames are to be defined. However, when expert
knowledge exists, the number of relevant frames might be restricted to a small set. A robustness test of the applied bounding
identification algorithm might reveal if the selected bounding frame is appropriate or not.
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3.1.5.2 Orientation of the Bounding Frame
Computationally, it must be checked that the same identification algorithm is able to identify a unique domain

frame and thereafter a unique bounding window for all objects in the sample.

Figure 3.14: Anti podal pairs constellations. Top left is used to orientate the bounding frame from the raw frame.

In the identification algorithm applied, originally four different anti podal pairs constellations are considered to
automatically identify the orientation of the domain frame. See Figure 3.14, where the orientation of the global

frame {e,,e,,e,} is indicated in blue to the left of the images. As seen, all constellations envisaged are

global
measurable by a Vernire caliper, by laser, by image recognition, or by using other methods. However, they are
not equally relevant. Figure 3.14 (top left) illustrates a configuration where three vertices form two parallel
bounding lines, i.e. it is a minimum distance bounding where the upper bounding line is bridging the
characteristic bow. Figure 3.14 (top right) illustrates another minimum bounding. However, it is not likely to
find lines touching four points quite so often. Therefore, the image on the top right is seen as a special
situation. The image on the bottom left of figure 3.14 illustrates the maximum bounding lines i.e. the Feret
diameter (maximum caliper). However, for a cross-section of wheat grains, the maximum Feret diameter does
not capture special characteristics of the bow. The image on the bottom right of figure 3.14 represents the
minimum of the maximum podal pair distances. This constellation also does not capture special bow
characteristics.

The anti podal pairs constellation, illustrated top left in Figure 3.14, is therefore chosen for the sample of wheat
grain cross-sections to identify the orientation of the bounding frame {e, e, e, }, .

NOTE Here, the unique bounding frame is established for a cross-section outline from an anti podal pairs constellation.
However, different techniques might be applied for different domains of natural objects.
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3.1.5.3 Location of Domain Frame

Figure 3.15: Convex hull used as the frame for of Figure 3.16: Three feasible segments identified from the
landmark identification by distance convex hull. Top segment with max distance is used.

From Figure 3.15 and Figure 3.16 it is evident that a convex hull can be used to identify a finite set of
characteristic segments where the distance from the convex hull to the vertices of the polygon is largest. The
particular segment with the largest distance to its polygon vertex amongst the set of distances is identified as
the characteristic edge. In Figure 3.17 it is illustrated that this edge is spanning like a “bridge over the bow".

For all objects in the sample, it is checked by inspection that the correct bowline is identified. It was found that
for the sample investigated the applied decision rule was robust.

0
0,

0
Ao,

Figure 3.17: Identification of the characteristic “bow” Figure 3.18: Six Landmark vertices and the bounding

vertex V., , and orientating “bow” edge E frame {ebl,ebz,eb3}

obs,

As a result of the landmark identification, the characteristic “bow” vertex V,,., and the orientating “bow” edge
E,. are uniquely identified for each object as illustrated in Figure 3.17. The “bow” vertex is defined as the first

observation vertex V,,, ,, see Figure 3.18.
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3.1.5.4 Vectors and Scalars
For each cross-section, the bounding window (represented by a bounding rectangle in Figure 3.18) is defined

by a number of bounding vertices labeled from “1” up to “6”. Vertices “2” to “6” are the intersections between
the polygon and the bounding window. The anti podal pairs constellations with two touching bounding vertices
(see Figure 3.14 top right) are not observed for any object in the sample. The illustrated vertex “4” was the
single vertex at the lowest bounds in the entire sample.

First, the two vertices labeled “2” and “6,” from the a set of polygonal vertices V,,., were used to orient the
first bounding base vector e, . Then, the characteristic “bow” vertex, labeled “1”, is used to define the second
bounding base vector e, . It is then defined as the vector, oriented from “1”, which is orthogonal to the edge,
spanned by “2” and “6”. Finally, the third bounding base vector is found using the cross product e, =e,, xe,, .
Then, the nominal breadth B was identified as the distance between the two vertices, labeled “3”and “6”,
which are furthest away from the line through “1”, which is oriented by e,, . The nominal height H was

identified as the distance between the vertex, labeled “4” and the edge, spanned by “2” and “6”. By these
operations, the unique bounding rectangle illustrated in Figure 3.18 is fully defined.

3.1.6  The Master Mesh
The master mesh is then formed by introducing six segments. It includes six tortuosity poles and six directed

segment chords. The positive chord directions follow the standard counter-clockwise rule.

Segmentation

Figure 3.19: Master mesh with six tortuosity poles and six segments. (Pole 1 has valence two)

The bounding semi-range

For each sample element the bounding frame is extracted. From these values, and in accordance with
paragraph 2.2.10.2.2, an upper bounding semi-range is defined. This is done by assuming that the probability

to find bigger bounding ranges for new observation images above 1000[pixe/s] is close to zero.
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Figure 3.20: Curvatures are estimated from neighborhood vertices

Only two independent orientation DOF’s for the “bow” vertex are required since the tangents for the other
landmarks follow the bounding edges. These two “bow” orientation DOF’s are derived from the observed
tangents as the average orientation and its central deviation (see 3.1.3.5). The curvatures are estimated in
accordance with ANNEX 6.3.

3.1.7  Decoupling of Size and Shape
For the parameterization, it is further assumed that size and shape for the observation set investigated is

decoupled. Details for the decoupling of size and shape are given in ANNEX 22-25.This enables cross-sections to
be size normalized, but also require an inspection of correlation coefficients to ensure that the parameters
used in the further segmentation are uncorrelated.

3.1.8 Independent parameters
In ANNEX 25, the full correlation matrix for the eighteen master parameters is reproduced. In general, low

correlation coefficients are found. The biggest Pearson product-moment correlation coefficient (o = 0.66)
appears for the pair of parameters represented by vertex (No 4) and the bow-line tangent (No 11), see Figure
3.20. This indicates a weak correlation. Therefore, it is assumed that all parameters in the constellation used in
the following section can be modeled as independent random variables and used as master parameters for the
master mesh.

3.1.9 Master Parameters
The parameterization of the observation mesh into a set of master parameters q° is performed in the

preceeding paragraphs. This means that a subset of size parameters qH(;?H' and another subset of landmark
parameters qg, are extracted to form the master parameters, i.e. g° © {q‘ﬁlu,q;’} . The total number of degrees

of freedom in the master constellation is eighteen, i.e. no, =18.
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3.1.9.1 Size Parameters

In accordance with paragraph 2.2.10.2.1, each polygon is normalized and its values are stored in an N, -tuple

. X, ,
of size parameters qHOQHA Q{q\\(;?\\l""’q\\gl\\;""’qHOQH } as gy, :AT,/Z , Vie[1;n,,]. Afterwards, these parameters

Mobs.

are stored in a bank of natural parameters. These size parameters are not influential in this case study, where
size and shape are assumed to be decoupled. However, the two quantities representing the bounding

dimensions (Bl,BZ) in Figure 3.22 are parameterized into {qH(;)H 'qHOQH }

3.1.9.2 Parameter Listing
To obtain a simpler listing in subsequent statistical analysis, a forth running parameter, index P, is applied.

This means that the two bounding dimensions are the first two parameters in this list of all eighteen DOF-
parameters:

q‘E}Hb :{qliqz} ’ pe{lrz}

To maintain the discretization hierarchy, the seven curvature parameters are listed as the last DOF-parameters
and are therefore given the numbers from twelve to eighteen.

0
qHQ“Ll :{qlz""’ql8} ) qr_? :qHOQHAK' VK, pE{lz,...,ls}
The entire set of size parameters for each observation mesh and its number of DOF (see Figure 3.22) is

q‘fQH = {ql 193,912:913,914 /915,916,917, G15 } - ndof(HQH) =9.

153



3.1.9.3 Landmark parameters
Landmark parameters g, are represented by two subsets: location parameters g?, and orientation parameters

0

gy -

Six landmark vertices are extracted as {Vl,...,Vs} (see Figure 3.22). From equation (2.28), their corresponding

landmark location parameters q;’ are found. Note that vertex one has two degrees of freedom for pe {3,4} .

0° 2{05,44,5,06,05,05/05} » Gy =5 » PE{3,9) , 67 20°

f'bp

This means that a total of seven degrees of freedom is linked to this constellation of landmark vertices.

For each of the six landmark vertices their tangents are given
from the observation mesh.

Only the “bow” vertex is considered a variable with two
degrees of freedom for the tangents (and two degrees of
freedom for the curvatures, see 3.1.9.1).

At the “bow” vertex, the two DOF tangents were parameterized

L X as orientation parameters g, :

0
Yy QgQ{qm;qll} ’ qp :r_ ’ pe{lo;ll} ’ Q'Squ

b,

The entire set of landmark parameters is formed as:

Figure 3.21: Parameterization of a “bow”
tangent in spherical coordinates

qg Q{CIX;%} ={q31q4lq5Iq51q7lqslq91q101q11} _)ndof(p) =9

3.19.4 Tortuosity Poles
The information gathered at each landmark is now stored in six tortuosity poles P_, , ie{l,...,6} . Note that

tortuosity pole P, has the valence two, i.e. N1 =2, whereas the other tortuosity poles have valence one,

ie. Ny, =1, i€{2,...,6} .
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Symbolically, the tortuosity pole P_, with valence two is defined on non-parametric and parametric form as

RARR'A 4.9,
T, T, 10,91
PT,1 = NL Ngz - Aop, =1%10/%11 [ » nDOF(P,,l) =6;
B, B, Q10,911
XL X | 415,93

The remaining five tortuosity poles are defined similarly, although simpler.

3.1.95 Segmentation
The segmentation indicated by the chord lines in Figure 3.19, is controlled by connectivities that define six

individual bi-mesh master meshes. The corresponding connectivity array is defined as:

_M(r),bi,j = {PT,A PT,B}
i=1 1 2
j=2 2 3
j=3 3 4
j=4 4 5
j=5 5 6
j=6 6 1

At the first level of refinement k, =1, the local first axis coordinate (fl) is bound to the positive orientation

of the segments from P_, towards P_, .

3.1.9.6 Master Parameters - Overview
Finally, the eighteen master parameters extracted for each observation mesh are stored in a bank of natural

parameters.

Q« qo Q{qH(;H'qS}
:{qllqzlqlzlq13lq14rq151q161q17lqlg :q3,q4rq5:q5:q7:%:q9;q10;q11}

0
= Npor = Noor(ja) +Noorp) = 9+9=18
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Statistics

The statistics for the eighteen master parameters for the set of the one hundred grains is reproduced in Table

3.2.

Figure 3.22: The eighteen master parameters

NOTATION The master parameters are auto scaled (mean
centered and standard deviation normalized) prior to the data
treatment™. The following notations are used for chemometrics to
emphasize the parameters relation to the frame indices of the
tortuosity poles and segments.

Local directions:
(1) = First dir. (Local X).
(2) = Second dir. (Local Y)

B = Boundings (0, DIR).
V = Vertices are identified by (IDX, DIR). IDX = vertex No.
T = Tangentsare identified by (IDX, DIR). IDX = segment No.

K = Curvatures are identified by (IDX, DIR). IDX = segment No.

NOTATION EXAMPLE - The end tangent of edge “E6” is denoted “T62” since “EndEnd” of segments are indexed by the cipher “2”.

The corresponding master parameter subsets are:

e 01-02 - Bounding parameters: . {(B0O1L),(BO2)}

. 03-09 - Vertex parameters: ...... {(v1l), (v12),(v21),(Vv32),(v4l), (v52),(v6l)}

. 10-11 - Tangent parameters: ..... {(T11D),(T62)}

. 12-18 - Curvature parameters: . {(k11D), (K21), (K31),(K41), (K51), (kK61),(K62)}

Table 3.2: Master Parameters - Statistics

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tag BO1 B02 V11 V12 V21 V32 V41 V52 V61l T11 T62 K11 K21 K31 K41 K51 K61 K62
Mean| 0.71 0.55 |-0.008 | 0.32 | -0.56 | 0.22 | 0.085 | 0.18 | 0.55 0.13 | 0.14 | 0.08 0.15 | 0.081 | 0.087 | 0.088 | 0.17 | 0.080
Std | 0.050 | 0.041 | 0.035 | 0.15 | 0.087 | 0.16 | 0.24 | 0.19 | 0.095 | 0.097 ' 0.082 | 0.037 | 0.067 | 0.028 | 0.028 | 0.046 | 0.093 | 0.046

** The data treatment is performed by use of MATLAB Statistics Toolbox® and the LATENTIX® software
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3.1.10 Frenet Subdivision
To replicate the outline polygon of each observation mesh, Frenet subdivision is applied for each of the six

segments (see 3.1.9.5).

Level of refinement

For the cross-section polygons studied, the highest number of observation vertices used around the
circumference was one-hundred twenty eight. The maximum level of refinements chosen was five so that
subdivision would result inthirty two edges for each of the six segments. This means that a total of one
hundred and ninety two edges around the circumference are generated for each phantom.

n=5—-n =2"x6=32x6=192 > n._ =137, VM,

During the Frenet subdivision
k=1,.,n=1..5, VM,

a set of iterated parameters is extracted from a multiresolution setup, which is defined by a replication
problem that will be further described.
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3.1.11 Iterated Parameters

The reduced set of iterated parameters

As it appears from the tortuous yellow curves in
Figure 3.23, the six curve segments must be modelled
with some degrees of freedom to obtain a fair
replication of the various cross-section outlines. In this
problema, where only two local coordinate axes are

apparent, the relevant parameter candidates are:

qgllqurq'rlqu'

In this case study the parameterization only includes one location parameter qa.,

(the longitudinal pole translation parameter) and two orientation parameters

q,,9y (the parameter for T-impact and the parameter for N-impact).

The mixed three-tuple of location and orientation parameters was represented
by the array

o =[a,.d.0 ]

For further details on the applied parameters, see Table 3.3.

To reduce the number of DOFs (see 2.2.12.3) even further, the orientation
parameters are unified so the same single parameter is used for both ends of
each of the six bi-meshes.

Figure 3.23: Tortuous curve segments modeled with three degrees of freedom only

Multi-resolution modeling

The multiresolution modeling is applied by letting the location parameter be active at the first level of
refinement, i.e. at kK, =1 and the orientation parameters being active at any level kK, =1,2,...n_. However, with

only three degrees of freedom, and this simplified multiresolution setup, the efficiency of replication of highly
irregular segments (as illustrated in Figure 3.13) is expected to be poor. This also keeps the CPU expenses
down.
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Conclusively, the reduced set of iterated parameters and the number of DOFs for each of the six bi-meshes
j=1,...,6 are defined as

qfr :[qgfquff'q;j] - n[k);)F’j =3, Vj=1,...,6

This subdivision parameterization is homogenously applied on all cross-section segments.

Table 3.3: Reduced set of iterated parameters for the planar cross-section outline*

Parameter Parameter Parameter
Classification identification Description
Name Symbol Name Symbol (61 16008, ) represents local coordinates
Location k, . . Controls the perturbation of an iterated pole
a; First location parameter q. . ) o
parameters ! in the first local axis direction
. . . Controls the influence from the segment
First orientation parameter q; .
Orientation K, curvature from each pole respectively
parameters 9 . . Controls the influence from the conventional
Second orientation parameter ay

curvature at a bimesh end.
*Compare with Table 2.4.

Since six bi-meshes are included, the entire set includes eighteen iterated parameters.

At the first level of refinement all these parameters are active, i.e.:

T

q‘fl,l : qgl,j q§6
qlfrzlz . . . . . . ’ Vj:l,...,G N n’D<rOF:3><6=18
J qu . qu . . qu
L qu ' qu ' ' qN5 |

Note that the matrix is typed in open format to emphasize that it can easily be extended to include more
parameters in future runs. Also note that iterated location parameters listed in the first row are active only at

the first level of refinement k. =1.

3.1.11.1 The Replication Problem
In order to extract the eighteen iterated parameters from each of the one hundred observation meshes a

replication problem (see 2.2.1) is defined. The upper bound ¢, = for the fault of replication is fixed at

& =15%

7,upp
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The set of indicator metrics {mU} , which define the replication problem for each of the six tortuous segments,

are derived from the discrete Soerjadi moments of area (Soerjadi, 1968) defined in ANNEX 3. Differentiated
weighting was not included (see ANNEX 2).

The actual set of imitation parameters is selected as a subset of the set of standard imitation metrics defined in
ANNEX 3.4. The selected set of standard imitation metrics used was:

{mU,std } = {mU,Z,std 1M 3,600 M5 6,510 M5, 7,510 } ’

where the individual imitation metrics are: my;, centroid first axis coordinate, m;, centroid second axis

coordinate, m;;, moment of inertia around first principal axis, and m;, moment of inertia around second

principal axis. Furthermore, this standard set is supplemented with the perimeter. However, many
complications are envisaged in the effort to obtain a high efficiency of replication.

3.1.11.2  Goodness of Replication

Complications in the multivariate optimization of replication extremals

a) b)

Curves with bad efficiency of replication High efficiency of replication - but CPU costly.

Figure 3.24: The non-linearities complicate fast convergence with high efficiency of replication
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The development of a robust efficient optimization algorithm, which is able to solve the replication problem for
curve segments of natural boundaries, is still in its infancy. This numerical problem and other algorithmic
problems are key barriers in natural parameterization development. A few complications envisaged are
illustrated above and are now commented for the replication of the boundary outline for sample object A041.

