
  

 

NEER ENGI   
 

COMPOSITE MATERIALS 
IN COMPRESSION 
 

  
Mechanical Engineering   
Technical Report ME-TR-4 
 

 
 



 
 
 

 

 

DATA SHEET 
 
 
Title:  Composite materials in compression 
Subtitle:  Mechanical Engineering 
Series title and no.:  Technical report ME-TR-4 
 
Author: Jens Lycke Wind  
Department of Engineering – Mechanical Engineering,  
Aarhus University 
 
Internet version:  The report is available in electronic format 
(pdf) at the Department of Engineering website 
http://www.eng.au.dk.  
 
Publisher:  Aarhus University© 
URL:  http://www.eng.au.dk 
 
Year of publication:  2013  Pages:  34  
Editing completed:  January 2013 
 
Abstract:  A geometric and material non-linear finite element 
code is built using Matlab. The theoretical derivations for build-
ing the code is outlined and explained by pseudo code. Three 
different solvers are introduced; the Newton Raphson method, 
the modified Newton Raphson method, and the arc length 
method. The code is tested for material non-linearity an geo-
metric non-linearity separately using standard reference solu-
tions. The future work is outlined as a continuity of this report. 
 
Keywords:  Unidirectional composite, non-linear finite element 
method, kink-band formation, material instability 
 
Supervisor:  Henrik Myhre Jensen 
 
Please cite as:  Authors, year. Title. Department of Engineering, 
Aarhus University. Denmark. 34 pp. - Technical report ME-TR-4 
 
Layout:  LaTeX 
Cover photo/image: Jens Lycke Wind 
 
ISSN:  2245-4594 
 
Reproduction permitted provided the source is explicitly 
acknowledged 
 
 

 
 
 
 

 
 



 
 

 
COMPOSITE MATERIALS IN 

COMPRESSION 
 

Jens Lycke Wind  

Aarhus University, Department of Engineering 

 

 

 

 

 

 
 

Abstract 
 
A geometric and material non-linear finite element code is built using Matlab. The theoretical 
derivations for building the code is outlined and explained by pseudo code. Three different solvers 
are introduced; the Newton Raphson method, the modified Newton Raphson method, and the arc 
length method. The code is tested for material non-linearity an geometric non-linearity separately 
using standard reference solutions. The future work is outlined as a continuity of this report. 



Nomenclature

Nomenclature

Variables in bold are a vector or a matrix. Lower case bold variables refer to

a local size, where upper case bold variables refer to a global size.

i, j, k, l Tensor notation counting 1 to 3

α, β, γ, δ Tensor notation counting 1 to 2

( )i Iterative form
˙( ) Incremental form

( ),x Differentiated with respect to x

σij Cauchy stress tensor

ǫij Engineering strain tensor

Eijkl Constitutive tensor

E Youngs modulus

ν Poissons ratio

δ Kroneckers delta

J2 Second invariant of deviatoric stress tensor

σe Effective Von Mises stress

sij Deviatoric stress tensor

σy Yield stress

n Hardening parameter, Number of nodes for the element, incremental counter

Et Tangential Youngs modulus

β Yielding indicator, ratio between load and displacement

FFF Global Nodal force vector

KKK Global Stiffness matrix

DDD Global Nodal displacement vector

t Thickness of plate

A0 Initial area

S0 Initial surface

Sαβ Second Piola-Kirchhoff stress

Eαβ Green-Lagrange strain tensor

Pα Surface traction in the direction of α

uα Displacement in the direction of α
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Lαβγδ Instantaneous constitutive tensor

NNN Shape functions vector

N Shape functions

dddα Local nodal displacement vector in the direction of α

d1α Displacement of node 1 in the direction of α

KtKtKt Tangential stiffness matrix

ndof Number of degree of freedoms for the element

NDNDND Matrix of gradients of shape functions

ddd Local nodal displacement vector

BBB11 Strain-displacement vector for E11

JJJ Jacobian matrix

NdNdNd Matrix of gradients of shape functions

ξ, η Mapped coordinates

dxydxydxy Matrix of physical coordinates

ΓΓΓ Inverse of jacobian matrix

SSS Green-Lagrange stress vector

BBB Strain displacement matrix

J Determinant of jacobian matrix

GP Gauss point counter

NGP Number of Gauss point for the element

k Degree of freedom counter

kkkGP Local stiffness matrix for Gauss point

W Weight factor of Gauss point, Width of specimen

R Equilibrium correction term

RRR Nodal residual force vector

Fcr Critical force

H Height of specimen

FFFn Current force vector

∆FFF Incremental force vector

UUUn−1 Displacement vector from last increment

GGG Internal force vector

UUU i Iterative displacement vector

e Equilibrium convergence parameter

ii



Nomenclature

sss Deviatoric stress vector

ξ Load factor

c Constraint equation

ccc,UUU Gradient of constraint equation wrt. UUU

c,ξ Gradient of constraint equation wrt. ξ

UUU i
R Iterative displacement vector from residual part

∆UUUF Incremental displacement vector from external force part

∆UUUF1 Incremental displacement vector from external force, first increment

iii



Abstract

Abstract

A geometric and material non-linear finite element code is built using Matlab.

The theoretical derivations for building the code is outlined and explained

by pseudo code. Three different solvers are introduced; the Newton Raphson

method, the modified Newton Raphson method, and the arc length method.

