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STRUCTURE PRESERVING
FORMULATION OF HIGH VISCOUS
FLUID FLOWS

Kennet Olesen, Aarhus University

Abstract

This report contains the progress status of the PhD project titled “Structure preserving formulation of high viscous fluid
flows”. It describes the first ideas to a numerical scheme, which conserves mass and momentum in a discrete sense. It
is based on spectral expansion polynomials, and it is thought to be applicable to arbitrary constitutive fluid models.
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1. Introduction

formulation is used. Here the vorticity is inserted in a version of the momentum equations, where
these have been merged with the Newtonian constitutive relation, and hence there is not a clear
distinction between momentum balance and constitutive relations any more.

The goal of this PhD project is to develop a high order structure preserving formulation of the
Stokes equation for an arbitrary incompressible fluid where mass and momentum are preserved
to machine precision. The basic Stokes momentum equations are used which contain pressure
and viscous stresses, and the constitutive relation are then solved as a separate equation. A clear
separation between balance and constitutive equations is hence maintained. The unknowns in
the system is the velocity components, the pressure and the viscous stress components, which for
a 3D system consist of 6 individual components. Typically, only the velocity components and the
pressure are solved for in Newtonian fluid flow, so adding 6 components could seem to be
complicating the system unnecessarily. This is though commonly done in the non-Newtonian
field of CFD, where the models only have implicit expression for the stresses, and so the new
formulation is able to simulate arbitrary constitutive models. The performance of the formulation
is to be compared with the high order FEM and the FVM methods on various test cases.

Mimetic methods on non-Newtonian fluids are basically a new topic, so the methods are to be
developed from scratch. This means that a lot of theory has to be learned and applied in new
ways and trial and error is inevitable. The literature concerning mimetic methods extensively
rely on differential geometry. This topic is deliberately avoided in this report, as it is an unknown
field to many, and the theory can be often be related to more familiar mathematical terms.

This progress report is structured as follows. First rheology is explained giving examples of fluid
behaviour and how it can be modelled. Rheology is a vast area and only the essentials are
explained. Next the theory of the high order FEM method is explained giving numerical
examples to show the superior convergence. Then the mimetic or structure preserving approach
is explained. The report is finalised by a conclusion and a future work section.




2 Rheology

The definition of rheology is that it is the branch of physics concerned with the flow and change
of shape of matter. The physical behaviour of a fluid is described by the momentum conservation

law: 5
V0 LV () =~V T f, (2.1
the mass conservation law: 5
a—f FV - (pu) =0 (2.2)

and some constitutive equation, which describes the relation between stresses and deformation.
Rheology is the study of such relations. In (2.1) and (2.2) p is the density of the fluid, w is the
velocity vector, IT is the total stress tensor and f..; is a force vector describing the external body
forces (e.g. gravity given by f..: = pg, where g is the gravitational acceleration). Both (2.1) and
(2.2) are derived by looking at the momentum and mass balance on an arbitrary volume. The
fluxes over the boundaries are equated to the internal contributions. The total stress tensor, II,
is the momentum flux over the boundaries of the arbitrary volume, and it is divided in two parts:

II=pI+T. (2.3)

The thermodynamic pressure, p, is related to the density and temperature of the fluid through an
equation of state, e.g. the ideal gas law. The viscous stress tensor 7 on the other hand is related
to the deformation rate of the fluid, and is hence zero, when the fluid is stationary. For
non-isothermal flows it is also required to consider the conservation of internal energy and
include constitutive relations relating the temperature to the internal energy like the Fourier’s
law of heat conduction. By assuming that the system is isothermal allows a substantial reduction
in complexity. Since the fluid of interest often is quite dense an incompressibility assumption can
be introduced without significant errors. This makes the equation of state redundant, as the
density now is a constant value. This reduces (2.1) and (2.2) to:

p<ag;)+uVu> :—V'H+.femt, (24)
and
V-u=0. (2.5)

These two equations are common in all incompressible isothermal flows, and the only thing that
separates different flows are the boundary conditions, the initial conditions and the viscous
stress/strain-rate relation, where the latter can be quite challenging to describe. The viscosity of
the fluid of interest can change during the flow and memory effects can be present.