COMMENTS The blue graph a) displays the fault of replication for a set of systematically generated
feasible curves of the fifth segmentfor cross-section A041, see b). They are generated from the combination of
evenly spaced values of the three iterated parameters, i.e. the graph display an example-run with grid-spacing

defined in a three dimensional parametric space as one twenty fifth part of one giving (25+1)3 =17,576

curves. A high number of local minima are one of the sources that slow down the search process for a distinct
global minimum. Furthermore, as illustrated by a few colored curves in c), the non-linear generation of the
curve segments is also problematic. Curves in dark illustrate replication extremals from a small number of
generated curves included in the optimization process. Curves colored from dark green to light green illustrate
extremals found with an increasing number of iterations. As expected, the curve (in lightest green) with the
highest number of iterations also reflects the highest efficiency of replication. The red curve possesses even
higher efficiency of replication; however, it does not fulfill its end constraint with respect to regular G*
continuity. Evidently, it is in fact a false replication (see red curve 5" segment). The blue curve on the other
hand has small tortuosity (especially at the 3" segment) but it is not feasible since its fault of replication is too
high. Finally, in d), a replication extremal colored in light green is found. It has a fair efficiency of replication its;
tortuosity is minimized; but the CPU expenses supplied are big.

Number of runs

The numerical approach used to extract the iterated parameters in accordance with the concept of goodness of
replication (see 2.2.2) is performed by multivariate optimization based on Monte Carlo simulations.

The realization range used for all iterated parameters is:
q“ e[0;1], Vg~

The number of Monte Carlo simulations for the replication of each of the six segments, for each of the one
hundred observation meshes, is limited to twenty five thousand:

N, =25,000x6, VM, (Per wheat grain)

This means that fifteen million replication checkings were performed in this study to obtain values for three
iterated parameters per section.

With regards to the applied upper bound for the fault of replication (see 3.1.11.1), each observation mesh was
checked so at least one feasible solution exists for each of its six segments.
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3.1.11.3  Iterated Parameters - Overview

The following reduced set of iterated parameters is used for the six segments:

kZ'

q“ =|a,,9;, ]

The following mean values and standard deviations were found from the one hundred replications:

Table 3.4: Iterated Parameters - Statistics

Segm. 1 2 3 4 5 6

ID da ar an qa ar an qa ar an qa ar an qa ar an da ar an

Mean | -0.02 | 0.56 | 0.49 | 0.03 | 0.46 | 053 | 0.12 |0.62 | 0.57 | -0.01 | 0.54 | 0.59 | -0.06 | 0.48 | 0.54 | 0.03 | 0.56 | 0.50

Std 0.30 | 0.16 | 0.30 | 0.27 | 0.19 | 031 | 0.28 | 0.20 | 0.32 | 0.28 | 0.23 | 0.30 | 0.24 | 0.24 | 0.30 | 0.31 | 0.20 | 0.29

3.1.12 SUMMARY - Parameter Extraction - RESULTS

For each object in the sample, a total of eighteen master parameters,

(n2=18) and eighteen iterated parameters (three iterated

parameters for each of the six segments, i.e. n;" =3x6=18) are

stored. This means that a total of thirty six natural parameters are
stored for each object:
0k — _
n,=n,+n:=18+18=36

Therefore, since the entire observation set containing one hundred
meshes, a total of thirty six hundred data points are collected, i.e.:

n, =100x36=3600
The entire data set is stored in a bank of natural parameters.
Replication A053

TN

The maximum relative error for the replication of the cross-section
areas was found to 0.59% for replication A053. See Figure 3.25 (b).

Figure 3.25: (a) The one hundred replications plotted on top of each other. (b) Replication with max error of repl.

In Figure 3.25 (a), the replicated cross-section outlines, based on these three parameters per segment, are
plotted on top of each other to give an impression of the variations in the one hundred results.
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3.2 CHEMOMETRICS

In this section, the stochastic preprocessing, including quality checking of the collected data, is performed. In
this study only Frenet subdivision for tortuous curves is in use. Therefore, alpha-beta decomposition is not
relevant (see 2.3.2.2). However, a key requirement is that master parameters must be verified to be
uncorrelated (see 3.2.1.1 and ANNEX 25). Furthermore, as described in 3.2.1.2, there is a need for second order
Frenet subdivision with explicit curvatures for the modeling of the wheat grain cross-sections.

3.2.1 Stochastic Preprocessing

3.2.1.1 Checking Master Parameters
To ensure that the eighteen master parameters (see 3.1.9.6) are uncorrelated a full correlation matrix is

defined (see ANNEX 25). The full correlation matrix indicates that there is a weak correlation between the

“bow” landmarks location in the second direction g, and the two curvatures: G, (sample correlation
coefficient r,,, =0.66), and g3 (1, ,; =0.60) respectively. Even weaker correlations are found between the
lower bounding ¢, and the two bounding landmarks §g (r,,=0.55) and qg (1,4 =-0.55). Finally, small

correlations are observed between breadth g;, and height g,(r,,=0.50). The correlations between other

pairs of parameters are even less. In conclusion, the correlations found are all considered to be small.
Therefore, it cannot be rejected that the set of iterated parameters are uncorrelated. The data set is therefore
accepted for further treatment.

3.2.1.2 Degrees of freedom minimization
In this study, the three iterated parameters defined in

3.1.11.3 were selected as a compromize between the
ability to obtain a fair efficiency of replication and the
cost related to the number of degrees of freedom?®.
However, an alternative non-parametric setup was also
investigated with Frenet subdivision in its simplest form.
In general, this zero degrees of freedom alternative
replicated most of the phantoms with a fair accuracy,
see Figure 3.26 (a), (b) and (d). However, a few grain
cross-sections that had large curvatures were badly
replicated, see Figure 3.26 (c).

Figure 3.26: Fitting performed with zero degrees of freedom, i.e. with Frenet subdivision in its simplest form

**In general, the optimization of the parametric setup is extremely CPU demanding. It is in the pipeline for future studies.
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The replication in (c) shows a RMS-fault®® of 10.6 % for the entire cross section. Clearly the big curvature
observed at the top pole, indicated in blue, is the cause of this. Therefore, if extreme curvature values are
found in the sample under investigation, second order fittings are needed. This finding was, in fact, the
background for the development of Frenet subdivision as a mesh generator explicitely based on curvatures.
Consequently, in the sample of wheat grain cross-sections, a detection of inconsistent data was performed in
order to verify the existence of significant curvatures.

“Curvature outliers”

To investigate the data set for “curvature outliers,” i.e. as inconsistent data, the data set was examined by
multivariate analysis (see ANNEX 22-24). The PCA showed that for replication by Frenet subdivision in its
simplest form, two grain cross-sections were considered as outliers due to significantly big curvatures. In all,
three objects with significant curvatures were identified from influence plots.

Figure 3.27: Significant curvatures are found for “A006”, “A080” and “A022”

The following data were found to possess significant curvatures: A006, A080 and A022, see Figure 3.27.

Replication A006 Replication A022

Replication A0S0
Figure 3.28: The significant curvatures for“A006”, “A080” and “A022” are standard inputs for Frenet subdivision

The replication based on second order Frenet subdivision gives high efficiency of replication see Figure 3.28
since curvatures are explicitly included.

NOTE It is likely that many natural objects posses large curvatures. Therefore, second order fitting methods such as Frenet
based subdivision might be required in future modeling of natural geometries.

* The RMS-fault is based on the five indicator metrics defined in 3.1.11.1.
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3.3 REPARAMETERIZATION

In this section, a set of feasible stochastic phantoms are generated®’ and tested in accordance with the concept

of goodness of imitation (see 2.4.3). First, the mean value phantom for wheat grain cross-sections is presented

in 3.3.1. Then, some general comments are given on feasible stochastic simulations (see 3.3.2) as well as the

Kolmogorov-Smirnov test (see 3.3.3). Finally, a series of stochastic phantoms are presented and tested. The

results from the KS-tests are provided in 3.3.5.

3.3.1 The Mean Value Phantom

500
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200
300
-400
500

1 1 1 1 L 1
-600 -400 -200 0 200 400 600

Figure 3.29: The mean value phantom
of wheat grain cross-sections

fly, = fi,, = 1.23e+006 [pixel’]

The shape of the mean value phantom is defined
as the phantom generated from the mean values
of the natural parameters and adjusted so its size
matches the mean size of the observation
meshes. The mean values of the master
parameters are given in Table 3.2. The mean
values of the iterated parameters are given in
Table 3.4.

As expected, the mean value phantom has a low
tortuousity and is G* continous, except for the
“bow-line” discontinuity.

Note that the mean value phantom is displayed in
pixel coordinates with the first bounding axis
parallel to the first axis of the display.

It was found that the mean of the hundred wheat grains have a minor offset of the lower landmark, which

appears as a small asymmetry (see Figure 3.29).

In future research this mean value phantom for wheat grain cross-sections and similar mean value phantoms

for other natural objects might be used as a nominal reference.

*”In this case study the Monte Carlo simulations of the entire set of natural parameters were based on the normal (or
Gaussian) distribution. However, in future studies advanced distribution fitting with finite distributions which meet the

ranges of the natural parameters must be performed.



3.3.2  Feasible Phantom Simulations
Natural parameters are defined in a finite interval (see 2.2.10.2). Therefore, stochastic phantom simulation

from infinite distributions such as the normal (or Gaussian) distribution must be post-processed to meet the
requirement for a finite realization space.

Figure 3.30: Feasible phantoms, (a), (b). Non-feasible phantoms, (c-f)

Furthermore, since the natural parameters are simulated independently, geometric faults such as dis-
segmentation, discontinuity, overlap, or gap are likely to occur (see Figure 3.29, c-f). This means that the
reparameterization process must be designed so that the “new” phantoms meet the physical constraints of the
“real”
formulation of such constraints. In this case study, the phantoms were Monte Carlo simulated by the

continuous normal (or Gaussian) distribution. The process was controlled by a combination of simple range

object. However, the built-in non-linearity of natural parameterization complicates the mathematical

constraints and segmentation checking. Finally, simulated phantoms with discontinuity, overlap, or gap were
identified by manual inspection and rejected. Such non-feasible phantoms, as illustrated in Figure 3.29 (c-f),
were excluded in the final set which was called the set of feasible imitations. This final set includes phantoms

|II

that are all unique and comply with the physical constraints of the “real” wheat grain cross-sections. In Figure
3.29 (a-b), two such unique phantoms are illustrated. The two feasible imitations illustrated were randomly
drawn amongst the set of feasible imitations. This set of feasible imitations wasconsiderably larger than the
observation set. , Theoretically, the number of element in the imitation set should go towards infinity.

However, in this case study, where the observation set includes one hundred “real” objects, a total of only
three hundred “new” phantoms were generated. Out of these three hundred “new” phantoms, one hundred

and eighty five were found to be feasible.
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3.3.3  Kolmogorov-Smirnov Test
In accordance with the concept of goodness of imitation, the Boolean test factor h;,; , in (2.89), was designed

for a two-sample test. In this case study, the non-parametric Kolmogorov-Smirnov (KS) test (Massey, 1951) was
used for the imitation problems. The inputs for KD-tests are two data vectors, represented by observation-
data-vectors and imitation-data-vectors. The images of the generated phantoms were numbered from “P001”
to “P300”. The distributions for values of area for the one hundred and eighty five feasible imitations were
tested against the one hundred values from the observation set. First, the cross-section areas were tested. It
was found that their distributions did not differ significantly at 5% significance level. Secondly, the six segment
areas were tested in six separate tests. Again, it was found that their distributions did not differ significantly at
5% significance level. These tests indicate that the master mesh, and its set of thirty six natural parameters,
imitate the cross-section outline of the one hundred wheat grain cross sections with a high efficiency of
imitation. The detailed results of these The Kolmogorov-Smirnov® tests are summarized in 3.3.5.

3.3.4  Stochastic Phantoms
For illustration purposes, a minor subset of one hundred stochastic phantoms were drawn from the set feasible

phantoms. Three of these stochastic phantoms (P114, P121 and P123) are presented in Figure 3.31. One
phantom (P001) is presented in 3.3.5, and the remaining ninety six stochastic phantoms are presented in Table
3.5.

600 L " n L " n 600 " " " " L " n n 800 L n L " s " L ,
800 600 -400 200 o 200 400 600 800 800 600 -400 200 [ 200 400 600 800 00 600 -400  -200 [ 200 400 600 800

P114 P121 P123

Figure 3.31: Three stochastic phantoms from a set of feasible imitations

Figure 3.31 illustrates three stochastic phantoms (P114, P121 and P123) selected from the set of one hundred
and eighty five feasible imitations.

* The Kolmogrov-Smirnov test is a built-in function named kstest2 in MATLAB® Statistics Toolbox. This built-in function is used directly
with two data vectors as input and the Boolean test result h=h;,,; as output. The default setting ‘unequal’ for two-sided tests are kept
unchanged.
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3.3.5 SUMMARY - Reparameterization - RESULTS

From a sample of one hundred wheat grain cross-sections it was posible
to reparametrize a master mesh with thirty six natural parameters into
one hundred stochastic phantoms. The imitation process was governed
by the concept of imitation. It was found that the area distributions for a
set of feasibel Gauss distributed imitations did not differ significantly
from the area distributions of the observed wheat grain cross-sections.
The KS-test result for distribution of cross-section areas, as well as the KS-

test results for distributions of segment areas, concludes this case study.

Distributions of Cross-section Areas

Empirical COF

— )
O3 e F21)

123456780910

A KS-test showed that the cross-sction areas did not differ at 5% significance level.

Distributions of Segment Areas
Observations Imitations

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6
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Six KS-tests showed individually that the values for the segment areas did not differ at 5% significance level.
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Table 3.5: Ninety six stochastic pantoms from a reparameterized set of feasible imitations*’
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** The ninety-six stochastic phantoms are drawn from a set of one hundred and eighty five feasible imitations. In ANNEX 17 a
list of stereo-microscopic images for the sample of one hundred “real” wheat grain cross-sections is found.
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4 DISCUSSION & OUTLOOK

This chapter includes a discussion of the study methods as well as key findings from the case study on wheat
grains and the finding are discussed and put into broader perspectives. Emergent questions are listed in section
(4.1), followed by perspectives in section (4.2).

4.1 UN-ANSWERED QUESTIONS

Landmarks

Is it possible to identify natural shape characteristics for natural objects other than Triticum aestivum with its
characteristic “bow-line” landmark? There is a long tradition for landmark identification using human beings
(see 1.3.2.3). Therefore, it is likely that landmarks can be defined for other natural objects as well. However,
the quality of these landmarks for use as controls in a master mesh needs further consideration.

Distinctiveness

Wheat farmers state that the “bow-line” of a wheat grain has an inevitable shape characteristic. It can be
stated that the “bow-line” has a high classification quality since it enables characterization of a subjective
shape pattern or traits. Furthermore, if these characteristics appear distinctively for every biomass object in a
representative sample, they are classified as good landmarks. For the cross-section of wheat, the "bow-line"
will appear as a landmark vertex whereas it will appear as a landmark edge for the surface of a grain. Biometric
distinctiveness is characterized by significant variation, or difference, relative to some reference metrics for the
object. The "bow-line" characteristics possess a high degree of distinctiveness since the distance from its
landmark vertex to the outline convex hull is bigger than all other distances from vertices around the outline.
Farmers state that the "bow-line" is not only a distinct pattern for wheat, but also for barley, oats, and other
grains. Therefore, the "bow-line" could presumably be a general convex hull classifier for various grain species.
Furthermore, the "bow line" biometrics can be used as a reference for other landmarks that are not classified
by distinctiveness, but by their dimension relative to their bounding box, or, to the bounding rectangle for grain
cross-sections. However, further investigation into whether or not the distinctiveness of landmarks from new
natural objects is strong enough to define algorithms that have the potential to enable their automated
identification and further parameterization?

Measurability

In the study of grains of wheat, some geometrical characteristics can be classified from their dimension. These
characteristics are also called landmarks. However, these landmarks do not possess a high degree of
distinctiveness. Instead, they are characterized from their position on the edge of the bounding box of the
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object. Today, landmarks for grains, which are based on bounding, are based on conventionally maximum and
minimum Feret diameters. These metrics are defined from their axial dimensions such as length, width, and
height (or thickness). In that resepect they represent bounding classifiers. The measurability of such bounding
classifiers is important since it enables comparison with existing measurements. For seeds, bounding
measurements are anchored in a long professional tradition. Standardized measurement techniques and
measurement plans are developed over decades. Therefore, the landmarks based on bounding boxes in
numerical approaches should be easily measureable from relevant sensors to ensure validation. Modern
sensoring methods and principles include, among others, calipers, dielectric shift sensors, image recognition,
acoustic transmission loss spectrum (TL), and X- ray computer tomography scanning (X-ray CT). Recent studies
(Fératlégil-Durmus et al., 2010) based on image recognition of various seeds show that axial bounding can be
used to model the shape by ellipsoids. These ellipsoid models estimate thousand seeds weight (TSW) with good
precision when compared to conventional mass measurements. In the case study on wheat grains, the
imitation meshes, as well as the materialized phantoms, carry this measurability automatically. This is due to
the bounding box parameterization, which is built into the master mesh. However, new case studies must
investigate which relevant metrics can be built into a new master mesh in order to enable such measurability
relative to the objects traditional metrics.

Robustness

One key assumption behind natural parameterization is that carefully selected classifiers carry an adequate
amount of information to model geometrical objects with detail, accuracy, and robustness. The robustness is
regarded high for biometrics that are not subject to significant changes over time. Therefore, "bow-line"
biometrics are assumed to possess high robustness since bio-chemical or bio-mechanical changes, such as
aging, diseases, or environmental exposure, are not supposed to change its distinctiveness during the period
where measurements are taking place.

Since “bow-line" biometrics are assumed to possess high robustness, the extracted master mesh is also
assumed to pertain high robustness. In general, this might also lead to robust imitations for metrics such as
axial dimensions, surface area, and volume. Dimension landmarks in 2D can be defined from two dimension
metrics, i.e. width and height. For 3D models, at least three dimension metrics are required.