The code is tested for material non-linearity an geometric non-linearity sep-

arately using standard reference solutions. The future work is outlined as a

continuity of this report.
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Chapter 1

Introduction to project

In the design of mechanical structures there is a need for having light and

strong structures. One opportunity for meeting this need is the use of a light

weight material like aluminium, but another option is the use of composite

materials. One of the composite material option is to apply layered materials

where the lay up usually is made of different materials. Each layer, called

ply, are made of a reinforced material, e.g. carbon reinforced polymer. The

reinforcement could be long slender continuous carbon fibres, in which the

direction of orientation is crucial for the strength of the ply. This means that

the strength can be orientated in a given direction where the high strength is

wanted.

The good behaviour of these plies does have a backside. When the plies are

in compression, the strength can be down to 60 % of the tension strength, Fleck

(1997) [1]. The reduction in strength can be due to several failure mechanisms;

elastic microbuckling, plastic microbuckling, fibre crushing, splitting, buckle

delamination or shear band formation. One of the dominant failure modes in

unidirectional reinforced polymer composite is plastic microbuckling. When

plastic microbuckling occurs, the fibres tend to perform an inclined kink band

of fibres that has kinked out of the original orientation. This phenomena is

well known from nature where natural layered materials are performing these

kink bands as well. In the paper by Paterson and Weiss (1966) [2], they

experimentally observed kink band formation in phyllite (foliated rock) which
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1. Introduction to project

deforms in a similar manner as a unidirectional composite. Like the foliated

rock, it is the shear strength and stiffness that determines when and how a

kink band is formed in the composite.

The property of the plastic microbuckling failure mode is that the initiation

stress is significant higher than the steady state kink band broadening stress

where the instability propagates. The phenomena of propagating instabilities

was reviewed by Kyriakides (1993) [3] where he characterised the failure mode

in undersea pipelines.

The present work is aimed upon studying the interaction of overall struc-

tural buckling and local material instabilities by kink band formation in plate

and shell structures of composite materials. The method chosen is a de-

tailed quasi static finite element simulation of composite structures based on

individual discretisation of fibres and matrix material in order to track the

load/displacement response of the material. The results will be compared

with a finite element formulation based on constitutive relations for effective

properties of fibre composites, Jensen (1998) [4]. The discretisation of fibres

and matrix material makes it possible to add cracks and holes in the structure

to simulate a more direct application towards the use of this research in the

industry. The possible outcome could be a method that could increase the

critical buckling load for lightweight structures and thereby the possibility of

making stronger and lighter composite structures.
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Chapter 2

Method of solution

The method used for analysing the failure mechanics, is a non-linear finite

element method. In the following the basic equations for establish a finite

element code is presented. Since the problem is highly nonlinear, the code

will take material non-linearity and geometric non-linearity is taken into ac-

count. Before moving to the finite element method the elasto-plastic material

behaviour is described.

2.1 Elasto-plastic material behaviour

An essential ingredient in describing a material behaviour is the relation be-

tween strains ǫ and stresses σ

σij = Eijklǫkl (2.1)

where Eijkl is the constitutive tensor, and the latin index notation counts from

1 to 3. For an isotropic linear elastic material the constitutive relation is

Eijkl =
E

1 + ν

(

1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl

)

(2.2)

whereE is Youngs modulus, ν is Poissons ratio, and δ is the Kronecker delta. If

the material during loading becomes plastic, the constitutive relation changes

with the stresses evolving. If this is the case, the material description becomes

3



2. Method of solution

non-linear. In a non-linear analysis of material behaviour, three main ingre-

dients are necessary; a yield criterion, a hardening rule and a flow rule. In

the literature there are many different description of a yield surface. Four of

them are showed in figure 2.1. The most commonly used yield surface is the

σ1σ1

σ2σ2

σ3σ3

Tresca
von Mises

Mohr-Coulomb
Drucker-Prager

Figure 2.1: Yield surfaces.

Von Mises yield surface [5] given by

f (σij) = 3J2 = (σe)
2

max
(2.3)

where J2 is the second invariant of the deviatoric stress tensor and (σe)max
is

the effective Von Mises stress. The J2 stress can be written as

J2 =
1

2
sijsij (2.4)

where sij is the deviatoric stress tensor which is given by

sij = σij − δij
σkk
3

(2.5)

It can be seen from equation 2.4 that the effective von Mises stress σe is

independent of the hydrostatic stress tensor, while only sij is contributing to

J2.

After yielding is determined by the yield criterion, the subsequent stress-

strain relation must be determined. Most materials have a hardening and not

a softening behaviour. The hardening law can be described in many different

ways, but three well known hardening laws are

� Elastic-perfectly plastic

4



2.1. Elasto-plastic material behaviour

� Hardening slope

� Power hardening law

To simulate the physical behaviour of the material, a power hardening law is

used. The power hardening law is described in a uni-axial space by

ǫ =







σ
E

for σ ≤ σy
σy

E

[

1

n

(

σ
σy

)n

− 1

n
+ 1

]

for σ > σy
(2.6)

where the tangential modulus is determined by

Et =
dσ

dǫ
=

(

dǫ

dσ

)

−1

(2.7)

Et = E

(

σ

σy

)1−n

(2.8)

The power hardening law was found by Borg (2003) [6] to fit the experimental

data from Hsu, Vogler, and Kyriakides (1999) [7] for PEEK with an exponent

n = 5.

The last ingredient in the non-linear material analysis is the flow rule.