2.1 Newtonian fluids

There are a special class of fluids which have a linear relation between the viscous stress and the
deformation rate. These are called Newtonian fluid, because it was Newton, who discovered this
relation. These fluids have no memory effect, so they adapt to their container instantaneously.
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Water and air are two examples of such fluids and hence many engineering problems can be
described using this relation, which is called Newton’s law of viscosity:

Here # is the symmetric part of the strain-rate tensor:
.1 T
¥= (Vu + (V) ) . (2.7)

1 is the viscosity of the fluid and is a constant. This reduces the complexity of the calculation, as
(2.6) and (2.7) can be inserted directly into (2.4). Unfortunately the majority of all fluids do not
have this simple relation between viscous stress and strain-rate, and explicit expressions for the
viscous stress tensor cannot be derived.

2.2 Shear thinning and shear thickening

One of the most commonly seen properties of non-Newtonian fluids are their ability to change
viscosity through a flow. Especially shear thinning is observed in many fluid. Ketchup for
instance are quite thick and flows slowly in the beginning, but as the deformation rate increases,
it becomes thinner and flows more rapidly. On Figure 2.1 a typical example of this behaviour is
shown, where the viscosity of different suspensions of polydimethylsiloxanes is plotted as a
function of the shear rate. As seen the viscosity is near constant at low shear rates, but as this is
increased the viscosity decreases exponentially (it is linear in the logarithmic plot). Sometimes a
lower level is also observed, where the viscosity becomes constant again. This can be observed in
Figure 2.2, where a 55 % concentration of cornstarch in water suspension is tested. Here the
viscosity drops to a lower limit, but then starts to increase rapidly again until an upper limit is
reached. This is an example of a shear thickening fluid. There are several models, which
replicates the behaviour of shear thinning and shear thickening. Two of the most commonly
known are presented. The power law model is able to simulate the exponential decrease/increase
of viscosity:

n(3) =mi", (2.8)

where n determines the slope of the exponential region in the logarithmic scale, and m shifts the
constant along the y-axis. The Carreau-Yasuda model on the other hand are also able to
simulate upper and lower limits of the viscosity:

D= (1 4 (M) 2.9
=1+ () (2.9)
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Figure 2.1 - Shear viscosity, 1, as a function Figure 2.2 - Shear viscosity as a function of shear
of shear rate 4 for polydimethylsiloxanes with rate for a 55 % concentration of cornstarch in water
different molecular weights [Morrison, 2001]. suspension [White et al., 2009].




2.3. Memory effects

Here again n is a coefficient determining the slope of the exponential region, 7 is the viscosity
limit at low shear rates, 7., is the viscosity limit at high shear rates, a is a factor determining the
width of the transition region and A determines the shear rate, where the transition starts. Both
models can model shear thinning and thickening. In the power law model shear thinning is
simulated when 0 < n < 1, while shear thickening is replicated when n > 1. For the
Carreau-Yasuda model 0 < n < 1, and shear thinning is simulated when 7y > 7., while for shear
thickening 1o < 7oc. The two models are compared on Figure 2.3 and Figure 2.4 for shear
thinning and thickening, respectively. The Carreau-Yasuda model has the advantage that there
are more coefficients, that can be used to curve fit your experimental data.

2.3 Memory effects

The fluid models described in Section 2.2 only simulate viscous effects. That means that all the
energy is dissipated, and all references to earlier configurations are lost. Many fluids also have
elastic effects, where a part of the stress is dependent on earlier configurations. This causes
effects like the Weissenberg effect, which is seen in Figure 2.5, and die swell, seen in Figure 2.6.
The Weissenberg effect is observed when an elastic liquid is stirred. Intuitively one would assume
that the centrifugal forces will move the fluid away from whisk, but it is observed that the fluid
climbs the whisk instead; a good example from the kitchen is dough which climbs the mixer
blades. The effect occurs because the fluid is stretched like a rubber band, hence squeezing the
blades, and since the outer "rubber bands" displaces the inner ones, these climbs the blades. Die
swell is observed when an elastic fluid exits from a die into open air. As the elastic stresses are
"released" the liquid stream increases in diameter. A way to incorporate elastic stress is to sum
Hooke’s law of an elastic solid with the Newton’s law of viscosity. Newton’s law of viscosity was
derived for a Couette flow, depicted on Figure 2.7, where the fluid domain is infinite in the x-
and z-direction, the bottom of the fluid is stationary and the top has a velocity, V. The shear
viscous stress is given from (2.6) and (2.7):