Mathematically, dimension landmarks are parameterized by dimension parameters relative to the location, or
relative to the orientationof the bounding frame. If these orientation and location parameters are extracted
with small standard deviations, it indicates that the bounding box is also a robust approach for natural
parameterization using dimension parameters. Therefore, in relation to robustness of the extracted landmarks,
it must also be investigated whether or not a bounding box approach is applicable?

Number of degrees of freedom

When the modeler requires a small degree of customization and perturbation modeling, it might be rational to
keep the number of landmarks down to a minimum so the number of “tuning factors” is small. Alternatively,
when high degree of freedom is required the master mesh might include a high number of landmarks in its
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parameterization. In general, the choice of an appropriate set of parameters must rely on a sensitivity study
and finding a balance between modeling accuracy and economy. At this stage, neither estimates for
computational costs, nor any sensitivity analysis have been performed. Does the fineness of the master mesh,
measured in terms of the number of degrees of freedom, influence the final result significantly? This is hard to
anticipate since in multiresolution modeling, the final result may be influenced more by the iterated parameter
setup than the number of freedom associated to the master parameters.

Extraction of iterated parameters

Algorithmically, the extraction of iterated parameters represents a highly non-linear multivariate optimization
problem. Let it be assumed that this optimization includes a finite set of iterated meshes. Unfortunately, a high
number of runs (which is costly) might minimize the maximum error of replication. It is not simple to anticipate
the optimal number of iterated parameters. Furthermore, how sensitive is the maximum fault of replication
relative to the replication extremal?

However, the actual replication extremal found is not only dependent on the number of iterated meshes
available, but also on the choice of the optimization method applied. It seems that purely gradient based
methods should be avoided. In fact, a thorough sensitivity analysis of the choice of optimization algorithm for
natural problems with many distinct minima and non-distinct global minima is needed to ensure that the
extraction of iterated natural parameters becomes reliable.

Sensitivity analysis

Sensitivity analysis might also be relevant in attempting to answer the following questions: which parameter
among the different types of parameters can be identified as the most influential during parameter extraction?
and, which parameter drives the most variation in the reparameterization process? Such questions, which may
be answered by sensitivity analysis, are important issues for future study. In general, many different sensibility
indexes are in use and several sensitivity methods are available. For a thorough discussion on the of choice of
such sensitivity index and methods see (Saltelli, 2009). A starting point for a reparameterization analysis might
be to use a sensitivity index s, for each parameter g, by measuring the effect on a re-parameterized domain

Q_ of perturbing the realization q; of Q by a fixed fraction of the mean values o which forms the phantom.

_0a Ko
0q; M,

Sidx

However, only a thorough sensitivity study could reveal if this is a proper starting point.
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Texture modeling alternatives

As an alternative to roughness modeling by pure Frenet subdivision, various IFS approaches seem easy to
integrate. An illustration of the impressive texture capabilities of one such approach is previously defined in
Figure 0.4 (right). Here, a set of control points are used to define the desired roughness pattern of the surface
(Gouaty, 2009). Such IFS approaches can easily be integrated in Frenet subdivision either at the limit level, or at
preceding levels of quad and tri-meshes. However, currently unidentified meshing approaches might also be
relevant.

Subdivision alternatives

Other similar algorithms based on formulas from analytic geometry can be developed for standard geometries
such as: elliptic cylinder, elliptic cone, hyperboloid of one sheet, hyperboloid of two sheets, elliptic paraboloid,
and hyperbolic paraboloid. Also, irregular curves can be formed by direct integration, as illustrated in ANNEX 7,
by post manipulation of NURBS or by implicit functions (also known as implicit surfaces) (Bloomenthal, 1998),
(Osher & Fedkiw, 2003), (Sclaroff & Pentland, 1991). However, it is not likely that complex natural objects can
be modeled from analytic expressions, even as mean value approaches.

Goodnes of imitation alternatives

How can natural and abnormal natural variations be generated so that they reflect observed variations? Is the
proposed concept of goodness of imitation applicable for a wide range of objects? Is it possible to set up
standardized decision rules for validation of generated phantom variations? How can a generated variation
spectra be accepted/rejected statistically in a compliance test with the observed variation spectra for a given
biomass object? Can standard performance metrics such as false accept rate (FAR), false match rate (FMR), or
equal error rate (EER) be applied on imitation modeling too? These questions are all considered important
areas for future research.

Random number generation

In natural parameterization, imitations are created from random number generation. However, in the alpha-
bet decomposition, a thorough study on the convolution of PDFs required is still missing. A number of further
research issues have arisen in that respect. Stating these as questions: Is the efficiency of imitation weakly or
strongly dependent on the used PDFs? Is it possible to optimize the alpha-beta decomposition by standard
random number generators, or must new randomization algorithms be developed? How does the aspect of a
finite realization space influence the abnormality modeling? Can the bounds for realizations be loosened
without loosing control of the generated phantoms?

The many open scientific research questions listed above clearly indicate that natural parameterization is a piloting study.
Further research and case studies must be conducted to further advance the field of natural parameterization.
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4.2 PERSPECTIVES

The novel Baek-Lee method and the natural parameterization approach might be the starting point for future
experimentation on pseudo-natural objects. It is expected that todays empirically based research on natural
objects will be replaced with experimentation on phantoms. In the distant future it is possible that experiments
on real human beings, animals, biomasses, vegetation, soil, fracture, flows, or other objects and phenomena
with an underlying stochastic behavior, will be conducted using advanced multi-physics software and
geometrically modeled stochastic phantoms. Such experimentation on stochastic phantoms will provide new
opportunities in experimentally based sciences and perhaps assist in the explanation of a number of todays
unsolved problems. In this study, a very simple planar 2D case study was performed. However, case studies on
rough surfaces and the volumetric distribution of matter in solids might revise the proposed formulations of
“goodness of replication” and “goodness of imitation”. In particular, the inclusion of indicator parameters
other than moment of area and perimeter (as used in the present case study), is an obvious area to be studied
in the near future. Multi-subdomain and multi-object studies are also relevant. However, they are much more
complicated than the one-domain cross-section problem investigated here. After such multi- studies, future
research will also need to include cluster and subcluster geometries.

Cluster and subcluster modeling

Domain modeling including clusters and subclusters is in the
pipeline for further study. However, in studies including flow of
objects, the dynamic contact problems are expected to be a
huge challenge. Modeling of the tortuous geometries is further
complicated because the mutual connectivities must be
updated incrementally over time.

In Biosystems engineering, flow modeling through non-solid
domains is relevant for drying of grain clusters, for water and
air flow trough soil, and for acoustic transmission through grain
and soil clusters.

Even the geometric modeling of such stationary cluster
constellations might require some new strategies in order to
form the connectivity arrays. When the cluster constellations
themselves are assumed to be stochastic by nature, it is likely

to complicate the tortuous geometry modeling even further.

Flow through a stationary cluster constellation

Furthermore, some of today’s animations and animated movies, which include models of natural objects and
phenomena, might benefit from some of the geometrical features included in natural parameterization.
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5 CONCLUSION

In this thesis, a novel generic approach for imitation of geometrical objects with random variation has been
presented. The approach is called “natural parameterization” and its objective is to imitate the geometry of
“real” objects that are characteristically unique and possess an underlying stochastic behavior. The stochastic
behavior was modeled by a set of independent random variables called the natural parameters. In popular
language, the constellation of these parameters is called the “geometric DNA” of that object. Two key steps are
comprised in the novel approach. During the first step, called parameter extraction, the natural parameters of
an object are identified from scanned data. In the second step, called reparameterization, these extracted

|II

parameters are reused to simulate “new” phantoms that imitatate the “real” object. To bridge the two key
steps, chemometrics was applied and a new stochastic decomposition technique was introduced. Not only
does this technique compensate for the numerical difficulty induced by the numerical iterations, it also allows
for modeling of extreme geometries such as natural abnormalities. Technically, the natural parameterization
approach was used as a theoretical framework for the development of dedicated algorithms for a case study. In
the following section, conclusive remarks are given on the two key steps of natural parameterization, as well as
on some algorithmic details and complications and their application as a tool to study the rough outline of

wheat grain cross-sections.

The input for natural parameterization was found to be a mix of scanned data and expert knowledge

Since the geometries used must be tetrahedral volume meshes, triangulated surface meshes, or simple
polygonal curves, the “real” objects were preprocessed prior to the initiation of the parameter extraction.
However, in this work, case studies from volumetric data or surface data from rough geometries are not
included. Only planar polygonal curves are included in the case study on wheat grain cross-sections. This case
study is based on a sample of one hundred cross-sections of Triticum aestivum. The individual cross-sections
are captured by a stereo microscope. One of the first observations was that the captured cross-section outlines
were rough, tortuous, and included a characteristic discontinuity. Amongst farmers and other experts, this
discontinuity is known as the “bow-line.” Experts state that this “bow-line” is a unique characteristic of wheat
grains.

Based on this expert knowledge, a new algorithm was developed which was able to identify the “bow-line”
automatically. However, one severe complication was that the pixel outlines appeared very diffuse in the
images. Therefore, investigations on background settings, post-coloring of test specimens, and natural self-
distortion were performed. In an attempt to enhance the outline contrast, a flatbed scanner was also used to
capture supplementary images. Due to the high degree of self-distortion, it was concluded that automatic
outline detection by standard software was not reliable. It was found that the extracted outlines did not match
the outlines recognized by the human eye. Therefore, it was decided to extract the one hundred cross-sections
by manual detection. This detection produced one hundred polygonal point sets that could be used directly as
input for a dedicated identification algorithm.
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The parameter extraction from rough geometries was designed to ensure maximum “goodness of replication”

This dedicated identification algorithm was able to identify the “bow-line” from simple distance calculations
between the polygonal points and a convex hull. After this, an anti podal pairs constellation was used to specify
the orientation of the polygonal bounding rectangle. From this orientation specification, it was possible to form
a unique frame of reference for each single grain. Using the “touching points” between the bounding rectangle
and the input polygon, five additional points were then automatically identified. Hereby, the set of landmarks
was extended to a set comprising six parameters. These six landmarks were subsequently used to establish six
so-called “tortuosity poles” representing a geometric constellation like a coarse FE mesh. In contrast to the
nodal points used in FE formulations, these new tortuosity poles also include geometric information on
orientation quantities. In 3D, these orientation quantities cover tangents, normals, binormals, curvatures, and
torsions. However, for the planar wheat grain, cross-sections torsion was not used.

By introducing such tortuosity poles, it was found that the extra information on geometric orientation could be
captured and used to define explicit geometric G* and G* continuity. This explicit information on continuity was
later found to be an important starting point for non-linear extrapolations. From the landmark parameters and
the various orientation parameters, a complete set of so-called master parameters was then formed. These
master parameters represent a coarse mesh in parameter space similar to the master elements used in FE. For
the wheat grain cross-sections, the master mesh was further subdivided into six segments. By this
segmentation, each wheat polygon was split into six rough curve segments. An important finding was that
when the modeling was based on tortuosity poles, the mathematical representation of these six curves was
exactly the same for the bow-line pole with the discontinuity as it was for the other five poles with G
continuity.

Technically, this means that in natural parameterization, rough and smooth geometries are modeled in the
same way. This geometrical invariance is due to the use of orientation invariant bi-meshes bounded by frames
of poles. For the six rough grain segments, a novel iteration approach called “Frenet subdivision” was applied
as a generator to obtain rough curves. It was found that this generator was able to generate rough curves that
were able to fulfill the geometrical end conditions at the bi-mesh poles. For the wheat grain curves, three so-
called iterated parameters were introduced in the parameterization of the roughness. In this way, the degrees
of freedom were dramatically extended. Six segments with three parameters added an extra eighteen
parameters for each of the one hundred cross-sections.

To determine these parameters, which control the shape and the roughness for the curves, a novel iterative
optimization process was formulated as a variational problem. This problem is called a replication problem and
it is numerically formulated as a multivariate non-linear optimization problem. In the formulation, two
complementary measures, called the efficiency of replication and the fault of replication, are introduced. The
purpose of this formulation strategy is to assure that the result from the optimization process is a single
extremal. This is achieved by claiming that the extremal is a particular rough curve that possesses the minimum
tortuosity amongst the set of feasible rough curves with the highest efficiency of replication. For the case
study, the maximum relative error for replication of the cross-section area was less than one percent. The
fitting was in fact indirect, since the goodness of replication was based on a minimization of the differences of
five cross-section properties for the six segments. These properties included four moments of area metrics and
the perimeter.
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In conclusion, it was found that the developed identification algorithm was able to extract eighteen master
parameters and another eighteen iterated parameters in total. This means that an automatic parameter
extraction of thirty-six natural parameters for each cross-section of the one hundred wheat grains was
established. Therefore, the total number of extracted data points reached thirty six hundred. Finally, these data
points were stored in a bank of parameters for treatment by chemometrics and for further stochastic
decomposition.

A novel stochastic decomposition compensates for numerical errors induced during roughness modeling

Unfortunately, the iterative algorithms used for the generation of rough surfaces and solids by nature induce
some numerical errors. Specifically, this numerical complication arises when two or more rough curves are
required to pass through a common point as required by subdivision. In terms of small pole translations, this
error is compensated for via an adjustment of the rough curves. Modeling wise, these adjusted translations
were perceived as small fluctuations around the mean value for a random roughness variable. Using a minor
modification of the well-known Reynolds decomposition, it was found that these numerical fluctuations could
be compensated for in a rational way. More specifically, a random roughness variable was first decomposed,
before being used for simulation in two individual parts. In the first part, a small fluctuation was simulated by a
random number generator. It used the overall mean value and the small part of the standard deviation as
input parameters. In the second part, the dominant fluctuations of the rough geometry were simulated by a
major contribution of the variation. This variant of Reynolds decomposition is called alpha-beta decomposition.
Here, the alpha part represents the dominant fluctuations, whereas the beta part represents the non-dominant
fluctuations. However, before the parameters from the bank of parameters were used for stochastic
simulation, it was verified that they were weakly correlated. The maximum correlation coefficient between
pairs of the eighteen master parameters was found to be 66%. As a whole, the parameters were considered a
set of independent random variables.

The novel approach was able to simulate “look-alike” phantoms from the bank of natural parameters

The mean values and the standard deviations were drawn from the parametric bank. The natural parameter
made up of thirty-six parameters was all modeled by the standardized uniform distribution during all Monte
Carlo simulations. First, a mean value phantom of the cross-section was generated. It represented a pseudo-
stochastic representation of the one hundred wheat grains. Then, one hundred “new” wheat grains were
simulated in accordance with the new concept of goodness of imitation. It was found that the distribution of
the variations in the geometry of the “new” grains did not differ significantly from the distribution of the
variations in the “real” grains. The tests were based on area variations of the six segments and of the area
variations of the entire cross-section. The two-sample Kolmogorov-Smirnov test at a significance level of 5%
was used. The test showed that for the six segments, as well as for the entire cross-section, the null-hypotheses

IM

(“the two area distributions were equal”) was not rejected for the corresponding data vectors of area

variations. From these results, it was concluded that the reparameterization process was able to simulate
III

“new” wheat grain cross-sections with high efficiency of imitation based on a sample of one hundred “rea
wheat grains.
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Closing the research gap between today’s smooth semi-deterministic geometry modeling and tomorrow’s rough stochastic
simulations

As a whole, it has been shown that a conglomerate of dedicated algorithms was able to perform an extraction
of natural parameters, and reparameterization into stochastic phantoms, from wheat grain cross-sections.
Technically, this algorithm was developed using observation meshes and expert knowledge as INPUT and new
stochastic phantoms as OUTPUT. It was further found that the developed software was able to perform these
tasks automatically.

With regards to the case study on wheat grains, a few general aspects are notable:

From an INPUT set of one hundred stereo microscopic image-files of wheat grain cross-sections, and expert
knowledge on the landmark called the “bow-line,” it was possible to extract the same set of natural parameters
for each of the one hundred image files. Based on the parameter extraction process, an important finding is
that “at least one unique parametric constellation exists” for all objects in the sample investigated.

From the bank of parameters, Monte Carlo simulation was later applied to simulate the OUTPUT, consisting of
a set of “new” wheat grain cross-sections. It was found that these “new” wheat grain cross-sections fulfilled

|II

the requirement on uniqueness. In conclusion, the “new” stochastic phantoms were able to imitate the “rea

|II

wheat grain cross-sections in such a way that they all differed from each other, and from the “real” objects.

Ultimately, the piloting INPUT/OUTPUT algorithm®® was developed to model the rough geometries. It unifies
the set of identification algorithms from the parameter extraction process with the set of simulation algorithms
from the reparameterization into one stochastic approach.

The number of unanswered questions that emerged during this study is larger than the number of answers
found by the research. Therefore, it must be concluded that the field of natural parameterization is still in its
youth.

0 Algorithms have been developed within the MATLAB® environment. The graphics presented has been handled by MATLAB® line
and patch objects. Graphics settings for FE post-processing are stored in the MATLAB Handle Graphics® format.
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6 ANNEX

ANNEX 1 DISCRETIZATION OF NATURAL GEOMETRIES
This annex provides a few details on some of the main concepts for discretization of natural geometries in

order to supplement the brief description given in the Methods chapter.

ANNEX 1.1.1 Configurations and Constellations

The term natural configuration is used to designate the material or substance distribution within clusters,
subclusters, object/species or subdomains thereof. The term natural constellation, on the other hand, is used
to designate the geometrical distribution in time of the space, which contains the material or substance.

ANNEX 1.1.2 Geometric Continuity

Here, geometry models in three spaces are said to possess geometric continuity G" of order n. Higher order
geometric continuity n>3 is not considered here. In the discrete formulation used here, continuity is restricted
to the close neighborhood of tortuosity poles. The geometric continuity of an embedded curve is defined in the
following table.