The J2-flow theory is used as described in McMeeking and Rice (1975) [8].

The constitutive tensor Eijkl in equation 2.1 is replaced with an instantaneous

moduli Lijkl which is an extension of equation 2.2. The instantaneous moduli

is given by

Lijkl =
E

1 + ν

(

1

2
(δikδjl + δilδjk) +

ν

1− 2ν
δijδkl − β

3

2

E/Et − 1

E/Et − (1− 2ν)/3

sijskl
σ2
e

)

(2.9)

where β is

β =







1 for σe = (σe)max
and σ̇e ≥ 0

0 for σe < (σe)max
or σ̇e < 0

(2.10)

(σe)max
is the maximum effective von Mises stress. This stress is initially

equal to the yield stress of the material σy, but as plasticity is evolving so is

the maximum effective Von Mises stress (σe)max
. The dot symbol ˙( ) means

an incremental size or a load step size. The sign of the incremental effective

stress σ̇e determines if the material point is in a loading or a unloading state.

If the material is unloading, β will always be 0.
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2. Method of solution

2.2 Finite element theory

The wanted output of this analysis is the displacement U as a function of the

applied force F . In the finite element method the relationship between F and

U is described by

FFF =KKKDDD (2.11)

where FFF is the nodal force vector, KKK is the stiffness matrix and DDD is the

nodal displacement vector. This system of equations is an approximation

of a continuous system. When capital letters is used they refer to a global

quantity and when lower case letters are used they refer to a local quantity.

The stiffness matrix KKK is found using the principle of virtual work (PVW).

For a planar case [9] assuming no volumetric forces

t

∫∫

A0

SαβδEαβ dA0 =

∫∫

S0

Pαδuα dS0 (2.12)

where E is the Green-Lagrange strain tensor (not the Youngs modulus in this

case), and S is the work conjugated second Piola-Kirchhoff stress [10]. A0 and

S0 denotes the area and the surface, and 0 means the PVW is formulated in

the initial configuration. The Greek index notation counts from 1 to 2, so this

marks the planar case. If the virtual strain tensor δEαβ is evaluated using

the total displacement, the method is called Total Lagrangian formulation [9].

If the PVW is written in incremental form, the expression after linearization

and removal of constants is

t

∫∫

A0

(

SαβδĖαβ + ṠαβδEαβ

)

dA0 =

∫∫

S0

Ṗαδuα dS0 (2.13)

where ˙( ) is the increment. The individual parts are to be determined in the

following. The total stress is

Sαβ = LαβγδEγδ (2.14)

where Lαβγδ are defined by equation 2.9. The total strain is

Eαβ =
1

2
(uα,β + uβ,α + uγ,αuγ,β) (2.15)

6



2.2. Finite element theory

where uα,β is the displacement in the α direction differentiated with respect

to β, and vice versa for uβ,α. The virtual incremental strain is

δĖαβ =
1

2
(u̇γ,αδuγ,β + uγ,αδu̇γ,β) (2.16)

The incremental stress is defined in the same way as equation 2.14 only with

the incremental strain Ėαβ instead of the total strain. The incremental strain

is defined as

Ėαβ =
1

2
(u̇α,β + u̇β,α + uγ,αu̇γ,β + u̇γ,αuγ,β) (2.17)

The last part of equation 2.13 is the virtual strain Eαβ which is similar to the

incremental strain only with the increment switched with virtual

δEαβ =
1

2
(δuα,β + δuβ,α + uγ,αδuγ,β + δuγ,αuγ,β) (2.18)

The displacement field within an element can be approximated by shape

functions. The method of approach is to interpolate the nodal displacement

dddα using the shape functions NNN . The displacement field is given by

uα(x, y) =NNN(x, y)dddα (2.19)

where NNN is a vector containing the shape functions

NNN =
{

N1 N2 ... Nn
}

(2.20)

The number of shape functions is given by the number of nodes for the element

n. The nodal displacement vector is

dddα =
{

d1α d2α ... dnα

}T

(2.21)

where d11 is the displacement of node 1 in the 1-direction and d12 is the

displacement of node 1 in the 2-direction. The same is valid for the rest of

the nodal displacements. The gradients of the displacement in the 1-direction

(x-direction) with respect to the 2-direction (y-direction) can be found using

partial differentiation of the shape functions

ux,y =
∂NNN(x, y)

∂y
dddx (2.22)

7



2. Method of solution

The same is applicable for the virtual and incremental displacement gradient

δux,y =
∂NNN(x, y)

∂y
δdddx , u̇x,y =

∂NNN (x, y)

∂y
ḋddx (2.23)

Next in line is to establish the tangent stiffness matrix KtKtKt. This is done

by writing equation 2.11 in incremental form

ḞFF =KtKtKtḊDD (2.24)

This means that the left hand side (LHS) of equation 2.13 written in terms

of the incremental nodal displacement ḊDD. The approach is to isolate the local

incremental nodal displacement vector ḋdd when establishing the local tangent

stiffness matrix ktktkt in each element. The nodal displacement vector ddd is an

assembly of d1d1d1 and d2d2d2

ḋdd =
{

˙d11 ˙d12 ˙d21 ˙d22 ˙d31 ˙d32 ... ˙dn1
˙dn2

}T

(2.25)