du .
Tyx.visc = _M@ = _nyyz(t)a (210)

where u is the x-component of the velocity vector. The elastic shear stress is given by Hooke’s
law for small displacements:

dD
Tyx.elas — _Gd7y = _G’Yya:(trefat% (211)
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Figure 2.3 - Comparison of the power law model Figure 2.4 - Comparison of the power law
and the Carreau-Yasuda model for a shear thinning model and the Carreau-Yasuda model for a shear
fluid. Power law model: n = 0.1, m = 10000. thickening fluid. Power law model: n = 2, m =
Carreau-Yasuda model: n = 0.1, no = 10000 10000. Carreau-Yasuda model: n = 0.1, o = 10
Noo = 10 and a = 2. Moo = 10000 and a = 2.
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Figure 2.5 - The Weissenberg effect. Figure 2.6 - The die swell effect.

where G is the shear stress modulus, D is the displacement in the x-direction and 7, (tey,t) is
the shear strain at time ¢ with respect to the reference time ¢,.s. There is the following
relationship between strain and strain-rate:

t
Vij(treps ) = / Y () dt’ (2.12)
tref

In 1867 James Clerk Maxwell proposed the following model:

oT,
Tyx + b Tyz

G ot

and is known as the Mazwell model. As elasticity is based on a previous configuration, it is a

= (1), (2.13)

time dependent quantity, and what this model does is that it mixes the two extreme cases,

namely pure viscous and pure elastic behaviour. When 3(;% — 0, the model approaches

Newton’s law of viscosity in (2.10). On the other hand when 85122 > Ty, then
¢
8(;? = —GYyz = Tya(t) = =G [ Aya(t') dt' = —Gryyg(tres, t) recovering Hooke’s law, (2.11).

tref
The model can also be derived by considering a spring and dashpot in series, as seen in

Figure 2.8. The spring force is given by:
f = _GDspm'nga (2.14)

where Dgp,ping is the displacement of the spring. The force on the dashpot is given by:

d-Ddash
= — , 2.15
f=-n—y (2.15)
where Dgqsp is the displacement of the dashpot. The total displacement is given by:
Diotar = Dspring + Dgash- (216)
u=Vv
Initial state Eﬂ
Dtotal
Y
Final state 4:':’—’\/\/&
X u=0 f
Figure 2.7 - The Couette flow. Figure 2.8 - Spring and dashpot

in series.




2.4. Limitations to the Maxwell model

Taking the time derivative and inserting (2.14) and (2.15) gives:

(2.17)
which can be interpret as the Maxwell model. The relazation time is defined as A = %7 and
describes how long time elastic effects are present. After the relaxation time only viscous effects
are present, and the earlier reference configuration has been "forgotten". It can be seen that when
G < p then A — oo, and the system will always be dominated by elastic effects. When G > p
then A — 0, and the system reaches an inelastic state almost instantaneously. There are other
spring dashpot systems, which lead to other equations, but all have the same objective, namely a
part which conserves energy, and a part which dissipates energy. The Maxwell model can be
generalised by replacing the scalar quantities of stress and strain-rates with tensor quantities:

orT
= oA 2.1
T+>\3t n0Y (2.18)

t
There is also an integral version of this, where (2.18) is multiplied through by %, and integrated
over all past times to the time of interest ¢. By requiring that the stress is finite at ¢ = —oo the
integral form of the Maxwell model is obtained:

t

T(t):f/ [i;e“‘f"”]ﬁ(t') dt', (2.19)