Table A. 1: Geometric continuity in the close neighborhood of tortuosity poles

Order | Symbol Term Description
n=0 Vertex Zero order geometric continuity G° exists for an embedded curve C. passing
continuity

0 through a vertex of a tortuosity pole P_ if, it is bound by one or two of the pole
tangents. This is also called zero-order G-continuity of C_ at P_ or simply vertex

continuity.
n=1 Tangent First order geometric continuity G* exists for an embedded curve C. with G°
continuit
G y continuity at a tortuosity pole P_ if, it is bound by one pole tangent or by two
aligning pole tangents. This is also called first-order G-continuity of C, at P_ or simply
tangent continuity.
n=2 Curvature Second order geometric continuity G* exists for an embedded curve C. with G
continuity

GZ continuity at a tortuosity pole P_ if, it is bound by one Frenet triple with non-zero
curvature or by two Frenet triples sharing the same center of curvature. This is also

called second-order G-continuity of C, at P_ or simply curvature continuity.

NOTE Geometric continuity is invariant to the underlying parameterization of the geometry.
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ANNEX 1.2 DOMAIN DEFINITIONS

The discretization of natural geometries includes both domain and boundary objects. The discretization is
hierarchical in nature and affects the resolution level by adding more and more detail into the final model. As
mentioned in the introduction, the hierarchical discretization model for 3D volume as it appears in the
software package COMSOL® Multiphysics is adopted. This discretization model includes one type of domain

objects called subdomains and three types of boundary elements namely: faces, edges and vertices.
To facilitate the modeling of natural objects, it is rational to extend the above model with new elements.

Three domain elements called cluster, subcluster and species are added. The nomenclature used for these extra
elements is intended to be in line with the well-known multi-physics notation for objects in R*. Some
boundary elements are also added. These elements include: Frenet quantities, and two hybrid primitives called
tortuosity poles and tortuosity elements. They are introduced as the general basis for multiresolution
parametric subdivision. For the irregular shape, modeling tortuosity metrics are also included.

The extended geometric discretization setup is designed to fit conventional multi-physics modeling. As it
appears, the core of the notation is adopted directly from COMSOL® Multiphysics.

ANNEX 1.2.1 Regular and irregular meshes
A mesh Mis a numerical representation of a discretized constellation. In classical FEA, such meshes are usually
defined by: coordinate arrays X of location vectors, and connectivity arrays C connecting the nodal points. For

tortuous meshes M_, this classical mesh concept is extended to represent a general information set comprising
not only location vertices V, but also orientation vectors such as frames TNB, curvatures X, and other

parameters which are useful for the modeling of tortuous geometries with smooth or rough characteristics.

ANNEX 1.2.2 Cluster
A cluster X, is a constellation of species that are connected at contact zones only through friction, cohesion or

adhesion.

The species of a cluster does not necessarily belong to the same genus. In general, clusters of natural objects
contain impurities i.e. proportions of species which do not belong to the same genus as the majority of species.
Therefore, a cluster is considered non-homogenous in general. Generically, a cluster represents the highest
level in the discretization hierarchy.

ANNEX 1.2.3 Subcluster
A subcluster Q,, is a constellation of a homogenous subset of species sampled from the same cluster, i.e. a

sample without impurities which means that it models individual species that belong to the same genus only.
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ANNEX 1.2.4 Object/Species

An object/species ¥, is a geometric model of a single natural object. Generically, species ¥, are children of
subclusters. Statistically, a species can often be seen as an element randomly taken from a subcluster. In
Biosystems engineering, a species usually represents the geometric model of a biomass such as a grain of
wheat, rice, maize, or other seeds. However, it might just as well represent a grain from a soil sample or other
natural objects.

ANNEX 1.2.5 Subdomain

A subdomain Q represents a characteristic part of a species. Generically, subdomains Q are children of
species W, . Therefore, species are said to be discretized into subdomains. A subdomain is not a member of
any special element group. At least one single subdomain must be specified in a natural parameterization
model. Therefore, subdomains represent the master elements of any 3D parameterization; while clusters,
subclusters and species are all super elements formed as geometric super sets of subdomains.

In a multi-physics context the modeler assigns characteristic physical properties of the natural object for each
of these subdomains.

ANNEX 1.3 BOUNDARY DEFINITIONS
Boundary primitives 6°Q, pe{1,2,...,5} define the geometrical bounds of tortuous domain objects €2 . The

various boundary primitives are sometimes referred to as geometric primitives.

Groups of boundary primitives
The boundary primitives are grouped as:

e Derived primitives (syn. topological primitives): Faces and edges

e Core primitives: Vector primitives (location and orientation vectors) and scalar primitives (generalized
curvatures and tortuosity metrics)

e Hybrid primitives: Tortuosity poles and tortuosity elements

ANNEX 1.3.1 Faces

Natural surfaces can be discretized into face elements 5'Q2 (see ANNEX 16.2), which are simply polygons. Faces
are first generation elements of subdomains, which they bound geometrically. Generically, face elements are
children of subdomains. Sometimes, it is rational to define triangular and quadrilateral face elements by two
natural coordinates or by two barycentric coordinates.
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ANNEX 1.3.2 Edges
Curves C_ are discretized into constellations of edge elements 0°Q . Edges are second generation elements of

a subdomain and bound the face elements of the subdomain. Generically, edge elements are children of faces.
Sometimes, it is rational to define edges by a single natural coordinate or a single barycentric coordinate. In
natural parameterization it must be emphasized that curves of natural geometries are assumed to be non-
smooth.

ANNEX 1.3.3 Vectors
Vector primitives 5°Q are third generation elements of subdomains. They bound the location and orientation
of edges, which will be defined hereafter.

Location vectors

Location vectors are position vectors and are symbolized here by r,. The initial point, i.e. the tail of such a

location vector, is assumed to be located at the origin of a Cartesian coordinate system. The terminal point, i.e.
the tip, is assumed to locate an indexed point termed a vertex and is symbolized by V.

The notation master vertex V° , is used to designate a vertex in a master mesh M°.

NOTE In FEA and subdivision, various synonyms for vertices such as nodal points, nodes, master nodes, control points or
control vertices are in use.

Orientation vectors

A chord in a mesh is an oriented line segment defined from a location vector by a normalized direction vector

e,; oriented from vertex V, towards a neighboring vertex V;. This unit vector e,, =—e,, is said to radiate

positively from V, towards V,, and negatively from V, towards V,.

A face normal N, is a surface normal evaluated at the corner vertex of an approximating rectifying plane

spanned by two edges.

An edge normal N; is a surface normal evaluated at the edge end of an approximating rectifying plane

restricted to the neighborhood of that edge end. An edge normal fulfills the orthogonality and perpendicularity
conditions.

The central vertex normal or simply the vertex normal N, is a normalized surface normal evaluated at the

vertex of the approximating rectifying plane in the close neighborhood of that vertex. By default, the vertex
normal is used to represent the outward central normal of smooth analytic surfaces.
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ANNEX 1.3.4 Generalized Curvatures
The generalized curvatures 5*Q) represent the fourth generation scalar property of a subdomain. Generalized
curvatures seem to be of utmost importance for natural parameterization. Therefore, the concepts of Frenet
orthogonalities, Frenet order transformation, and the Camille Jordan generalization (previously defined) are
essential in natural parameterization.

Frenet based core primitives

Let the core primitives be a group of objects used to define the end of an edge spanned by two vertices of a
discretized geometry so an end tangent T, and an end normal N, represent estimates of the corresponding
Frenet normals. The corresponding end vertex is termed a Frenet vertex. The triple of orthogonal right handed
orientation vectors TNB are termed a Frenet frame.

A summary of such Frenet based core primitives for natural geometries are listed here for convenience:

e V- \Vertices. (Locate edge ends).

e T-Frenet tangents. (Orientate normal planes).

e N- Frenet normals. (Orientate rectifying planes).

e B - Frenet binormals. (Orientate osculating planes).
o {F}-Frenet frames. (Orientate edge ends).

e x - Conventional curvature (Measure the variation in the tangential direction T’ after N)
e 7 -Tortuosity (Measure the variation in the binormal direction B’ after N)

Note that two other types of normal vectors are also in use, namely: vertex normals N, , and face normals N.
(see ANNEX 1.3.3).

Remarks on points and vertices

In the modeling of natural geometries, a point is defined as a location in space that is NOT connectively
constrained by other objects. However, when constraints are applied its status changes and it becomes a
location vertex, which is explicitly included in a connectivity array. In FEM, such location vertices are usually
referred to as nodal points. When biomasses are observed, landmarks are identified as points or vectors and
are used in the discretization process. In mathematics, such landmark vertices are usually termed invariant
points or fixed points.
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ANNEX 1.4 OVERVIEW - Domain and Boundary Elements

The generic hierarchy amongst geometric objects is summarized below.

The domain hierachy

e Clusters X, are parents of subclusters.
e Subclusters ), are children of clusters and parents of species.

e Species ¥ are children of subclusters and parents of subdomains.
e Subdomains Q are children of species and parents of faces.

The boundary hierachy

e Faces are children of subdomains and parents of edges. A non-subdivided face is symbolized by F° and
termed the master face.

e Edges are children of faces and parents of core primitives. A non-subdivided edge is symbolized by E°
and termed the master edge.

e Core primitives are children of edges. Core primitives have no children themselves. Core primitives
include vertices, and Frenet frames (which include Frenet vectors i.e. Frenet tangents, Frenet normals
and Frenet binormals). Furthermore, Frenet chord vectors, vertex normals, and face normals are
considered core primitives. In section 2.6 it is demonstrated how core primitives can be parameterized
and thereby form the basis for parametric mesh generation.

ANNEX 1.5 Other Special Notations

e A boundary segment O represents a sub-region. It can be a line segment, a surface segment, or a
volume segment.

e Cells represent a special group of boundary objects that contain faces, edges and vertices only.

e Atriangular face includes three edges and three vertices.

e A quadrilateral face includes four non-intersecting edges and four vertices.

As an alternative to a tagged data structure, standard FEM matrices can be used to describe the fundamental
data flow. These more conventional matrix descriptions are used in this presentation since they usually ease
the reading.
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ANNEX 2 FAULT OF REPLICATION MODELLING

In this annex, details for determination of the total fault of replication are provided under
the assumption that planar cross-section segments are used as control geometries. The

total fault of replication ¢, in (2.2), for any segments is defined as the average of a

number of replication faults taken at relevant levels of refinement for that segment, i.e.

¢ =%Z &, kel 1, (A1)

relevant  Jj=1

where the relevant levels of refinement are

L B Lt S R S L, (2)

In general each segment fault gi';jj, j=1,...,n is supposed to go towards zero

relevant

k{ — kr kT kT
Oy, =wWree" <g7 ., Vk, e{krmmm }, (A.3)
where
k k k k k &
w™ =[W1’,W2’,..., Wy W, ], ZWI. =1 (A.4)
i=1

is a row vector of weights and

.
k k k k k
€ =[51’,527,..., E e, & ] (A.5)

is a column vector containing the n,; individual faults.
Each individual fault is defined as

R (A.6)

kT P kT
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where qz";’,. represents a segment indicator reflecting the discrepancy between a generated indicator metrics

Mys and an observed indicator metrics m;, as
. M,
. phan,i .
U5, = —% -1, i=1, .., ng (A7)
chst
NOTE In contrast to the conventional relative error, the segment indicator metricq; ; can take negative values. From a

parameterization point of view such indicator metrics are parameters. However, indicator metrics are not considered to belong to the
set of natural parameters.
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ANNEX 3 NATURAL INDICATOR METRICS

ANNEX 3.1 MOMENTS OF AREA
As indicator metrics for cross-section areas, the various moments of area for a closed polygon defined by

Vv, ie{l,...,n\,},v1 =V, are used. In general, (Soerjadi 1968), any such moment of area identified by an index

1

couple (p,q) is determined by numerical recurrence relations which estimate the analytical formula
My zjjx”yqudy (A.8)
A

The six moments conventionally used in science and technology are given by the following index-couples:

(p.0)<{(0,0),(0,1),(1,0),(0,2),(2,0),(1,1) (a9)

ANNEX 3.2 SOERJADI RECURRENCE RELATIONS
Details for the technical computing including tags and the Soerjadi recurrence relations are defined here for
convenience. The Soerjadi formulas are defined for a closed non-intersecting polygon.

X, =V X =V i =V, v, =V, (A.10)
d=x,y, =Xy, (A.11)
Table A. 2: The first six Soerjadi recurrence relations
P9 Tag Recurrence Relation
0,0 Area My, , =Mss, +d/2
st ¢ _ d
0,1 FirstMomentx My, =M +g(y1 +y2)
i _ d
1,0 FirstMomenty My, =M .|.g(x1 + Xz)
d d
0,2 SecondMomentX My, =My +E(y1y1 +yY, + yzyz)
q d
2,0 SecondMomenty My, =My +E(x1x1 + X, X, +X,X, )
d d
11 Productwomentxy Mo, = Mo, 42 (6 (203 59,) £ (v +20, )

186



ANNEX 3.3 REFLECTION INVARIANCE

The polygon must be non-self-intersecting and closed. In principle, the Soerjadi moments of polygons are
sighed moments of area. This means that the sign changes, if the polygon vertices are numbered in opposite
order. However, reflection invariance (Pavsic, 1974) is ensured in the natural parameterization algorithm by
reversing signs of all moments if the area is found to be negative.

ANNEX 3.4 STANDARD INDICATOR METRICS

Table A. 3: Standard indicator metrics

Symbol Tag, Tech symbol Formulas

*
M5 5 centroidx, C, M5, =M, m{;m
Mg 3 6t Centroidy, Cy My 3 =M ml}i,n

1 2 2
mU,G,std PrincipalsecondMomentX, Ixx mU,G :E(m64 +m65 +\/(mU4 _mUS ) +(KU)

1 2 2
M5 ;40 | Principalsecondvomenty, [ Ms 5 :E[mﬁ‘ +my, +\/(m65 —my, ) +(Kz5)

The factor K used in the formulas for the principal second moments is defined as

Ky =2 (mol'1 —Mes, My, Mys, )

NOTE The algorithms developed during this study include the above four metrics. Above these four moments of area
metrics the perimeter is also included. In future developments some of the metrics defined in 1.3.3 are likely to be included too.

*The area and two centroid second moments (displayed in grey) are included for reasons of completeness only.
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ANNEX 4 ANALYTICAL SOLUTION OF THE REVERSED DIDO’S PROBLEM

Figure A. 1: The analytical solution to the “reversed” Dido’s Problem is a circular segment

Let Dido’s problem see (2.2.4) be "reversed" in the sense that the "reversed" task is to find a particular curve

- L
C. amongst a set of feasible curves C, which minimizes the arc-chord tortuosity given by 7 = ¢ when the

Sy

area A_is kept fixed at an observed value A, between the curve with length L. and the chord C, with a
given length /. . Furthermore, let the chord ends be bound at the same distance 0.5/, to its middle point. The

problem is described in rectangular coordinates x = x(¢),y = y(¢), where ¢ is a parameter. The vector

r =r(t) =(x(¢), y(t)) is a position vector representing the points on any feasible curve C .

This isoareametric problem is now defined as to minimize a tortuosity functional when the area under the
curve is fixed.

Since only one constraint n, =1 exist (1.12) can be presented in its simplest form:

n,=1
L=L, - Z ﬂU,iLU,i =L - /16,1LU,1 (A.13)
i=1

In this first application of the concept of goodness of replication the tortuosity functional J_ is chosen as the

simple arc-chord tortuosity.

L 2 1 1
S == /—\/x’2+y’2dt — LT=/— x?+y"” (A.14)

/ ta
c, c, c,

However, other tortuosity metrics exist, see 1.3.3.7.
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The fixed area constraint is given by

1 s 1 1
A :LEH’XU”": JE("V'WX')df =51 = A > L5 =/15(Xy'—VX’) , A=A, (A.15)

ta

The function L for the Euler-Lagrange equation then becomes

L =Ii x? +y" —l%(xy’—yx’) (A.16)

¢

Setting t=¢ the Euler-Lagrange equations gives the following two simultaneous second order differential

equations:
d 1, d|1 ' 1
p-dp = ay-di X gty =0 (A.17)
dt 27 dt| I, Jx?1y? 2
d 1, d|1 ' 1
-y —asx -2 =X ik |=0 (A.18)
dt 27 dt|l. eyt 2

11 ’ 1
ady L 2X _-i2y=c, (A.19)
c, X' +y/
Al Y ol (A.20)
2 IC XrZ +y12 2 2

After reorganization the following two expressions appear

1 ' 1 '
LN S— ¢, +Ay and Y
IC XrZ + yrZ /C XrZ + yrZ

X

=c,—Ax (A.22)
Dividing by A and squaring gives

2 2
”2 2 ” 2
1 %: C—1+y and 1 %: R (A.22)
A, | X" +y' A A, | X" +y' A

Finally, adding these two equations gives the solution

2 2
c, (o) 1
Xx—=| +|y+| || ==——, I. >0, A#0 A.23
( 4) (y [zD P h23)

Graphically, this solution represents a circular segment with radius of curvature defined as p, =—.

&
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However, these extremals must comply with the side conditions for the local x-y coordinate system, i.e.
1 1
X:_E/Cz —>y=0 and X:Jrflfy —>y=0 (A.24)

Inserting these two side conditions and subtracting gives ¢, =0. This means, that the x-coordinate of the

centroid is zero, as expected. Then, by inserting the two side conditions and ¢, =0 to the equation (A.23) it

becomes

1. Y (¢ 1
Sl S (Y ) A.25
(ZCJ (AJ AL, (A2

Then, reorganizing gives

c 1 1
¢

Graphically, this constrained solution represents a circular segment O ... with centroid located at:

1 1
(x,y)=(0,~ /W_Z'é) (A.27)
Cl

The unique relation between observed area and chord length can be found from circular segments formulas.