This means that the displacement gradients can be written as






















u̇1,1

u̇1,2

u̇2,1

u̇2,2























=













N1,1 0 N2,1 0 ... Nn,1 0

N1,2 0 N2,2 0 ... Nn,2 0

0 N1,1 0 N2,1 0 ... Nn,1

0 N1,2 0 N2,2 0 ... Nn,2













ḋdd (2.26)

and in compact form as

u̇dudud
4x 1 =NDNDND

4xndof ḋdd
ndof x 1

(2.27)

The same procedure can be used to evaluate the total displacement gradient

ududud by using the total nodal displacement ddd. The necessary information to

calculate the Green-Lagrange strain Eαβ and thereby the total second Piola-

Kirchhoff stress Sαβ is now evaluated. The incremental strain Ėαβ is the next

in line. The expression is given by equation 2.17 and as an example Ė11 is

written out

Ė11 = u̇1,1 + u1,1u̇1,1 + u̇2,1u2,1 (2.28)

Next the incremental nodal displacement ḋdd is isolated and the expression yields

Ė11 = (NDNDND(1, :) + u1,1NDNDND(1, :) +NDNDND(3, :)u2,1) ḋdd (2.29)

8



2.2. Finite element theory

where (1, :) means the whole row of the first column. For simplicity this can

be written in a compact form as

Ė11 = ḂBB11ḋdd (2.30)

where ḂBB11 is the incremental strain-displacement vector relating the incremen-

tal nodal displacement ḋdd with the incremental normal strain in the 1-direction.

The same procedure is used to determine equations 2.16 and 2.18.

2.2.1 Implementation of an isoparametric element

In this section an implementation of a plane isoparametric element will be

presented.

The formulas derived in section 2.2 are in a physical space ie. xy-space.

The same procedure can be used in an isoparametric way ie. ξη-space. This

is done by mapping the physical coordinates into the ξη coordinates. This is

done via the Jacobian matrix JJJ which is defined as

JJJ =NdNdNd dxydxydxy (2.31)

where NdNdNd is

NdNdNd =

[

N1,ξ N2,ξ ... Nn,ξ

N1,η N2,η ... Nn,η

]

(2.32)

The shape funtions are here given in terms of ξ and η. dxydxydxy are the physical

coordinates which is arranged as

dxydxydxy =













x1 y1

x2 y2
...

...

xn yn













(2.33)

where n is the number of nodes in the element. By defining a matrix ΓΓΓ as the

inverse of JJJ

ΓΓΓ = JJJ−1 =

[

Γ11 Γ12

Γ21 Γ22

]

(2.34)

9



2. Method of solution

the transformation between physical gradients of deformation and mapped

gradients of deformation can be written as























u1,1

u1,2

u2,1

u2,2























=













Γ11 Γ12 0 0

Γ21 Γ22 0 0

0 0 Γ11 Γ12

0 0 Γ21 Γ22



































u1,ξ

u1,η

u2,ξ

u2,ξ























(2.35)

The vector on the right hand side of equation 2.35 contains the gradients of

the displacements with respect to ξη-coordinate system which is calculated in

the same way as equation 2.26. The differentiation is done with respect to ξ

and η instead of 1 and 2 (x and y). The local stiffness matrix ktktkt can now be

calculated as

ktktkt = t

∫

1

−1

∫

1

−1

SSS δḂBB + ṠSS δBBB J dξ dη (2.36)

where the total stress vector SSS is calculated from equation 2.14 and δḂBB is

calculated from equation 2.16 using the same procedure as equation 2.29.

ṠSS is found using equation 2.17 and finally δBBB is determined from equation

2.18. J is a transformation between the physical coordinates and the mapped

coordinates. Finally J can be found as the determinant of the Jacobian matrix

from equation 2.31

J = |JJJ | (2.37)

All the terms needed to establish KtKtKt are now determined and the imple-

mentation can begin. To do the integration in equation 2.36, Gauss integration

will be used. In algorithm 1 a pseudo code for establishing the local stiffness

matrix ktktkt of an isoparametric element is presented. In algorithm 1 the consti-

tutive matrix LLL is written in terms of the Cauchy stresses σσσ. These stresses are

known from the previous increment. W (GP ) is the weight factor associated

with the current Gauss point.

10



2.3. Numerical solution techniques

for GP = 1, 2, . . . , NGP do

NDNDND =NDNDND(ξ(GP ), η(GP ))
ududud =NDNDND ddd
SSS = LLL(σσσ)EEE(ududud)
ṠSS = LLL(σσσ) ḂBB(NDNDND,ududud)
for k = 1, 2, . . . , ndof do

δddd =
{

0 0 . . . 0
}1xndof

δddd(k) = 1
δḂBB = δḂBB (NDNDND, δududud)
δBBB = δBBB (ududud, δududud)
kGPkGPkGP (k, :) = SSS δḂBB + ṠSS δBBB

end for

ktktkt = ktktkt + kGPkGPkGP t J (ξ(GP ), η(GP )) W (GP )
end for

Algorithm 1: The local tangent stiffness matrix ktktkt.