— 00

where the term in the square brackets are the "variable forgetting function", while 4(¢') is the
strain rate in the past times. It is seen that when ¢ — oo, the exponential term approaches zero,

meaning that the accumulated stress becomes smaller and smaller, hence the name "variable

forgetting function". There is also a strain version given by:

t

() = / [%e‘“ﬁ”} ~(t, 1) dt’, (2.20)

— 00

2.4 Limitations to the Maxwell model

In 1950 James G. Oldroyd stated the mathematical requirements, that a rheological model must
fulfill, [Oldroyd, 1950]. One of them is that the model shall be frame invariant, which means the
flow predicted should be the same regardless of the coordinate frame of the system (Cartesian,
polar, rotational etc.). The Maxwell model, (2.18), does not fulfill this, which can be shown in
the so called turntable experiment developed in Bird et al. [1987]. Figure 2.9 shows a
hypothetical test setup, where a Couette flow is produced by some devise, which is fixed on a
turntable rotating with a constant angular velocity, €2. By assuming that the fluid is described by
the Maxwell model, and by calculating the strain rate and the stress one can derive the material
properties, which should be independent of reference frame. The calculations are not performed
here (see Bird et al. [1987] or Morrison [2001]), but it turns out that in the xyz-coordinate
system, the material properties are dependent on 2, which does not make sense at all. This
makes the Maxwell model invalid as a constitutive model, but it has shown to be reliable in flows
with small strain-rates.

The step where it went wrong was the transformation of the scalar equation (2.13) to the
tensorial equation (2.18). The problem is that the infinitesimal strain tensor in the tensorial
version does not transfer invariantly from a stationary reference frame to a rotating. So by
applying the partial derivative to 7 the equation has become frame-variant equation.
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Yo
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X0 X
Figure 2.9 - Tllustration of the turntable example

2.5 Large deformations

The flaw of the linear Maxwell model is that it uses the infinitesimal strain tensor, which does
not separate rigid body rotation from the relative deformation, because only small strains are
modelled properly. A way to remedy this is through the use of the polar decomposition theorem,
which states that any tensor A for which an inverse A~! exists has two unique decompositions:

A=R-U=V-R, (2.21)
where:
U=(AT . A)z 2.22)
V=(A. ATz (2.23)
R—— A __au, (2.24)
(AT-A)2

R is a pure rotation tensor; it changes the direction of an arbitrary vector, but it does not
change its magnitude. This means that U and V contain all the stretch information of A, and
they are called right and left Cauchy-Green stretch tensors, respectively. The action of the right
stretch tensor and rotation tensor is shown on Figure 2.10. The arbitrary vector w is transformed
to v by the tensor A. If this tensor is decomposed to a rotation part R and a stretch part U,
then U transforms u to w, and R rotates w to produce v. w and v have equal length and hence
all stretching information lie in U. The rotation which occurs from u to w is due to deformation.
The choice of using the right or left stretch tensor is a matter of convenience. On Figure 2.11 the
action of decomposition using both U and V. Here the transformation is performed on the
principal direction of U, which are given by its eigenvectors, &;. It is rotated to the principal
direction of V', given by its eigenvectors, (;. Since U and V produce the stretch of an arbitrary
vector they have the same eigenvalue, . If U is chosen it corresponds to follow the solid path on
Figure 2.11, where first the stretch is produced by U and then the rotation is applied by R.
Using V is the same as to follow the dashed line on Figure 2.11 by first applying the rotation by
R and then stretching it by the use of V. Consider a body deforming over time shown on

Figure 2.12. The relative distance between two arbitrary points are considered at two instances
in time. The deformation that the nearby points experience between the time ¢t and time ¢’ is

given by:
/7
dr’ = draair. (2.25)
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The tensor %—’;I is called the deformation-gradient tensor:
Pty =2 (2.26)
O or '
Alternatively:
or
dr =dr' — 2.27
r=dr " (2.27)
where 68:, is the inverse deformation gradient tensor:
or
Fltt) = —. 2.28
()= o (2:29)