NOTE A circular segment is here defined as a segment where the central angle is less than or equal to 77 .
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ANNEX 5 HALF CIRCLE SIMULATIONS WITH RADIAL PERTURBATIONS

Operationally, a very simple Monte Carlo simulation can be applied to generate feasible polyline meshes in a
situation where the analytic solution is defined by half circles. To illustrate the concept of goodness of
replication in a simple way, the random mesh generator, called a “tortuous half-circle generator,” is defined on
the unit circle in polar coordinates with the single radial perturbation parameter % . It is applied as follows:

p. =4, +p, =rand,p, +p, , (A.28)

where p, is the unit radius of curvature and rand, is the standardized uniform random number generator with

zero mean and a standard deviation of one. The four illustrations in Figure 2.7, of a half circle with random
perturbations, are all feasible polyline meshes of the reversed Dido’s problem since there area is identical to
the observed. Figure 2.7 shows four realizations with different perturbation levels:

(p, =0.00, p,=0.02, p,6=0.10, p,=0.20).

Each realization is adjusted so that its area equals the area of the perfect half-circle A, =§pfo of the non-

pertubative realization for p =0.00. The half circle generator also adjusts its symmetrical end tangents
(T,,T;) to be identical with the end tangents of the circular segment (T, ,,T..5) in the limit, i.e. the

following ordinary replication problem appears:

T

circle,B )

min Jr : Ar = Aobs pllr_r)O(TA ITB) = (Tcirc/e,A 4

(A.29)

For the non-pertubative situation p,_ :0.00—>c“,§1 =0 the polyline is realized from vertices V,, n=1,...,n,
located exactly on the unit circular segment with radius of curvature P, = 1.00. For pertubative realizations in

the range p, <]O;0.20], it generates realizations around the non-pertubative radius of curvature p,, SO the

generated radius has a range g, E[—O.Z\E;O-ZO\E] =[—0-346;0-346] symmetrically around the unit radius.

Therefore, all four realizations are feasible and their efficiency of replication is identically one. However, the
polyline mesh generated with p, =0 has the smallest tortuosity and due to the concept of goodness of

replication it becomes the solution.

In conclusion, when the concept of goodness of replication is applied on the reversed Dido’s problem, the
numerical solution found by simple Monte Carlo simulation is the same as the analytical solution determined
by calculus of variations.
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ANNEX 6 TORTUOSITY POLE ESTIMATES

ANNEX 6.1 CENTRAL VERTEX AND CURVATURE ESTIMATES

Let an observed polyline )28 be defined by a set of vertices

{V \% V. .V

obs; > T obs, ? *""? Tobs; 277" T obsg;? 7 obse ’\/obs(url 7"'7\/0bs,,1 }’ ni € N+
of which one central vertex VObSC is identified as the only vertex which belongs to a Gauss map with Gauss
normal n, . This vertex VObSC is assumed to be the initial estimate of a master vertex. However, another vertex

Vestc, which has a bigger distance to the Gauss map, might exist in the close neighborhood of its nearest

neighbors (VObs

c1” VObSCH ) '

Ng

Figure A. 2: Central Vertex and Curvature Estimates from Observation Vertices

The problem of finding a new central vertex (A which is assumed to be a better approximation than the

observed vertex V.., can be formulated as a replication problem.
minJ, 12, My Mo ) <, 05, >0, {ay, |={ab. ) (A.30)

where the phantom mesh M, is a bi-mesh generated by Frenet subdivision. If the segment area is used as
segment indicator metrics, then the problem represents a reversed Dido’s problem. Beyond finding a central

the central curvature estimate kK

este

vertex estimate V.

estq /

is an automatic spin-off from this solution.
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The following bounds are used in the natural parameterization algorithm

) 2
(Vestc B VObSC ).nG SO Vestc B \IObs(,+l ;‘Vobs(;ﬂ H < 0bs ¢y ;'Vobs C+l (A.31)
(Vestc — Voo c )’(VestC - Vobsc,l ) <In (Vestc - Vobsc ).(Vestc — Voo o ) <1 (A32)
H(Vestc - Vcobs )'(VestC - Vobsc,1 )H H(Vestc - Vobsc ).(Vestc - VobsCH ) ‘

ANNEX 6.2 SEGMENT CURVATURE ESTIMATES

Let a segment curvature be bound to a tortuosity pole P°, , of a bi-pole {P°, ,P° , with chord direction
r,A2 7,A2?" 7,B2

vector e, , and chord length / . Then, an estimate of this segment curvature l%m is defined from an
osculating circle, which passes through (VAz,VBz) , and follows the pole tangent TA2 as:
2
2*/1_09/42

K, =——, A.33
X42 lZz ( )

where the direction cosine ¢, isdeterminedas ¢, =T, +e .
42 A2 b 2

ANNEX 6.3 CENTRAL CURVATURE ESTIMATE
The central curvature for a bi-mesh is defined as the average of the estimated segment curvatures:

K, +K
"‘T ZX42 2 ZB2 (A34)
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ANNEX 7 FRENET EXTRAPOLATIONS

ANNEX 7.1 GENERAL FRENET EXTRAPOLATION
K

e \/’\\‘J‘\/»
T
Figure A. 3: Arbitrary natural equations

From the mean value theorem, an extrapolation based on the Frenet formulas (1.4) can be defined as:

T(s, +As)
{F(s,+As)}=|N(s, +As) [~{F(s,)} +A{F}, (A.35)
B(s, +As)

where the evaluation of derivatives is taken place at a suitable location s=s_ between s, and s, +As.

Assuming the natural equations x(s), z(s) and chord length increments As to be given, then an incremental

relation for each step in a sequence of n,, steps is given by

{F},, ={F}H +A{F} ,i=1,..,n, (A.36)

where the increment A{F} :AS{F'(SS)}, As— 0 in full writing is defined as

AT 0 k(s,) 0
A{F(s,)}=| AN|=As{F'(s,)}=As| -x(s,) 0  z(s,) [{F(s.)}- (A.37)
AB 0 —z(s,) O
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Since the location increment is defined as
AV =As(T+AT)
the new location and orientations are

Vi=V_, +AV._, , AV, =0

0

'I',.z{F}:-,B,.z{F}?,Niz{F}:‘

Nas

Finally, at a goal point A, for s=s, = ZAS, , the location and orientation vectors are

i=1

v, 7V, +§ AV,

i=1

-

e,

{F}A =

1

I

o 2
S
Zl

o 2

>
S
&

o’Q= [VAI T Na By ]T

(A.38)

(A.39)
(A.40)

(A.41)

(A.42)

(A.43)

Conclusively, the location and orientation vectors for an extrapolated tortuosity pole are defined by

P a2 {839}

The formulas (A.35) - (A.42), represent a general incremental formulation for a sequence of valence one
tortuosity poles, extrapolated from a master pole, at an initial location A, i.e. it is a general purpose
approximation for incremental generation of space curves from their natural equations.

(A.44)

In the following annex, a general constant average form of this extrapolation approach is presented.
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ANNEX 7.2 CONSTANT AVERAGE FORM OF GENERAL FRENET EXTRAPOLATION

Kavg

T i

Figure A. 4: Constant averaging of natural equations

If the natural equations are assumed to be averaged, piecewise, constant functions; then the formulas (A.35)-
(A.44) can be expressed in a constant average form as follows.

Let it be assumed that the natural equations are approximated as piecewise constant functions.
2.(s,)=x(s,)=x,, =Const (A.45)
2,(s,)=7(s,)~1,, =Const (A.46)

Then, the formulas (A.35) to (A.44) still hold in the mean if the constant values for the partitioned natural

equations fulfill the following averaging conditions:

s +As;

1 .
Kan,i:E I x(s)ds, Vi (A.47)

s;+As;

Toi = s [ zls)ds, Vi (A.48)

1

However, to obtain a limited number of degrees of freedom, this constant average form can be parameterized
as demonstrated in the following annexes. The term incremental Frenet extrapolation, or simply Frenet
extrapolation, will be used frequently as synonyms for constant average form of general Frenet extrapolation.
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ANNEX 7.3 PARAMETERIZATION OF THE CONSTANT AVERAGE FORM

refy aN

n.
ref, 3
B A

Figure A. 5: Parametric Frenet extrapolation by reference

Definitions: The constant average form of general Frenet extrapolation (A.45)-(A.48) can be parameterized with

a three-DOF parameter set q:{qT(j,quj_,qu_},VI, j:1,....n{ which relates by reference (see Figure A5), or

Fhi
directly (see Figure A6), to the j" Frenet frame of the i tortuosity pole. In general, each parameter g, ,

represents one degree of freedom and belongs to an ordered DOF-set, i.e. g, ={qn11,qn’2,qnl3,...} ,n=0,1,...

Each of these can be further defined for specific levels of refinement k, €[1,...,n.]. In situations where the

extrapolation limit is a parametric tortuosity pole itself, its parameterization is called a goal set. In general,
Frenet parameterization forms a set of non-linear equations and is based on triple-DOF parameter sets (TDOF).
However, reduced parameter setups, such as double-DOF sets (DDOF) or single-DOF sets (SDOF), are also used.
Frenet extrapolation is called “far-field” if more than three increments are in use, and “near-field” if no more
than three increments are in use.

In the following discussion, the essence of the above definitions is referred to as parametric Frenet
extrapolation.

NOTE For an introduction to the algorithmic implementation of Frenet curves, investigate the files for an alternative SDOF
Frenet approximation under Curvature-Torsion Defined Curve by Panarese, P. provided at MATLAB Central® at www.mathworks.com.

Direct parameterization vs. parameterization by reference

The simplest Frenet parameterization is to let the parameters be expressed directly as the values for the
natural equations themselves. An example of a direct parameterization for far-field extrapolation is first
presented in ANNEX 9.1.1. Extrapolations based on parameterization by reference are presented in ANNEX 9.4.
Later, parameterization relative to a geometric length quantity is described. Here, the parameterization is
controlled by some upper bounds, which are defined by the modeler or by restrictions related to the
parameterization itself.
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ANNEX 8 DIRECT PARAMETRIZATION of FRENET EXTRAPOLATION

ANNEX 8.1 DIRECT FRENET PARAMETERIZATION by EXAMPLE
Direct parameterization of Frenet Extrapolation is introduced here using a simple example.

EXAMPLE Direct Frenet parameterization
K=qN q
y N
4
m
] ry
2 ° = o—o0—o0—o——>0q
s=a1 nynyny n T

3 My
n
\ 1%.\
n
T=qg 3n qB

Figure A. 6: Constant averaged natural equations defined over four increments with direct parameterization

Figure A. 6 illustrates direct parameterization of a Frenet far-field extrapolation. It is based on four increments
with given natural equations in the neighborhood of a given master pole. In the first increment n=1 and the
third increment n=3, the natural equations are non-zero-valued. For the second n=2 and the fourth n=4,
they are zero-valued. See Table A. 4 for further details. The extrapolated tortuosity poles n=1,...4 are found

from (A.41) and (A.42). A plot of the TNB field is illustrated in Figure A. 7.

The direct parameterization approach is defined as

a={0r0/upr s} N=1,..4 (A.49)
where

9r, =As, =5, -5, (A.50)

Ay =K, (A31)

— (A.52)

Data: The master tortuosity pole is located at a master vertex V' :[on v, VZJ:[3.846 0.000 0.000] in a
rectangular coordinate system. Its master tangent is T' :[TXO,TVO,TZJ:[O 0.9806 0.1961] , and its master

normal is N"=[N, N, N, |=[-1.000 0.000 0.000]. The master binormal is found from the cross product

between the master tangent and the master normal.
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Table A. 4: Natural equations partitioned into four increments (far-field)

Controls / n Master =0 1 2 3 Goal=4
s 0.00 5.07 6.28 11.36 12.81
K 0.25 0.25 0.00 -0.25 0.00
T 0.05 0.05 0.00 -0.20 0.00

Figure A. 7: TNB field of a tortuous curve from direct parameterization (T=blue, N=red, B=green)

Note that negative curvatures are applied in the third step. This means that in this step, the corresponding
trihedra are not exact Frenet frames. However, they are exact up to sign. Furthermore, note that in step two
and step four, curvatures are zeroed. This means that the Frenet formulas make no sense here, and that the
TNB trihedrons are simply translated incrementally. Consequently, the incremental formulations defined in
ANNEX 7.1 allow the TNB trihedra to be controlled with a high degree of customization, and to form arbitrary
tortuous curves by allowing positive and negative curvatures and torsions. However, the drawback is that the
signs of the Frenet frames generated are not in control. Therefore, signs must be managed by an aposteori
correction routine or by subdividing the path into subparts, which are all convexive.

In the following annex, the alternative to direct parameterization, namely parameterization by reference, is
demonstrated by three consequtive SDOF pole extrapolations.
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ANNEX 9 PARAMETRIC EXTRAPOLATION by REFERENCE

In this annex, Frenet parameterization by reference is introduced. Solely length references are in focus.

ANNEX 9.1 Fg EXTRAPOLATION

Figure A. 8: Constant curvature and constant torsion defines a helix

In the following section, a SDOF Frenet parameterization by reference, which models a tortuous curve with
constant torsion and constant curvature from a length reference, is defined.

A curve that possesses constant curvature and torsion is known as a helix. In Cartesian coordinates, the
position vector r, its first derivative r’, and its second derivative r”, can be expressed in terms of right handed

cylindrical coordinates (p,@,z)=(p, @, bp) as

r((p)=(pcos((p),psin((o),b(o) (A.53)
r’(¢)=(—psin(¢)),pcos(¢7),b) (A.54)
r”(go)=(—pcos(qp),—psin(¢)),0) (A.55)
- T(p)= () (A.56)

L )= )" ()T T) (A.57)
[F"(2)=(r" (2)-Ti0)) T(o)|
— B(p)=T(p)xN(p) , (A.58)

where @ =¢@(t) is a rotational angle function defined from a parameter t , p is the radius of the circumscribed

cylinder, and b is a pitch factor defined from the reference pitch z_, for one turn as

ref

z,=27b. (A.59)

200



In the special situation where there is no pitch i.e. z, =0 the torsion is also zero.

The triple TNB expresses Frenet vectors. Furthermore, the arc length function, the constant curvature x, and
the constant torsion 7 are given by:

I.(p)=p\yp*+b*, k=P _ 7= b (A.60)

p2+b2 p2+b2

From (A.60), the two helix constants b, o of the circumscribed cylinder can be expressed as

b=—" p=Ep, 20 (A.61)
T

(2 +2%)
In the situation where the torsion is zero, the radius is defined by the curvature.
1
7=0 »> p=—, k>0 (A.62)
K
However, when the curvature is zero, and the torsion is not zero, then the helix constant is still definable as
1
k=0 —> b=—, 7#0 (A.63)
T

In the situation where curvature and torsion are not zero, the frame coordinates for a tortuosity pole is given

as
V, =r(¢=0)=[p,0,0]' (A.64)
T,=T(p=0)=——=—][0,p,b] (A.65)
NI
1 T T
N,=N(¢=0) =ﬁ[—p,0,0] =[-1,0,0] (A.66)
Yo,
B,=T,xN, (A.67)
X, =[KZ K, =const 7, = const}T (A.68)
NOTE The segment curvature K, , in (A.68), is kept for later use. The conventional curvature and torsion are indexed with

tau to avoid confusion with the segment curvature, indexed with chi.
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Reversely, the basis vectors of the local Cartesian coordinates can be expressed as

e =—N, (A.69)
T,-—B,
e, = /; , (A.70)
TA T Pa
P
e, =e, xe, (A.71)

In the special situation where the torsion is zero or the curvature is zero, the second base vector is simply

identical with the tangent.

Parameterization

>0
\01
T \qB
Iq
Figure A. 9: Parameterization by length reference g, =—
B,ref
A parameterization of a Frenet near-field extrapolation is now defined as:
G={Gs,}, n=1 (A.72)
where
/ /
9s y p
QGg="="—"" > | =0l — (A.73)
IB,ref /B,refTA .ey g ¢ \,pz +b2
A regular extrapolation does not exceed a quarter of the circle:
G =1: [,<p > ISP+, (A.74)

upper
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Figure A. 10: Helix (x, y)-plane

Figure A. 10 shows the helix (x, y)-plane through the tortuosity pole P, ,. The distance /, is used to define the

parameterization by the length reference /; ;.

Note that O is the radius of the circle and NOT the radius of curvature O, related to the helix curvature K, .

The half angle from origin to the intersection point, at a distance /, from A, is defined from e, as

qBIB,ref _ /qB

/ /
tan(p/2)="L= = — =2 atan| ——2— (A.75)
(072) Y \/,02+b2 \/,02+b2 [\/p2+b2J

Itis clearly seen that the angle is defined uniquely from the length parameter

I, .

Hereafter, the direction cosine and the direction sine for unit vector e_ in the (x, y)-plane are defined as

[

c, cos(p)
e,=|s, |=|y1-¢ (A.76)
0 0

Finally, the vectors of the extrapolated tortuosity pole at Al are determined as

V,,=V,—pll-c,le, +ps,e, +bpe, (A.77)

p(—sgpex +c.e, ) +be,

T = Hp(—swex + cwey)ereZ (A.78)
N, =-c.e, —s,e, +0e, (A.79)
B =T XNy, (A.80)
Xa1 =[Kl K, O]T (A.81)
P =[Vo, T N B X | (A.82)
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Since the mapping %FB :P_ —P__ represents an approximation, it is symbolized as a prediction function %FB in

I, called F extrapolation.

P =t (P, (A.83)

7a’ Gy

When torsion is zero or curvature is zero, then the new pole P, is defined in accordance with the general

formulas (A.35) - (A.42) with an increment of /, .