2.3 Numerical solution techniques

Equation 2.13 is only valid if the actual increment satisfies equilibrium. Since

the equation is a nonlinear equation, a linear incremental analysis would accu-

mulate errors and drift away from the physical equilibrium path. This method

is called an explicit incremental method. An alternative to this is an implicit

incremental method where an equilibrium correction term is added on the

right hand side of equation 2.13

t

∫∫

A0

(

SαβδĖαβ + ṠαβδEαβ

)

dA0 =

∫∫

S0

Ṗαδuα dS0 +R (2.38)

where R is the equilibrium correction term (or residual) and is defined as the

difference between the external virtual work and the internal virtual work

R =

∫∫

S0

Pαδuα dS0 − t

∫∫

A0

SαβδEαβ dA0 (2.39)

In vector form equation 2.39 is written as

RRR = FFFδuuu−GGGδuuu (2.40)

where δuuu can be omitted by setting it to 1 in turn [11]. This is similar to

the calculation of the tangent stiffness matrix in algorithm 1. By applying

11



2. Method of solution

the correction the equation will be closer to equilibrium, but not exact. To

obtain a solution as close to equilibrium as wanted, several different numerical

techniques are available [5]. A small part of those will be explained in the

following sections. In figure 2.2 an example of the influence of equilibrium

correction for a beam in axial compression with a small imperfection is shown.

The equilibrium path is shown here in comparison with a solution without
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Figure 2.2: The effect of equilibrium correction on a beam in compression. The
figure shows a vertical stress applied on the top of the beam normalized with respect
to the analytical critical load as a function of the horizontal displacement at H/2
normalized with respect to the width w of the beam.

equilibrium correction for large time steps. This is done in order to see the

influence clearly. If smaller time steps were used the two solutions would be

closer to one another. One could argue that you could might as well use small

time steps and save a lot of coding but then a sudden large change in direction

of the equilibrium path would be difficult to capture.

2.3.1 Newton-Raphson method

This equilibrium correction method is the simplest and the most widely used

for a simple non-linear finite element solution procedure. The fundamentals

of the method is to calculate the residual force vector and then adjust the

12



2.3. Numerical solution techniques

tangent stiffness matrix. The simplest explanation of the method is done by

writing the algorithm for obtaining equilibrium in one increment. This is done

in algorithm 2. The first for-loop counts the increments n from 1 to the

for n = 1, 2, . . . , N do

FFFn = FFFn−1 +∆FFF
UUUn = UUUn−1

σn = σn−1

while StopF lag = 0 do

KKKt =KKKt(UUUn, σn)
GGG =GGG(UUUn, σn)
RRRn = FFFn −GGG
UUU i =KKK−1

t RRRn

UUUn = UUUn +UUU i

if ||RRRn|| < e||∆FFF || ∨ i = imax then

StopF lag = 1
end if

end while

σn = σn(LLL(σe, sss))
end for

Algorithm 2: The Newton Raphson method.

total number of increment N . Next the total force FFFn is found from the last

increment plus the incremental force ∆FFF . The total displacement UUU is set to

the converged displacement from the previous increment. The same is done

for the Cauchy stresses, to determine the constitutive behaviour. It is recom-

mended by Crisfield [5] to use the incremental stresses and not the iteration

stresses for defining the constitutive behaviour. The iteration procedure is

carried out in the while-loop. At first the tangent stiffness matrix KKKt is cal-

culated as a function of the current displacement UUUn and the current stress

state σ. The internal force vector GGG is calculated from the same parameters.

This means that KKKt and GGG can be calculated at the same time. The residual

force vector RRRn can now be determined from equation 2.40. The ingredients

to solve the stiffness equation for determining the displacement for the cur-

rent iteration UUU i are now established. This iteration displacement is added to

the total displacement UUUn, and overwrites the previous value. The while-loop

continues until the length of the residual ||RRRn|| is smaller than a fraction of

13



2. Method of solution

the length of the incremental force ||∆FFF ||. The fraction is determined by e

which could be on the order of magnitude 10−4 − 10−6 [10]. Algorithm 2 can

be explained further in a graphical way. In figure 2.3 an example of the force

0
0 Un−1 Un

Fn−1

Fn
U1 U2 U3

R1

R2 R3

U

F

Figure 2.3: Graphical representation of the Newton-Raphson equilibrium correction
method. The test setup is the same as in figure 2.2, and the plot shows the applied
force as a function of the horizontal displacement at H/2 in the x direction.

controlled Newton-Raphson algorithm is shown. The increment starts at the

last established equilibrium at Fn−1 and ends at Fn where the displacement

is iteratively corrected so that equilibrium occurs at the end of the increment.

It is clear that the tangential stiffness changes during the iterations which is

the essence of the Newton-Raphson method.

2.3.2 Modified Newton-Raphson method

The procedure for the modified Newton-Raphson method is in overall the same

as the one for Newton-Raphson method. The difference is in the calculation

of the tangential stiffness matrix, which is calculated only in the beginning

of each increment. The algorithm for the modified Newton-Raphson method

is presented in algorithm 3. In the while-loop the inner force vector GGG is

14



2.3. Numerical solution techniques

for n = 1, 2, . . . , N do

FFFn = FFFn−1 +∆FFF
UUUn = UUUn−1

σn = σn−1

KKKt =KKKt(UUUn, σn)
while StopF lag = 0 do

GGG =GGG(UUUn, σn)
RRRn = FFFn −GGG
UUU i =KKK−1

t RRRn

UUUn = UUUn +UUU i

if ||RRRn|| < e||∆FFF || ∨ i = imax then

StopF lag = 1
end if

end while

σn = σn(LLL(σe, sss))
end for

Algorithm 3: The modified Newton Raphson method.

updated in the same way as for the Newton-Raphson method. Since KKKt is

updated from the equilibrium at the last increment this method will need more

iterations than the Newton-Raphson method to converge. But since there is

no need to calculate KKKt in each iteration, time is saved here.

When choosing either the full Newton-Raphson method or the modified

Newton-Raphson method it is hard to say which method to choose if calcu-

lation time is essential. It is a question of time of iteration loops vs. number

of iteration loops. If the equilibrium path has a small slope, the Newton-

Raphson method is the fastest since the modified Newton-Raphson method

needs a lot of iterations to converge. Common for both of the methods is that

when the equilibrium path reaches a limit point convergence will fail. If this

is the case several other methods are an option. The most obvious is to make

the incremental solution displacement controlled instead of force controlled.

This holds true for limit points and even snap-through problems. If snap-

back behaviour will occur, this method will fail as well and techniques that

can handle this type of behaviour will be presented in the following section.
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2. Method of solution

2.3.3 Arc length method

In nonlinear finite element analysis one of the most well known techniques for

tracing equilibrium when limit points, snap-through or snap back behaviour

is present is the arc-length method. The method of approach is that a com-

bined load/displacement step is controlled during equilibrium corrections via

a constraint equation. This approach was first introduced by Riks in 1979

[12]. Ramm [13] reviewed numerical techniques that could trace equilibrium

near limit points in 1981, and Memon and Su [14] reviewed the arc length

technique development of the last two decades in 2003. In this section the

bordering algorithm is introduced followed by a pseudo code explaining the

implementation.

In figure 2.4 the principle of the arc length method is shown. The force

(∆U,∆F )

n− 1

n

U

F c = 0

Figure 2.4: Priciple of an increment using the arc length method. The constrain
equation c is here a hypersphere marked with the dotted line.

increment is applied from the last established equilibrium at n−1, and equilib-

rium is searched for in the direction of the arc until the new state of equilibrium

is found at n. As the figure shows, the new state is found by help of a com-

bined load and displacement equilibrium search. The search path is defined

via a constrain condition that defines the direction of the iterative equilibrium

search. This means that it is necessary to satisfy the constrain condition while

equilibrium iterations are executed.

For a start the equation 2.40 is written in incremental form without the

16



2.3. Numerical solution techniques

virtual displacement as

RRR = FFF −GGG = ξ∆FFF −∆GGG (2.41)

where ξ is a load factor to be established later. Since the load parameter ξ is

unknown in the system of equations, another equation is to be supplied. This

is the path following constraint equation and it is defined as

c(∆UUU, ξ∆FFF ) = 0 (2.42)

The constraint equation connects the current displacement ∆UUU to the current

load increment ξ∆FFF . The linearised combined equilibrium and constraint

equation that needs to be satisfied can be written as

RRR+RRRi = 000 (2.43)

c+ ci = 0 (2.44)

where the superscript i indicates the iteration. Since the independent variables

of the problem are UUU and ξ, the linearised equation take the form

−
∂RRR

∂UUU
UUU i −

∂RRR

∂ξ
ξi = RRR (2.45)

−
∂c

∂UUU
UUU i −

∂c

∂ξ
ξi = c (2.46)

where ∂RRR/∂UUU = −KKKt and ∂RRR/∂ξ = ∆FFF . If the notation ∂c/∂UUU = cccT,U and

∂c/∂ξ = c,ξ is introduced, equations 2.45 and 2.46 can be written as

[

KKK −∆FFF

−cccT,u −c,ξ

]{

UUU i

ξi

}

=

{

RRR

c

}

(2.47)

The easy way of solving equation 2.47 is to solve it in parts. The first equation

solved for UUU i can be written as

UUU i =KKK−1RRR+ ξiKKK−1∆FFF (2.48)

which can be split in a contribution from the residual and one from the incre-

mental force as

UUU i = UUU i
R + ξi∆UUUF (2.49)
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2. Method of solution

Using equation 2.47 the second equation can be written as

ξi = −
cccT,UUUU

i
R + c

cccT,U∆UUUF + c,ξ
(2.50)

which can be inserted in equation 2.49 for the iterative displacement with

combined equilibrium correction and satisfaction of the constraint equation.

Equation 2.50 is the general expression for the load parameter ξi.

The definition of the constraint equation is individual for every type of

arc length method. It can be a hyperplane, an updated hyperplane, a hyper-

sphere and so on. If a linear constraint is used, a hyperplane is orthogonal

to the combined displacement/load increment. This correspond to the con-

dition that the iteration load/displacement is orthogonal to the incremental

load/displacement and expressed as

c = (∆UUU,∆FFF ) ·
(

UUU i,FFF i
)

= 0 (2.51)

where the dot symbol represents a suitable scalar product in the load/dis-

placement space. To do this a scalar β is introduced as a flexibility parameter

representing the ratio between the load and the displacement space. The

constraint equation can then be written as

(∆UUU,∆FFF ) ·
(

UUU i,FFF i
)

= ∆UUUTUUU i + β2∆FFF TFFF i (2.52)

Equation 2.49 can now be inserted and if a fixed hyperplane is used the load

parameter can be determined as

ξi = −
∆UUUTUUU i

R

∆UUUT∆UUUF1 + β2∆FFF T∆FFF 1

(2.53)

where the subscript F1 and 1 returns to the first iteration in the load step

in which the hyperplane is fixed during iteration. When doing this, one must

also remember to use ∆UUUF1 instead of ∆UUUF in equation 2.49. It is shown

by Crisfield [5] in 1981 that it is preferable to fix the incremental length in

displacement space, which means that β = 0. This is done in a pseudo code

in algorithm 4 where a fixed hyperplane arc length algorithm is presented.