204



ANNEX 9.1.1 EXAMPLE - Fg Extrapolation
Let a tangent length reference ¢ with respect to B, be defined by the upper bound restriction (A.74). Let

the SDOF parameterization be defined by the values given in the following table.

Table A. 5: Fz extrapolation

g, =0.000 g, =1.000
Tortuosity Pole A A
PTA :fFB (PrA ’qB) PrAl =.f:FB (PTA’qB)
v’ [3.846 0.000 0.000] [0.000 3.846 1.208]
T [0 0.9806 0.1961] [0.9806 0.000 0.1961]
N [-1.000 0.000 0.000] [0.000 —1.000 0.000]
B’ [0.0000 —0.1961 0.9806] | [0.1961 0.0000 0.9806]
X' [k, 0.2500 0.0500] [k, 0.2500 0.0000]

Figure A. 11: F; extrapolation

A run for g, 6[0.000:0.010011.000] is illustrated in the Figure above. A single data set for the extrapolated

tortuosity pole at A, for g, =1.000 is also provided in the last column of the table.
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ANNEX 9.2 Fy EXTRAPOLATION

In this annex, a simpler SDOF parameterization by length reference, which models a tortuous curve with

constant curvature and no torsion, is in focus. Therefore, this parameterization, called F, parameterization, is

just a simplification of F; extrapolation.

Since there is no torsion, the tortuous curve now forms a circular segment.

K

N

N

Figure A. 12: Frenet Parameterization g, = ;
N f

el

A parameterization of such an extrapolation by a length reference IN,ef can be defined as:

qz{qN,n} , h=1 (A.84)
where
IQN ly
qN :l—:I—%IqN =INrequ (A85)
Nt Noot

A regular extrapolation should not exceed a quarter of the circle:

L <p = he<p (A.86)

Since 7=0 , the formluas are simplified into:

e, =N, (A.87)
e, =T, (A.88)
e, =e, xe, (A.89)
tan(go/z):%:%:/glqN —>p=2 atan(/crqu) (A.90)
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Hereafter, the direction cosine and the direction sine for the unit vector e, in the xy-plane are defined as

c, cos(p)
e,=|s, [=|J1-c, (A.91)
0 0

Finally, the vectors of the extrapolated tortuosity pole at A2 are determined as

V, =V, —pll—-c,)e +ps,e, +0e, (A.92)
T,=-s,e, tc,e, +0e, (A.93)
N,,=-c,e, —s.e, +0e, (A.94)
B,, =T, xN,, (A.95)
Xw=[x, 0 0] (A.96)
P =[Vi, T N By X || (A.97)

The mapping %FN P P is symbolized by an SDOF prediction function %FN in IqN , called F, extrapolation.

P = (P, la) (A.98)

Ta2

In the special situation where the curvature is zero, the pole P s simple formed as a translation of p_ over

a distance /, along the tangent.
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ANNEX9.2.1  EXAMPLE - Fy Extrapolation

Let a tangent length reference /. with respect to N be defined by ANNEX 9.2, and let the one set

parameterization be defined by the values given in the following table.

Table A. 6: Fy extrapolation

gy =0.000 gy =1.000
Tortuosity Pole A A
PTAz = FN( Tar’ qu) PTAz =an( Tar’ qN)

v’ [4.000 0.000 0.000] [0.000 4.000 0.000]
T [0 1.000 0.000] [1.000 0.000 0.000]
N [-1.000 0.000 0.000] [0.000 —1.000 0.000]
B’ [0.000 0.000 1.000] [0.000 0.000 1.000]
X' [k, 0.2500 0.0000] [ x, 0.0000 0.0000]

Figure A. 13: Fy extrapolation

Figure A1.13 illustrates a run for q, [0.000 :0.0100: 1.000] from the data given in the table.
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ANNEX 9.3 Fr EXTRAPOLATION

Finally, a third SDOF Frenet parameterization by reference is in
focus. It models a tortuous curve with no curvature and no torsion.

= Geometrically, it defines a pure translation.
[ T _x;L;
Ay 2 A3

Figure A. 14: Translation of a tortuosity pole along a tangent line of a section

The chord vector is defined as

(Vsz _VAZ )

el2 zm (A99)

oo > GDe>

)

ar

Figure A. 15: Frenet Parameterization by tangent length proportion g, =
T,

ref

A simple parameterization of a Frenet translation by reference tangent length /T,ef , can be defined as:

q=1{ar,}, n=1 (A.100)

where

/
G =Ii—>/qT =l a (A.101)

T

ref

From simple geometric considerations, see

Figure A. 14, the refernce length /Tm is defined from the segment curvature «, ~as

1 1-c
I, =—— ST

lx, , x, #0, ¢, <1 (A.102)
ref K 1— 2 A2 A2
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From simple geometric considerations (see Figure A.14), the estimated curvature and the ratio between the
reference tangent length and the chord length, can be defined as

2./1-¢2 / 1-c
~ :—9“2 RN izl[—‘% , I)(z;éol C‘29Az<1' (A103)

K' pu—
a2 ly, ly, 2 l—c;2

1
If céAz =1 the tangent reference length is set to /T,ef =ZIZ2 .

I A, =-c, W2(1-c yersus 6
M i emJ(Q( eizjj aa

0s T T T T T T T T T

0451 i

o4t .

03sr 1

03f E

1 1 1 1 1 1
0 01 nZ 03 04 05 06 0OF 08 09 1

0.25

Figure A. 16: Tangent reference length vs. direction cosine

If the segment curvature is not given, it is estimated (see (A.103)) from an osculating circle with its tangent
following the current pole and passing through both pole vertices. Note that the ratio between the reference
length and the chord length goes towards one quart when the direction cosine goes towards one. Therefore, a
regular extrapolation is governed by the simple bounds:

1
Z llz < lTref

1
SE/;{; . (A.104)
It follows from

Figure A. 14, that the vertex of the extrapolated tortuosity pole at A3 can be found from a simple tangential
translation with reference at A2.

V.=V, +1 T, (A.105)
T =Ty, (A.106)
N,; =N, (A.107)
B,,=B,, (A.108)
Xie=[0 0 0] (A.109)
P =[Vas Tug Nog Bg X ]| (A.110)

Since the mapping qu :P_, —P_  represents a numerical extrapolation, it is symbolized as a one-set prediction

function qu in I, called Fr extrapolation.

P =f. (P 1) (A.111)
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ANNEX 9.3.1

EXAMPLE - Fr Extrapolation

Let a tangent length reference

parameterization be defined by the values given in the table below.

1er With respect to T, be defined by (A.103) .

I, =8.000. Its direction vector is given by e, =[-1.000 0.000 0.000].

NOTE

Table A. 7: F; extrapolation

Let the one set

In this example the chord has length

g, =0.000 g, =1.000
Tortuosity Pole i A X A
PTAs = fr (PTAz'IQT) PTA3 =th (PTAz'IqT)
v’ [4.000 0.000 0.000] [0.000 4.000 0.000]
T [0 1.000 0.000] [1.000 0.000 0.000]
N [-1.000 0.000 0.000] [0.000 —1.000 0.000]
B [0.000 0.000 1.000] [0.000 0.000 1.000]
X [0.2500 0.0000 0.0000] | [0.0000 0.0000 0.0000]

0 <<< 4

4%
%/
3 Q{Déw

r)
5 0
¥ *

Figure A. 17: F; extrapolation

The plot above illustrates a run for g, €[0.000:0.0100:1.000].
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ANNEX 9.4 Frng EXTRAPOLATION

I l
Figure A. 18: Three-set successive Frenet parameterizations: gy =—> — g, =— —> g, =—
Bref lNref Tref
In the following a TDOF extrapolation, gs, gy, g7 is performed as a successive mapping.
f. :P 5P P P (A.112)
TNB A Al A2 A3

This mapping leads to a TDOF prediction function in the parameters (qT,qN,qB) for a near-field extrapolation

of a tortuosity pole, i.e.:

Ta?ar 7 AN’ as

P =t (Pl i) (A.113)

Algorithmically, this parametric near-field extrapolation can be deployed as nested prediction functions and
thereby used for any TDOF, DDOF or SDOF parameterization.

TDOF: P, = (Pl lo s, )=H (“FN (B (Pl ) o )l ) (A.114)
opoF: P, =f (Pl )=F (P )l ) (A.115)
spor: P, =f (Pl )= (P..1,) (A.116)
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ANNEX 9.4.1 EXAMPLE - Frng Extrapolation
In this example, a successive three set extrapolation in accordance with (A.114) is presented. The three length

references Iy e, Inrer » I1rer » @re defined in accordance with (A.74) and (A.104) respectively. The chord length is

I, =8.000 and the chord direction vector is given by e, =[-1.000 0.000 0.000].

Figure A. 19: F;\s extrapolation: Control Poles (left), plot for various parameter values (right)

Frenet extrapolation is illustrated in the Figure above here using two plots. Left: A standard pole plot with the
poles marked at the control points. Right: a parametric plot defined by (g,,qy,d;)€[0.000:0.0500:1.000]

which illustrates the poles from various parameter values. The following table summarizes the example results.

Table A. 8: Frys extrapolation

g, =0.000 g, =0.000

L et () P =H (P ) P, =f (Ple) P =H (P )

v’ | [3.846 0.000 0.000] | [0.000 3.846 1.208] | [-3.922 -0.154 1.993] [-3.922 -4.154 1.993]

T [0 0.9806 0.1961] [0.9806 0.000 0.1961] | [0.000 -1.000 0.000] [0.000 -1.000 0.000]

NT | [-1.000 0.000 0.000] | [0.000 —1.000 0.000] | [0.986 0.000 —0.196] | [0.986 0.000 -0.196]

B" [0.000 —-0.196 0.981]

1" | [k, 02500 0.0500]

[0.196 0.000 0.981] [0.196 0.000 0.981]

[k, 0.250 0.000] [0.250 0.000 0.000]
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ANNEX 10 NON-PARAMERTRIC FRENET INTERPOLATIONS

GZ, G'and G° continuity

In this annex, a set of non-parametric central segment predictions for a control vertex, orientation vectors, and
a central location vertex, are defined from simple interpolations. First, the normal and the binormal vectors
relating to G continuity are defined. Thereafter, the tangent vector relating to G* continuity is defined. Finally,
the location vertex relating to G° continuity is interpolated between the chord planes.

ANNEX 10.1 G? INTERPOLATION

Ka3 —

Tc
o
I/ \ e
n
R ¢
Figure A. 20: Interpolated normal, binormal and curvature for a central tortuosity pole P,

Let two tortuosity poles P,;,P,; form a geometric constellation with a chord vector e as illustrated above

V

(V83 _VAa) (V A3)¢0 (A.117)

e =-———, s —

” ”(Vsa _VA3)

When a rectifying vector d.. is specified, then a central Gauss normal between the Begend A and the EndEnd B

is estimated as n, =(els Xdc). This means that a central Frenet normal estimate is

N.=—(e, xd.)=d,xe, . (A.118)
Finally, the binormal is estimated as
B, =(e% xN, ) (A.119)

NOTE When the rectifying vector is a zero vector, the normal and binormal also becomes zero vectors.

214



In general, the segment curvature x, is set to zero.

x.=[0 0 o] (A.120)
However, when the orientation vectors of the tangents and the normals are almost mirrored vector pairs in the

chord plane, then the central segment curvature can be predicted. This prediction can be expressed as the
average of the two segment end curvatures.

.
K + K
xc{% 0 o} (A.121)

Herby, the G part of a central tortuosity pole is formed as

P. 5[ N, B x| (A.122)

Since the mapping fGZ : PA3 ,P33 - PTC 9[ N.,B., X, ]T represents a numerical interpolation, which estimates

G’ continuity, it is symbolized as a non-parametric prediction function %Gz called G? interpolation.

P, =fs (PAs'Pss'dC) (A.123)

ANNEX 10.2 G' INTERPOLATION

Let it be assumed that at least the normal, binormal, and curvature vectors contribute to a tortuosity pole
T
E-. 3[ Nchchc] in accordance with (A.122). Further, let it be assumed that a chord vector e, is defined

from (A.117) . Then, a central tangent is determined as

. (A.124)

P [T, ]T (A.125)

s T
Since the mapping fel: Pas/Pss = P a[Tc] represents a numerical interpolation, which estimates G'

continuity, it is symbolized as a non-parametric prediction function fGl called G* interpolation.

P, =fa (PAa'Pea'dC) (A.126)
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ANNEX 10.3 G° INTERPOLATION

Figure A. 21: Interpolation of the vertex of a central tortuosity pole

Let it be assumed that three vertices V,,,,V,;,V,;, a chord vector e, and a tangent T. are extracted from four
tortuosity poles P,,P,;,P;,P;; and a central pole P, , as defined by (A.125). The vector e, directs the chord as
illustrated in Figure A. 21. Then, a central vertex V. is defined as the intersection between the plane through
the central chord vertex V,,, with unit normal e, and the line passing through V,, directed by T.. l.e a new
central vertex V. is defined as a direction vector from V,; to V. , and composed as the sum of the vector from

Vv

;2 10 V3 and the vector from V,; to V. respectively. This means that the central vertex V. lies on the

normal plane, if the vector V. -V, is perpendicular to e, :

, e, T #0 (A.127)

If e,+T. =0, then the central vertex is set equal to the central chord vertex.
Herby, the G° part of a central tortuosity pole is defined:

P >[V.] (A.128)

s T
Since the mapping fG1 N L) [VC] represents a numerical interpolation which estimates G°
continuity, it is symbolized as a non-parametric prediction function 1260 called G° interpolation:

P = %GO (PA'PAa'Pprsade) —> P> [VC ]T (A-129)
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ANNEX 10.4 G2 INTERPOLATION

The three interpolations (G?, G* and G° in the preceding annexes are assumed to represent a successive
mapping, which can be expressed as an overall interpolation function deployed by nested interpolations.

Pfc = fGo (fGl (sz (PAIPA3IPBIPB3IdC ))) (A'130)
Algorithmically, the interpolation of a full tortuosity pole is then defined as

P. 5[ V.. TN, B, X | =F .0 (P, Pis Py Pas e ) (A.131)

Ccr °Cr"7C’ A’ A37° B’ B3/
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ANNEX 11 PARAMETRIC LOCATION MODIFICATION

Inspired by (Tobler et al., 2002), location modifications for a central tortuosity pole of a segment can be
performed as vertex increments in orthogonal directions. In the following section, a sequence of three such
orthogonal vertex modifications are defined in a local coordinate system.

Let a segment chord be defined by its chord direction vector e, , its length / _, and its middle vertex V-

Further, let a vertex V. be defined in the central part between the end chord planes and not on the chord line

itself. Then, a simple parametric location specification scheme is given in the following table. In general,
normals and binormals are not definable after location specifications are applied. Therefore, Frenet normals
and binormals are first defined after the limit level of refinement is iterated. However, Frenet tangents are
assumed to be kept intact at all levels of refinement.

As it appears from the figures in ANNEX 12.3, location specifications are defined as height levels relative to some

reference planes, i.e. the location specification AV, =/, e, , directed by &, , is equivalent to the height level H,
in &, relative to the central chord plane. The location specification Avéz =qu e. is equivalent to the height
level H, in &, relative to the radial plane. Finally, the pole translation AV, :I% e, is equivalent to the height

level Hs in &, relative to the angular plane.

Table A. 9: Pole translations for a central pole vertex

Direction Coordinate Parameter | Basis vector Vertex Translation New Vertex
Longitudinal & q, e =e, AV, =1, e, V. =V, +AV,
: e = ¢V AV, =1 V. =V +AV
Radial 52 qu & v & 7 g e‘fz G Tq + &
c Y12
Angular &, a, e, =e. xe, AV, :/%3 €, Ve, =V, +AV,

In the special situation where the central vertex and the middle vertex coincide on the chord, the radial basis
vector must be estimated from vectors of the tortuosity poles at the chord ends or as a random unit vector
perpendicular to the chord direction vector. The corresponding prediction functions are named the H;-, H,- and
Hs-Frenet pole translation functions, respectively. This is in accordance with the height analogy.
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ANNEX 11.1 Hi POLE TRANSLATION

A T
The mapping f, :[eh,v VC,TC,NC,BC] —P_ represents a one-dimensional translation and is symbolized as

2127

a prediction function %Hl , called H, pole translation.

~ T
P =1, ([eZZ,VI/Z,VC,TC,NC,BC] ) (A.132)

Tc

ANNEX 11.2 H, POLE TRANSLATION

~ T
The mapping f, :[el2 v VC,TC,NC,BC] — P, represents a one-dimensional translation and is symbolized as

X127

a prediction function sz , called H, pole translation.

“ T
PTC\ = sz ([eZZ’VZ/Z’VC'TC'NC'BC} ) (A133)

ANNEX 11.3 H3; POLE TRANSLATION

.
;(/z'VCITC'Nc'Bc] —)PTC‘ represents a one-dimensional translation and is symbolized as

The mapping %HS :[elz ,V

a prediction function ng , called H; pole translation.

Tc

~ T
P =1, ([elz,VZ/Z,VC,TC,NC,BCJ ) (A.134)

ANNEX 11.4 H32: POLE TRANSLATION
The three interpolations in the preceding annexes are now assumed to represent a successive mapping, which

can be unified into a single parametric interpolation function ?H in (PTC) called H-pole translation:

P =f (Prc’qé) (A.135)

Algorithmically, these parametric pole translations are deployed as nested interpolations.

P =h (Pl )=H, (%Hz (%Hl (s ),/% ) (A.136)
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ANNEX 12 BI-MESH FRENET SUBDIVISION - OVERVIEW

ANNEX 12.1 THE DATA FLOW FOR BI-MESH SUBDIVISION
In this sub-annex, the entire data flow for bi-mesh Frenet subdivision is summarized in the following table.