In the algorithm it can be seen that the tangent stiffness matrix KKKt is calcu-
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2.3. Numerical solution techniques

while U < Umax ∧ n < nmax do

KKKt =KKKt(UUUn, σn)
∆UUUF1 =KKK−1

t ∆FFF
ξ = ||∆UUU ||/||∆UUUF1||
∆UUU = ξ∆UUUF1

while StopF lag = 0 do

∆GGG =GGG (UUUn−1 +∆UUU)−FFFn−1

RRR = ξ∆FFF −∆GGG
UUU i

R =KKK−1

t RRR
ξi = −∆UUUTUUU i

R/∆UUUT∆UUUF1

UUU i = UUU i
R + ξi∆UUUF1

∆UUU = ∆UUU +UUU i

ξ = ξ + ξi

if ||RRR|| < e||∆FFF || ∨ i = imax then

StopF lag = 1
end if

end while

σn = σn(LLL(σe, sss))
UUUn = UUUn−1 +∆UUU
FFFn = FFFn−1 + ξ∆FFF

end while
Algorithm 4: The arc-length method.

lated outside of the iteration loop. This corresponds to the modified Newton-

Raphson method and this has been found to increase the robustness of the

algorithm[10]. The initial value in each increment of the load parameter ξ is

calculated from the length of the displacement vector ||∆UUU || from the previous

increment divided with the length of the displacement vector from the initial

load step in the current increment ||∆UUUF1||. The iterative load parameter ξi

is calculated with a fixed incremental length in displacement space, i.e. β = 0.

In the end of the algorithm the total applied force is calculated using the load

parameter ξ. In figure 2.5 the principle of a load step is shown using algo-

rithm 4. The incremental and iterative force/displacement is shown with the

orthogonal constraint.

Since the arc length method is a sort of force controlled method, a different

approach is needed if a displacement controlled method is wanted. This can
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2. Method of solution

(∆U,∆F )

(U i, F i)

n− 1

n

U

F

c = 0

Figure 2.5: An incremental load step using the arc length method using a fixed
hyperplane constraint on the load/displacement space.

be done by the use of Lagrange multipliers to enforce constraints. When

using this method, prescribed relations are made via multipoint constraints

(MPC’s). For further explanation see Cook [15].
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Chapter 3

Verification

To check if the finite element code is working properly, several standard exam-

ples is checked against known results. The material non-linearity and geomet-

rically non-linearity is tested separately to keep the two features separated.

3.1 Material non-linearity

In the finite element code, the stresses are calculated at the Gauss points.

The stresses are then used to determine the constitutive tensor at each Gauss

point individually. The constitutive tensor is afterwards used in the next load

step to establish the stiffness matrix.

The material non-linearity is in the following checked to see if the input

stress/strain relation is the same as the measured one during loading. In

figure 3.1 three curves are shown to compare the input power hardening law,

the measured stress at a Gauss point, and the externally applied stress. The

test specimen is a simply supported square exposed to an equally distributed

unidirectional stress where the incremental method is the arc length method.

The power hardening law used is equation 2.6 with the hardening exponent

n = 10. The three curves are almost identical which was expected.

Since the finite element code should be able to handle unloading as well

as loading, a hardening rule is introduced and checked. To test this a simply

supported square is again used as a reference with an isotropic hardening rule.
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Figure 3.1: Comparison of the input power hardening law, the measured effec-
tive Von Mises stress at a Gauss point, and the externally applied stress. The test
specimen is a simply supported square in equally distributed tension.

The tracking of the stress/strain relation for a single Gauss point is shown

in figure 3.2. The first path, 1 , shows the elastic loading in tension. The

second path, 2 , shows the material in yielding following the power hardening

law with n = 10. When the strain exceeds a certain limit, the unloading

begins following the third path, 3 . The unloading is done using the elastic

Youngs modulus. Since isotropic hardening is used, unloading continues until

the maximum effective stress (σe)max is reached in compression. When this

happens, the tracking continues on the fourth path, 4 , using the power

hardening law which in this case is the same in compression.
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Figure 3.2: Tracking of loading and unloading of a square in stress/strain space
using isotropic hardening.

3.2 Geometric non-linearity

To verify the geometric non-linearity, two different examples are used; a beam

in compression, and a beam in bending.

The purely elastic beam in compression with a small imperfection can

be seen in figure 3.3. The applied force F normalised with respect to the

analytical critical force Fcr is tracked as a function of the displacement U

normalised with respect to the width W of the beam. The curve seems to

break off at approximately the analytical critical load which was expected.

Afterwards a stable post buckling path is evolving. As the bending of the

beam is evolving the bending stiffness is seen in the curve as an increasing

slope.

The second test example is a beam in bending. The geometry and setup is

the same as Lyons and Holsgrove (1989) [16]. They made a numerical reference

solution to a straight beam in bending by a moment, bending by a force, and

compression. In figure 3.4 a comparison with the work done by Lyons and

23



3. Verification

0.5

0
0

1

1

1.5

2 3 4 5 6 7 8 9

U/W

F
/F

c
r

F

W

Figure 3.3: A vertical force F applied and normalized with respect to the analytical
critical force Fcr as a function of the horizontal displacement U normalised with
respect to the width W of the beam.