Table 6.1: Determination of a new subdivision pole VC3 by nested prediction functions

Classification | Identification 10-Description
Type Pred. Fcn. Curvature Nat. Para. | Main Controls Ref. Output
. z, s, B, N, |V, | V,T, N, B, =0
Extrapolation* %FN K, d, N, T, V., v, T, N, B, k,=0
%FT K, qy, TAZ VAz VA3 TA3 NA3 BA3 (Kz)
£, V., | V. e, Ky, (k.=n)
Interpolation 1261 V. Ve, d. T. N. B,
‘%Go Va, T € Vee, e,
%Hl 9z € Vc Vc1 TC
Perturbation 12,_,2 q, e Ve, v, T
%Hs a, e, \A v, T

The parametric Frenet subdivision input-output flow is summarized in Table 6.1. The extrapolations are defined
from the BegEnd (A) only. However, extrapolations from the EndEnd (B) are performed as from the BegEnd (A)
reversing the chord direction vector. Furthermore, at each extrapolation step, pole vectors are sign adjusted.
This is in accordance with the bi-pole convexivity requirements.

NOTE The hierarchical naming of extrapolation functions follows the reverse ordering of Frenet frames i.e. B—>N—T . The
naming of interpolation functions follows reversely the first three geometric continuity orders i.e. G*>G >G°. Finally, the

naming of the perturbation functions follows the conventional ordering of Cartesian coordinate’si.e. & —&, =&, .
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ANNEX 12.2 REFERENCE BOUNDS

The parameters of Frenet subdivision are related to the length references. Upper bound values,** often used in
this presentation, are provided in the following table.

Table A. 10: Length reference bounds for bi-mesh Frenet subdivision

Classification Identification Upper bound Current Bound
fFB /B,ref,upp :min(kB/Z, tan(ksﬂ)ﬂpz +b2 ) I% :qBIB,ref
~ A tan(kNﬂ') /qN = qN/N,ref
. Inresopp =MN| Kyl — (x, >0)

T
Extrapolation
— IqT = qT/T,ref

P _ H Ona 2

fe I retupp =MIN| kil ), ——==1 ,x, #0,c, <1

K, \1-¢
A2 A2

fH1 /51 ,ref,upp = k§1 /l Iq§1 = qil /61 ref
sz I, retme =K1, Iq;'z —4, l‘fﬂef

Perturbation
fH3 Iéa jref = k'fz Il Iqéé = q§3 /53 ref

dof ?FT(~ (~ (.))) 7,>0,,>0: ky=1/8, ky=1/4, k;=1/4, k. =1/4, k_=1/4, k. =1/

FN FB
ddof £ (%.() k. >0: ky=1/4, k;=1/4, k. =1/4, k. =1/4, k. =1/4
sdof FFT(,) V,, #Vy, &, >0: k,=1/4, k. =1/4, k. =1/4, k. =1/4

A thorough upper bound study is not included in this work. The selected upper bounds are chosen under the following conditions:
Extrapolation factors kB,kN,kT are designed to create geometries so that g =qy =q; = 1 produce an asymptotic circular shape at

the ends of bi-meshes. The pole translation factor kél is selected so the perturbed pole lies in planes which intersect the central region

of the master chord. The two pole translation factors k.gz , k§3 are set so the tortuosity pole is translated by distances of the same size

as the master chord length itself. Dispite these relatively narrow bounds fractal-like geometries can occur. For perturbation modeling
the above pole translation factors are not in use since perturbation modeling is a tool for the modeler to perform deterministic or
pseudo-stochastic simulations, i.e. the bounds for perturbation modeling are left open to be defined by the modeler.

221



ANNEX 12.3 SYMMETRIC AND NON-SYMMETRIC DOF ASSIGNMENTS

Table A. 11: DOF-combinations for parametric bi-mesh subdivision

Class Name NDOFgegeng NDOF¢dend Description
SSDOF 1 1 SingleSingle
Symmetric DDDOF 2 2 DoubleDouble
TTDOF 3 3 TripleTriple
SDDOF 1 2 SingleDouble
STDOF 1 3 SingleTriple
Non- DSDOF 2 1 DoubleSingle
symmetric DTDOF 2 3 DoubleTriple
TSDOF 3 1 TripleSingle
TDDOF 3 2 TripleDouble

Table A. 12: lllustrated Selections of DOF-combinations

Class Name Description
SSDOF ANNEX 12.3.1
Symmetric DDDOF ANNEX 12.3.2
TTDOF ANNEX 12.3.1
DSDOF ANNEX 12.3.4
Non-
. TSDOF ANNEX 12.3.5
symmetric
TDDOF ANNEX 12.3.4

In the following sub-annexes the full data flow are given for six selected combinations defined in the table

above. The tortuosity poles (PTA P ) and the parameterization values are the same for all selections. However,

the constant Frenet vectors TNB and the rectifying vector d. are simulated by a random number generator.
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ANNEX 12.3.1  SSDOF -Symmetric Subdivision

Parametric Bi-Mesh Subdivision Rectifying vector:

dC =[-0.40825 -0.40825 -0.8169]

Tortuosity Poles and Parameterization alues

dof (location): 3

dof (orientation [A B]): [1 1]

dof (total): 5

Tortuosity Poles and Parameterization Values

x [y [ =] [0 ] i « [ v
2 wo aot (v | oo o o
| 7] 0s129 03651 01826 A0 B0 | 7| osseo osiss ostes

¥

x [y [ =] 1] 1] x [y [ =]
| T | 09129 03651 01826 kg 0 A1 B1 kg 0 | T | osse0 05145 -0stes
| o oses oz ot | o7 ot | o7 | oser osss oo
T o s s o . o . e | o oamse o7en
D] o 2am oo " o " o D] o sson s

x [y [ =] 1] 1] x [y [ =]
vl o 0 o PR " M- [V | s o5 otem
T oms o orems o o _ - o o T s 05 05
[N o2 ostes ozse ot | o763 C = Non-Translated C' = Pole Translated ot | o763 [N osst ssst ooeeo
B 0 -02828 05657 lIq_ref 0 lIq_ref 0 B | 03057 03736 07811
[x] o 2sm 0500 b 0 « [y [ =] | = | x |y | = b 0 [x] o aswo om0

B = 8 [N| oem ossn osess Xref | 07638 0763 0763 [N | o6 o4s:0 oses =] L lw z ]
RN & il A3 "8 | 0am21 02383 0m13s loref | 01808 15275 0783 [8 | -04s21 02043 -0g138 B3 a T v R
[T sz 03651 0126 I 02500 X LA lg__| ooots oosss 0 [x] o o o I 02500 [T | osseo osiés 05145
N o osiee o Xof | 0763 Xof | 0763 | osser ossst oo
T o s s ot | o2 ot | 028 e | o oamse omen
D] o 2am oo i @] 0w ] o sson s

ANNEX 12.3.2  DDDOF -Symmetric Subdivision

Parametric Bi-Mesh Subdivision Rectifying vector:

dC =1[-0.40825 -0.40825 -0.8169]
dof (location): 3
dof (orientation [A B]): [2 2]

dof (total): 7

Tortuosity Poles and Parameterization Values A B Tortuosity Poles and Parameterization Values
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ANNEX 12.3.3

Parametric Bi-Mesh Subdivision

TTDOF - Symmetric Subdivision

Tortuosity Poles and Parameterization Values

A

Rectifying vector:

dC = [-0.40825

-0.40825

dof (location): 3

dof (orientation [A B]): [3 3]

dof (total): 9

Tortuosity Poles and Parameterization “Values
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ANNEX 12.3.4  DSDOF - Non-Symmetric subdivision
Parametric Bi-Mesh Subdivision Rectifying vector:
dC = [-0.40825 -0.40825 -0.8165]
dof (location): 3
dof (orientation [A B]): [2 1]
dof (total): 6
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ANNEX 12.3.5  TSDOF - Non-Symmetric subdivision

Parametric Bi-Mesh Subdivision Rectifying vector:

dC =[-0.40825 -0.40825 -0.8169]
dof (location): 3
dof (orientation [A B]): [3 1]

dof (total): 7
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ANNEX 12.3.6  TDDOF - Non-Symmetric Subdivision

Parametric Bi-Mesh Subdivision Rectifying vector:

dC =[-0.40825 -0.40825 -0.8165]
dof (location): 3
dof (orientation [A B]): [3 2]

dof (total): 8
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ANNEX 12.4 REDUCED DEGREES OF FREEDOM

In this annex, a few examples on various parameter-constellations, which represent reduced number of
degrees of freedom, are given.

EXAMPLE When prior knowledge does not exist on the balance between the orientation influences at the two
tortuosity poles of a bi-mesh, the same influence parameters can be used for both poles. This reduces the number of
degrees of freedom to six. (A.137)

(qTA =4y, EqT)'(qNA =0y, EqN)'(qBA =0, Eqs)_>

. (A.137)

q" =(a,,,9.,,9, GG, 95 ) > Moor =6
EXAMPLE When prior knowledge does not exist on torsion, the parameter g, can be ignored. This reduces the
number of degrees of freedom to five.

kr —_— —

q _(qglquzqua‘quqN)_)nDoF _5 (A138)
EXAMPLE When prior knowledge does not exist on embedded curvatures, the parameter g, can be ignored. This
reduces the number of degrees of freedom to four.

kT —_— —

q" =(a,,,9.,,9,, Gr ) > Moo =4 (A.139)
EXAMPLE Finally, when the simulation is assumed not to include vertex pole translations, the degrees of freedom
can be reduced to one and the subdivision representation then appears as a smooth curve in general.

q“ = (qT ) = Mpoe =1 (A.140)

NOTE  When prior knowledge does not exist on the segment curvatures, they are to be estimated (see ANNEX 6.2).
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ANNEX 13 COORDINATE TRANSFORMATIONS

In general, any vertex V of a limit mesh M’ is represented in local Cartesian coordinates as
T

4
[v] =V (A.137)

local .y

local

During reparameterization, such limit meshes need to be retransformed into a phantom M in global

phan
coordinates. This retransformation from limit mesh to phantom mesh is defined by an affine coordinate
transformation in homogeneous coordinates. The 3D affine transformation is represented by a multiple of
three 4x4 matrices each defined in global coordinates as

V] 9oy 0 0 0l 0 0 t]fe, e, e, o]v:
v, 0 Ao 0 O0jlo 1 0 t,||e, €, €, O V:} (A.138)
v, 0 0 gqg 000 1 ¢t e, e, e, OV,
1 —lglobal 0 0 0 1 0 00 1 0 0 0 1 local
where [qHQH_ is a size scaling matrix, [t] a translation matrix, and [e] a rotation matrix.

On compact form, and still in homogeneous coordinates, this can be expressed as

[V ] oom :[qunu][t][e][vf’ :|Iocal : (A.139)
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ANNEX 14 NATURAL PARAMETERS - OVERVIEW
Table 6.2: Natural Parameters
Parameter Parameter Parameter
Classification identification Description
Name Symbol Name Symbol Control
0
length normalization qHQHL Controls the size normalization of geometries
parameter qHOQH in R by a length reference
1
lizati 0 Controls the size normalization of geometries
area normalization parameter Aoy, in R?by an area reference
volume normalization qo Controls the size normalization of geometries
parameter |2l in R?by a volume reference
First dimension parameter qo Controls the extent of an object in the first
P 192 dimension axis direction
second dimension parameter qo Controls the extent of an object in the second
P 92 bounding axis direction
0
. . . q Controls the extent of an object in the third
0 Third dimension parameter 192 . s .
Mastir q P bounding axis direction
parameters
first master qo Controls the location of pole vertices in the
location parameter 4 first axis direction
second master q° Controls the location of pole vertices in the
location parameter & second axis direction
third master qo Controls the location of pole vertices in the
orientation parameter & third axis direction
) Controls the orientation of free frame
first 0 . . .
master orientation parameter 4y, tangents, normals and binormals in the first
angle direction
Controls the orientation of free frame
second 0 . .
master orientation parameter 4y, tangents, normals and binormals in the
second angle direction
First iterated location qk, Controls the translation of an iterated pole in
parameter 4 the first local axis direction
Second iterated location qk, Controls the translation of an iterated pole in
parameter & the second local axis direction
lterated Third iterated location qk, Controls the translation of an iterated pole in
arameters k. parameters & the third local axis direction
P q First iterated orientation qk, qk, Controls the influence from the segment
parameter T’ curvature from the ends of a bi-mesh chord
Second iterated orientation qk, qk, Controls the influence from the conventional
parameter No”"Ns | curvature from the ends of a bi-mesh chord
Third iterated orientation qk, qkr Controls the influence from the conventional
parameter B4+’"Bs | torsion from the ends of a bi-mesh chord
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ANNEX 15 IMITATION PROBLEMS

Formally, the conditions in (2.89) can be specified as follows:

During iterations of a new subdivision tortuosity pole from a set of beta-simulated curves, the beta-
perturbations necessary for these curves to intersect in a central vertex must be minimized.

In the subsequent alpha-beta simulation, the assumed continous distributions of the individual boundary
indicators must not differ significantly from the distributions of the observed indicator metrics. Similarily, the
distributions for the first integrals must not differ significantly.

Imitation modeling as a variational problem

Mathematically, these criterions can be expressed as a variational problem: find a particular stochastic

simulation approach defined on a set of feasible subdivision operators {Sf} and a set of feasible master

meshes {Mf} so that a particular set of imitations {I\_/I amongst a set of feasible imitations {Mwﬂ}

r,aﬂ}
reflects the underlying stochastic behavior of the natural object with a high degree of efficiency.

Alpha-beta simulation

More specifically, when the mutual distance metric, see (2.69), between a set of beta-simulated Frenet
subdivision curves (Cm,...,C”.,...,CrlmF) ) and a vertex V. is at its minimum, then this vertex is said to represent
a central beta estimate for the semi-stationary location of the new iterated tortuosity pole.

From this beta-estimated location, a subsequent pole translation, performed as an alpha simulation, is said to
reflect the dominant dispersion.

Shape imitation

If the distribution of selected imitation metrics (which reflects the segment shape), from the generated meshes
and from the observed meshes, do not differ significantly in a two-sample test, then the segment imitations are
said to reflect the underlying stochastic behavior of the segent shape with high efficiency of imitation.
Statistically, a test factor rejects the null hypothesis of the following non-parametric two-sample hypotheses
test:

Ho: (Null hypothesis): paired data sets of imitation metrics (mglobsl, ’ nA"Ua/” ),Vi , are from the same continuous distribution.

Hy: (Alternative hypothesis): The paired data sets are from different distributions.
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Size imitation

If the distribution of first integrals, which reflect the overall size of the object, do not differ significantly from
the size distribution of the observation meshes in a two-sample test, then the imitation of size is said to reflect
the underlying stochastic behavior of size with high efficiency of imitation. Specifically, a test factor rejects the
null hypothesis of the following non-parametric two-sample hypotheses test:

Ho: (Null hypothesis): paired data sets of first integrals (_[ onbs'i,,‘dehan‘i), Vi, are from the same continuous distribution.

Hq: (Alternative hypothesis): The paired data sets are from different distributions.

The imitation problem

Combining size and shape imitation leads to the following imitation problem

minJ,, Gwo_ < 4 , Viel,,n,, h,#1. (A.144)

1—h = Ytwo,, imi

Where J‘ﬂ‘ is the beta functional to be minimized, «

twoy,,

is an upper limit for the significance level, and h,; is a

test parameter defined as
himi = Zhi} (mi},obs,i ’ rﬁU,phan,i ) + Zhjdg (deobs,i ’jdéphan,i) ’ v’ 4 (A145)

where hy; is a two-sample test statistic* for segments, and h is a two-sample test statistic*? for first

JdQ

integrals. In this first study,*® the overall imitation test parameterh._., is assumed to be modeled as a Boolean

imi 7

variable. Consequently, if just a single pair fails, the entire sample of phantoms is rejected.

In general, the alpha-beta simulated indicator metrics m; ,, are found from realizations at relevant levels of

refinement.
Sk sk K, k. 0
Me5,05 =Mk 0 (Mr <_5r,a/;Mf)- (A.146)
NOTE For the case study (see chapter 3), only one relevant level of refinement is selected; namely the limit level of

refinement. For the case study, the segment area is used as a single indicator metric for the imitation problem; whereas for the
replication problem, the two centroids, the two principal second moments, and the perimeter are used.

* | the case study, see chapter 3, the two test statistics are defined as for the two-sample Kolmogorov-Smirnov test included in the
function kstest2 from the MATLAB® Statistics Toolbox.

3 However, in a future definition of the imitation parameter it might be rational to consider it as a real number between zero and one.
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ANNEX 16 GEOMETRIC DISCRETIZATION OF WHEAT GRAINS

In this annex details on the interpretation of domain and boundary discretization for wheat grains are given.

ANNEX 16.1 DOMAINS FOR WHEAT GRAINS

To illustrate the proposed discretization notation (see 2.1.4), four domain types: cluster, subcluster, species

and subdomain, are specified for wheat grains and commented on from a Biosystems engineering perspective.

ANNEX 16.1.1  Cluster

Figure A. 22: Cluster with impurities

discretization hierarchy.

a cluster includes gravitational packing
effects as well as the way in which
biomasses are spread into the storage room. Mathematically, the
configurations are considered stochastic of nature. Physically, the resulting
packing matrix induces internal air channels. Therefore, the cluster can
sometimes be considered as a porous medium and be treated like an entity.
One important geometric porosity characteristic of such air channels is the
tortuosity. The inclusion of tortuosity in the study of porous media was
originally introduced by [M.A. Biot 1956]. Such tortuosity effects are clearly
geometric in nature. Therefore, some of the geometric approaches presented
here are relevant for a general study on tortuosity metrics. A more detailed
study of tortuosity metrics is planned to be included in the research on
acoustic based non-invasive measurement systems, which is currently under
development by [O. Green 2010]. A recent non-invasive experiment [V. G.
Totajada et al 2010] on soil properties also shows that acoustic measurement
can be an inexpensive tool in soil-characterization.

For wheat grains, a cluster is a constellation of species that are
connected at contact zones only through friction, cohesion, or
adhesion. The species of a cluster does not necessarily belong to the
same genus. In general, such clusters contain
proportions of species which do not belong to the same genus as the
majority of species. Therefore, they are considered non-homogenous in
general. Generically, a cluster represents the highest level in the

In Biosystems engineering, the investigation of natural objects forming

Figure A. 23: A Subcluster without impurities
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ANNEX 16.1.2  Subcluster

A subcluster €, is a constellation of a homogenous subset of species sampled from the same cluster, i.e. a

subcluster is a sample without impurities which means that it models individual species that belong to the
same genus only.

ANNEX 16.1.3  Species

Figure A. 24: Two wheat grain species

A species VY, is a geometric model of a single natural object. Generically,

species are children of sub clusters. Statistically, a species can often be seen
as an element randomly taken from a subcluster. In Biosystems engineering,
a species usually represents the geometric model of a biomass such as a
grain of wheat, rice, maize or other seeds. However, it might just as well
represent a grain from a soil sample or other natural objects.

ANNEX 16.1.4  Subdomains Endosperm Germ

Figure A. 25: Three subdomain candidates of wheat grains

A
Bran /

A subdomain Q represents a characteristic part of a species. Generically, subdomains are children of species.
Therefore, species are said to be discretized into subdomains. A subdomain is not a member of any special
element group. At least one single subdomain must be specified in a natural parameterization model, i.e.
subdomains represent the master elements of any 3D parameterization. Clusters, subclusters, and species are
all super elements and formed as geometric super sets manifested as subdomains constellations.

In a multi-physics context, beyond the geometry modeling, the modeler must also assign characteristic physical
properties for each of these subdomains. In Figure A.25 it is illustrated that for grains of wheat a coarse 3D
discretization might include three subdomains namely: endosperm, germ, and bran.

232



ANNEX 16.2 BOUNDARY DESCRIPTION OF WHEAT GRAINS
Boundary primitives 0°Q), pe {1,2,...,5} set up the geometrical bounds for subdomains. The various boundary

primitives are often called geometric primitives.
The boundary primitives are grouped as

e derived primitives faces and edges, see Figure A.26
e core primitives: vector primitives, see Figure A.27 and finally
e  hybrid primitives: Tortuosity poles VTNB, see Figure A.27

Figure A. 26: Faces and edges (Derived primitives)

ANNEX 16.2.1  Vector primitives

Figure A. 27: Vector primitives (left), Frenet frames (middle) & Master segment chords (right)

Vector primitives 0°Q are third generation elements of subdomains. They are used to bind the location and
orientation of edges.

Location vectors

Location vectors are position vectors and are symbolized by r, and they designate verticesV, see Figure A.27.

Landmark vertices are characteristic vertices of natural objects, whereas bounding vertices are vertices defined
on the edge of the bounding box for the object. Such vertices are always included in master meshes.

233



Orientation vectors

Orientation vectors are unit direction vectors. In natural parameterization, an orientation vector is always
supposed to be one of the vectors from a Frenet triple TNB, see Figure A.27.

ANNEX 16.2.2  Scalar Primitives

The generalized curvatures 0*Q represent the fourth generation scalar property of a subdomain. Generalized
curvatures are of utmost importance for second order natural parameterization. Therefore, the concepts of
Frenet orthogonalities, Frenet order transformation, and the Camille Jordan generalization (as already defined
in the introduction) are essential for natural parameterization. Curvatures can also be estimated (see ANNEX 6.1
& ANNEX 6.2).

ANNEX 16.3 SEGMENTATION
Supplementary segmentation illustrations for wheat grain surfaces are given below.

Figure A. 28: Segmentations of surfaces and cross-sections
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ANNEX 17

A001

STEREO-MICROSCOPIC IMAGES

Table 6.3: Stereo-microscopic images A001-A036

A002

A003

A004

A005

A006

A007

A008

A009

A010

AO011

A012

A013

A014

A015

A016

A017

A018

A019

A020

A021

A022

A023

A024

A025

A026

A027

A028

A029

A030

AO031

A032

A033

A034

A035
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A037

Stereo-microscopic Images (Continued)

Table 6.4: Stereo-microscopic images A037-A072

A038

A039

A040

A041

A042

A043

A044

A045

- |

A046

A047

A048

A049

A050

AO51

A052

A053

A054

AO055

A056

A057

A058

A059

A062

A063

AO64

A065

A068

A069

A070
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Stereo-microscopic Images (Continued)

Table 6.5: Stereo-microscopic images A073-A100

A079 A080 AO81 A082 A083 A084

A085 A086 A087 A088 A089 A0S0

A091 A092 A093 A094 A095 A096

A097 A098 A099 A100
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ANNEX 18 Adjustments of the Background Setting

A random collection of cross-sections captured with light and dark background is reproduced below.

q 4*__‘ = A ; )‘ h s 2

-® "'&ﬂ e

© g eANY

“q

6 P9 and o ®
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ANNEX 19

B072

BO55

B012

BO75

B044

Adjustments of the Threshold Level

Table 6.6: The Influence of the threshold level on the BW-separation

¢

B072_80

S

BO55_80

C

B012_80

)

B075_80

]

B068_80

)

BO44_80

(]

B072_100

Cl

BO55_100

]

B012_100

0l

B075_100

)

B068_100

09

B044_100

]

B072_120

6

BO55_120

d

B012_120

ol

B075_120

]

B068_120

0]

B044_120

B072_140

BO55_140

¢

B072_160

S

BO55_160

B012_140

B012_160

B0O75_140

)|

B068_140

3
3

B044_140
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ANNEX 20 Automatic Boundary Recognition

Table 6.7: Automatic Boundary Recognition. Threshold level: 100

J ]

B072 B072_100

0]

BO55_100

19}

B012 B012_100

o)

B075_100

N}

B068_100

ol

B044 B044_100

23393l
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ANNEX 21 INSPECTION OF RAW AND SCALED MASTER DATA

2 4 & & 10 12 14 16 18
Variable number

The raw data plot indicates that the biggest variations are
found amongst the curvature factors K11...K62 (Variable
numbers: 12-18). Also the "center bottom vertex", (Variable
number 7) exhibit large variations.

T ¥
2z 4 & & 10 12 14 16 18
Variable number

After autoscaling the curvatures (Variable number 12-18)
still show the largest variations.
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Sample size: nops = 100

Notations:

1 = First dir. (Local X).

2 =Second dir. (Local Y)

B = Boundings (1, DIR).

V = Vertices are identified by (IDX, DIR). IDX = vertex No.

T = Tangents are identified by (IDX, DIR). IDX = segment No.

K = Curvatures are identified by (IDX, DIR). IDX = segment No.

Notations

o = auto scaled factor

Local directions:

(1) = First dir. (Local X)

(2) = Second dir. (Local Y)

B = Bounding dimension factors are normalized (1, DIR).
V = Vertices are identified by (IDX, DIR). IDX = vertex No.
T = Tangents are identified by (IDX, DIR). IDX = segm. No.

K = Curvatures are identified by (IDX, DIR). IDX = segm. No.



ANNEX 22 DETECTION OF INCONSISTENT MASTER DATA FOR COMPARISON OF FIRST INTEGRALS

ANNEX 22.1 INCONSISTENT DATA
The location of deviating objects will mainly be based on the inspection of the multivariate influence plot,
which combines the residual of variance plot and the Hotellings T plot within the PCA.

ANNEX 22.1.1  Detection of Outliers from PCA

The first PCA model was developed from the raw data and all variables which where organized as a 100-by-18
data matrix. Outliers were detected from a successive ranking of inconsistent data. A total of three outliers
were detected during the following three-step elimination process.

Sample size: ny,:=100

PCA plots

PCA Residual variance (objects) [Madel 1]

- PC#1: 006 022 080 (066) (085)
| PC#2: 006 022 080 (066) (085) (025) (097)
PC#3: 022 006 085 (097) (066)
PC#4: 022 006 085 (061) (025)
PC#5: 022 006 025 (061) (068)
PC#6: 022 025 061 (088) (085)

ance (objects) PC#6 (56 622%)
s 8

ual va
»

Resi

D 10 20 30 40 0 60 70 80 90 100
Index

Inconsistent data ranking:
Residual Varaiance Plot e 022 006 (085) (080)

PCA Hotellings T2 (objects) [Madel 1]

. | PC#1: 042 018 043 (050) (040)
PC#2: 006 080 013 (042) (040) (043)
PC#3: 080 006 066 (027) (029)
Pc#4: 080 006 066 (027) (097)
PC#5: 006 080 066 (085) (097)
PC#6: 006 080 022 (066) (085)

ts) PCH#5 (56 622%)

T2 (objec
=
e o o o o o

0 10 20 30 40 &0 6 70 B0 90 100
Index

Inconsistent data ranking:

Hotellings T Plot e 006 080 (066) (085) (022)

PCA Res. vanance vs. T°2 [Model 1)

- PC#1: 006 080 085 (066) (022)
PC#2: 006 080 085 (022) (066) (025)
PC#3: 006 080 022 (066) (085)
PC#4: 006 080 022 (066) (085)
PC#5: 006 022 080 (085) (066)
PC#6: 006 022 080 (085) (025)

W W % W% Inconsistent data ranking:

Hotelling T2 PC#S (56.622%) . 006 080 (022) (085) (080)

Influence Plot

Conclusion: Data point A006 is found inconsistent.
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Step 2 and step 3 reported to the right are
performed in the same way as step 1 above.

PCA Res. variance vs. T2 [Model 2: [1]]

500
45 WAD22
400

g 35

(&)

o

@ 30t

g

&

S 25t

=

T 20

E

H

215 WA
10 =
5L WA
0

L L L L L L L
0 5 10 15 20 25 30 35
Hotelling T'2 PC#6 (63.344%)

Conclusive remarks

Step 2
Model 2 was created by
recalculating model 1
without: A006. Its influence
plot indicated the following
inconsistent data.

PC#1: (.)
PC#2: 080
PC#3: 080 022
PC#4: 080 022
PC#5: 080 022
PC#6: 080 022

Inconsistent data point:

e« 080

Step 3:
Model 3 was created by recalculating
model 1 without: A006 and A08O. Its
influence plot indicated the following
inconsistent data:

PC#1: 022 (27)

PC#2: 022 (085) (066)
PC#3: 022 066 (085)
PC#4: 022 (066) (085)
PC#5: 022 (085) (066)
PC#6: 022 (085) (066)

Inconsistent data point:

e 022

Model 4 was created by recalculating model 1 without: A006, A0O80 and A022. No more inconsistent data

points were found.

Since a minimum of three cross-sections in the sample possess significant curvatures, second order Frenet

subdivision with at least F, extrapolation is required in the case study.
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ANNEX 23 CORRELATION MATRIX FOR MASTER PARAMETERS

The full correlation matrix for the eighteen master parameters is reproduced below. In general, it is seen that
the master parameters are very weakly correlated indeed. This gives reason to believe that the selected set of
master parameters can be perceived as generalized coordinates, which may be non-linear dependent but un-
correlated.

Table 6.8: Correlation Matrix for the Master Parameters

1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15 16 17 18

1 | 10000 05018 -0.0203 -0.2600 -0.142 -0.1881 0.022¢ -0.2160 0.1259  0.0025 -0.0183 -0.1261 0.2066  O0.114¢ 00035  0.0885  0.1318 0,003
2 | 0508 10000 -0.0904 0067 -0.1035 -0.1440 0,063 -0.0135 -0.0783 0,007 -0.0004 0.0112 0.2982 -0.1035 0.0369 0,055 0,173 -0.0252
3 [-0.0208 -0.000¢ 10000 0,079 0,289 00467 05230 -0.1T02  0.1372 _0.0317  0.685 0,007 -0, 0.2010 -0.0018 -0.1028 0.1 -0.1704
4 |-0.2600  0.0617 0.0783  1.0000 0.7 00775  0.0568  0.0383 Lo.2sme Woazsse .esve -0.0850 -0.0381 0,127 -0.0087 -0.0877  0.6039
5 [-0.1162 -0.1035  0.2188  0.0776  1.0000 -0.0865 -0.3316 g 0.1290  0.0368 -0.2970 0.0102 -0.0082 -0.016¢ -0.1003 -0.0415
[
i
8

-0.1891 -0.1440  0.1467  0.0775 -0.0885  1.0000 0.545¢ - 0.1682 -0.15%2  0.0492 -0.1790  0.1954 -0.0761  0.0028  0.03%8  0.0505

0.022¢  0.0633  0.3230  0.0568 -U.33i 0.545¢  1.0000 -0.5501 -91223 0.1377  0.0088  0.0617 -0.1312  0.0880 -0.1579 -0.111¢ 0.2476  0.0205
-0.2160 -0.0196 -0.1702  0.038¢  0.0588 -0,3405 -0.5501  1.0000  0.1%% -0.1062 0.0806  0.0022 0.007¢ -0.2179  0.1437 -0.2260 -0.3144 -0.0528
9 0.125¢ -0.0783 0.1372 -0.2885 .2336 -0.1223  0.1989  1.0000 -0.1271  0.0%88 -0.1424  0.0123  0.084% 0.1 -0.0281  0.1576 -0.0570
10 0.0025 0.007%6  0.0317 0.2379 -0.1088  0.1662  0,1377 -0.1062 -0.1271  1.0000 -0.2324 -0.4314 0.211%8 0.1418 -0.1275 -0.0229 -0.00132  0.4237
11 |-0.0193 -0.0004 0.1685_ 0.2338  0.1290 -0.1582  0,0089  0.0806  0.0988 -0,2324  1.0000  0.3518 -0.2928 -0.1980  0.1050 -0.0809  0.1155 -0.2596
12 |-0.1260  0.0112 0.397‘ 0.0368  0.04%2  0.0617 0.0022 -0.1424 -0.4314 0.3518  1.0000 -0.11%6 -0.0703 -0.1199 -0.0193 -0.0300  0.2891
IES] 0.2066 0.2962 -0.13¢5 -0.0950 -0.2670 -0.17%0 -0.131¢  0.007%  0.0123 0.2115 -0.2928 -0.1156 1.0000  0.2184 -0.0326  0.2941  0.0484  0.1344
14 0.114¢ -0.1935 0.2011 -0.0381  0.0102  0.1954  0.0880 -0.2179  0.084%  0.1418 -0.1980 -0.0703 0.2194  1.0000  0.0058  0.1527 0.00B4  0.0435
15 |[-0.0035 0.0369 -0.0018 -0.1287 -0.0042 -0.0781 -0,1579  0.1437  0.1148 -0.1275  0.1050 -0.1199 -0.0328  0.0058  1.0000 -0.0073  0.0576 -0.1742
16 0.0555  0.0355 -0.1029 -0.0047 -0.0164  0.0028 -0.1114¢ -0.2260 -0.0281 -0.0229 -0.0809 -0.0193  0.2441  0.1527 -0.0073  1.0000  0.0533  0.0187
L7 0.1918 0.1733 0.3111 -0.0977 -0.1003 0.03%8  0.2476 -0.3144  0.176 -0.0132 0.1155 -0.0300 0.0484 0.0084 0.0576  0.0533  1.0000 -0.0154
18 0.0081 -0.0252 —O.ZTU‘EI 0.6039 I-U.C"t'.S 0.0505  0.0205 -0.0528 -0.0570  0.4237 -0.2586 0.2591  (0.1344  0.0495 -0.1742  0.0187 -0.015¢  1.0000

It appears from the correlation matrix that the
biggest Pearson product-moment correlation
coefficient (p=0.66) (marked by the red boxes)
appears for the pair of parameters represented by
the location vertex (No 4) and the bow-line
tangent (No 11). However, this value only indicates
a relatively weak correlation. At the same time the
mutual correlation (p< 0.25) (marked by the blue
boxes) between the tangents (No 10 and No 18) is
very weak indeed. This indicates that the “bow-
line” does not reflect tangential symmetry.

Figure A. 29: Master parameters.

(Repeated here for convenience)
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7.2 SOFTWARE

ANSYS®

COMSOL Multiphysics®
GSI STUDIO®
LATENTIX™

Mathcad®

MATLAB®

Rhinoceros®
STAAD PRO®
VeriFinger®

3ds Max Design®

A registered trademark of ANSYS, Canonsburg, Pennsylvania, U.S.A.

A registered trademark of COMSOL, Stockholm, SWEDEN.

A registered trademark of Geometry Systems Inc., San Francisco, USA

A registered trademark of Latent5 Aps, Copenhagen, DENMARK

A registered trademark of PTC Corporate Headquarters, Needham, MA, USA.

A registered trademark of The MathWorks, Natick, MA, USA.

A free software environment for statistical computing and graphics.

A registered trademark of Robert McNeel & Associates, Seattle, USA

A registered trademark of Bentley EMEA Bentley Systems International Ltd., Dublin, Ireland.
A registered trademark of Neurotechnology, Vilnius, LT-06118, Lithuania

A registered trademark of Autodesk Inc., Worldwide Headquarters, San Rafael, CA, USA

252

www.ansys.com

www.comsol.com

www.geometrysystems.net

www.latentix.com

www.ptc.com

mathworks.com

www.r-project.org

www.rhino3d.com
Www.en.na.mcneel.com
www.bentley.com

www.neurotechnology.com

usa.autodesk.com



Brochner, T.: Natural Parameterization, 2013

Department of Engineering Tel.: +45 4189 3000
Aarhus University

Edison, Finlandsgade 22

8200 Aarhus N

Denmark