Holsgrove for a fixed beam in bending by a force is shown. The solver used

for this analysis is the Newton-Raphson method. As in the reference solution,

10 fixed load steps are used. The undeformed and the deformed configuration

of the beam can be seen i figure 3.5.
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Figure 3.4: Comparison with a reference solution to a beam in bending by a force.

Figure 3.5: Undeformed and deformed configuration of the beam in bending by a
force.
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Chapter 4

Conclusion

The present study is aimed at making a finite element code capable of in-

cluding geometric and material non-linearity for analysing unidirectional fibre

composites. This is done by the use of Matlab as the coding language. The

finite element code is made of raw code except for the equation solver where

the built in sparse solver is used in Matlab.

Three different nonlinear solvers are presented; the Newton-Raphson meth-

od, the modified Newton-Raphson method, and the arc length method. A

pseudo code is presented for each of them as a tool for implementation and to

support the theoretical derivation of the methods.

To verify the nonlinear solvers and the code in general, different benchmark

examples are used as a reference frame for testing the code. First the material

non-linearity is tested to see if the non-linear material model that has been

applied can be measured as the loading is evolving. A power hardening law is

used as an example and this is plotted against the externally applied stress and

the measured stress at a single Gauss point. As expected the three curves were

almost identical. The small deviation could be due to the fact that the stress

update is a forward Euler method but this can be reduced by using smaller

time steps. The second test is a loading/unloading test where the structure

is loaded above yielding in tension and thereafter unloaded and compressed

where yielding occurs again. The stress/strain curve was tracked for a single

Gauss point using an isotropic hardening law and the result is convincing.
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4. Conclusion

The geometric non-linearity is checked in two situations; a beam in com-

pression, and a beam in bending. The beam in compression is checked against

the analytical critical load. The displacement of the mid-node of the beam

is tracked as a function of the applied load and the result is promising. The

bending of the beam in the second geometric non-linear test was checked

against a reference solution from a NAFEMS report [16]. The displacement

of the node at the tip of the beam is plotted against the applied load. The

curves from the reference solution is compared, and the solutions are in very

good agreement.
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Chapter 5

Future work

The future work will be addressed in two different directions. The first one

will be a further verification of the finite element code and a virtual testing

on different specimens. The second one will be experimental tests that will be

conducted at the University of Michigan in USA at the Aerospace Engineering

department with supervising by Anthony M. Waas.

5.1 Virtual testing

First of all the finite element code must be verified against already published

results. A suggestion is to verify the results published by Jensen (1998) [4]. In

his paper a constitutive relation for effective properties of a 2D fibre composite

was used for determining the applied stress as a function of the fibre rotation.

This is done in order to test if the finite element code is capable of tracking

the plastic microbuckling where a kink band is shaped.

When the plastic microbuckling is verified, the next test can be conducted.

This will be a study of the slenderness effect on the critical buckling load. This

is interesting because when a long beam is compressed the imperfection does

not have a big influence on the critical buckling load, but when a short beam

is compressed it is highly imperfection sensitive. The idea is to have a fixed

imperfection and then make the same study as Jensen (1998) just with the

slenderness as a variable. A graph of the critical buckling load as a function
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of the length of the specimen can be drawn to see the comparison of a long

beam vs. a short beam to see the slenderness influence. The same procedure

can then be made with several different imperfections to see what influence

the imperfection size have.

The next thing that could be interesting to test is a structure with holes

and notches. Fleck (1997) [1] did this in his review paper but further devel-

opment of his work is an option. What could be interesting to investigate is

something like figure 5.1. A plate with geometry imperfections like holes or

Imperfection

Figure 5.1: Hole and notch.

notches with fibre misalignment different places in the plate should be anal-

ysed. Parameters like the location of the misalignment and the location of the

hole and notch could be interesting to look into. Another thing could be the

layup of the fibres near the hole. Is the best thing a drilled hole or a layup

with continues fibres around the hole? Different load scenarios with moment,

normal force and shearing force could be applied to see the difference in the

load scenario.

The last thing that could be interesting to test is plastic microbuckling in

3 dimensions. How will the kink brand develop and how will the broadening

take place? How will the imperfection influence the critical buckling load?

There are several things that can be tested using the finite element code.

This is just some ideas that could be interesting to investigate.
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5.2 Experimental testing

The choice of making experimental testing by help of Anthony M. Waas was

done because he have a great experience in testing composite materials. In

2004 he was a part of an experiment where they tested composite materials

in off axis compression [17]. The equipment they used can be used in the

present experiments as well. The following ideas is experimental tests that

should help verify the numerical calculations.

First of all a compression test of a plate with a controlled fibre waviness

could be conducted. The controlled fibre waviness needs to be quite large,

while it is properly hard to make a composite plate with a controlled small

imperfection because of the small length scale. The numerical calculations

is made with 2D elements, so this means that the compression test must be

made in a way so that the plate is fixed against buckling out of the plane like

in [17]. The reason for making this test is to track if the kink band broadening

is developing similar to the numerical calculations. When a large imperfection

is used, the limit point where the critical load is found is not so sharp and

no snap back behaviour will occur. This makes a displacement controlled test

possible.

The numerical calculations made with the slenderness influence on the

beam needs to be verified with experiments. A controlled imperfection could

be introduced in this test as well. Again the result would be a plot of the

critical load as a function of the length of the test specimen.

Depending on what is possible to construct, the plate with a hole and a

notch could be tested. Many different layups of the unidirectional composite

could be tested near the hole and the notch. The geometry could be extended

to include cracks as well.
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