The deformations are independent of the rigid body linear displacement, but not the rigid body
rotation, so polar decomposition is applied by using definitions in (2.22) and (2.23):

C=F-FT (2.29)
ct=(FNHF, (2.30)

where C'is called the Cauchy strain tensor and C~' is called the Finger strain tensor. Since the
infinitesimal strain tensor used in the integral strain version of the linear Maxwell model, (2.20)
describes the strain over all past times until the current time ¢, the infinitesimal strain tensor, -,
is replaced with the Finger strain tensor, C~':

Mo =t=tH] g
() = - / e ot at (2.31)
— o0

This is called the Lodge equation, and using this, the elasticity in a fluid is described correctly
independent of the frame. The Lodge model is more familiar in its differential form, which is
given by differentiating (2.31) with respect to time, applying integration by parts, using the
product rule of differentiation and inserting (2.31) yields:

T dr T o

—+ |- (V) T -7 -Vu :_TI’ (2.32)
where wu is the velocity vector and I is the identity tensor. In general it is not possible to
separate normal viscous stresses from the pressure (for Newtonian fluids its no problem as the
normal viscous stress are zero in shear flows). 7 is therefore only known within an isotropic
constant, so by defining a new stress tensor to be:

7o

c=T1+ TI’ (2.33)
Figure 2.10 - Polar decomposition. Figure 2.11 - Action of the different stretch
tensors.
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At time t'

At time t

Figure 2.12 - Body deforming over time.

the following equation is achieved:

d—T—(Vu)T-T—T-Vu — T AT~ (2.34)

Here the expression in the brackets is called the upper convected derivative of the stress tensor or

the upper convected stress tensor, and it is denoted by 7v'. Equation (2.34) is called the upper
convected Mazwell model. Convected coordinates and derivatives can also be applied to derive
(2.34). As the derivation is quite lengthy only the main idea is stated here. On Figure 2.13 a
body is shown at different instances in time. The body has the #'424#3 coordinate system attach
to it, which deforms with the body. At time ¢’ = ¢ the material grid coincides with the global
stationary zyz coordinate system. At all times material points like, P, @) and S maintains their
material coordinates, but the basis é', é2 and é3 change over time. A vector = can be expressed

as:
r=ilée! 4 3%e% + i3e3, (2.35)
and its differential is given by:
or ., Or 5, Or 4
dr = 551 dz + 92 dz” + 8£3d$ . (2.36)
The basis vector for the convected coordinate system is given by:
or
96) = Hzi (2.37)

Using these basis vectors to express the viscous stress tensor and relating it to the Cartesian
coordinate system one arrives at:
dr dr

i [T-Vu+ (Vu)'7]. (2.38)

Material grid at time t'

Material grid at time t

v.X A

Figure 2.13 - Material grid described at different instances in time.

10



2.5. Large deformations

243

Which is the viscous stress in the #'#24> coordinate system differentiated with respect to time,

and it is seen that it is the upper convected stress tensor of (2.34). Replacing %—I in (2.18) with
(2.38) one arrives at (2.34), and it makes it frame independent. For a fully detailed derivation

refer to Morrison [2001].

There are several other models which are extensions to the Maxwell model, and some of them
will shortly be mentioned:

e Upper convected Jeffreys or Oldroyd B model

v . v
T+ M T=—1)p (7 + X2 7) (2.39)

The Jeffreys model takes the strain rate at earlier times into account. The constant A is
called the retardation time, and describes a time scale for the stress build up.
¢ White-Metzner model

T+ T=—n(¥)% (2.40)

Go
The White-Metzner model takes shear thinning and thickening into account by replacing
the viscosity with e.g. a power law model. Gy is a constant modulus parameter.

¢ Oldroyd 8-constant model

v o1 ) ) 1 o1 .
THMT A5 =) (YT T )+ Spoltr(T))y + ST NI

. v . r ..
=10 [¥+ A2 ¥ +(A2 —p2) (¥ ) + 5”2(’7 tI (2.41)
The model was proposed by Oldroyd to include nonlinearities. By varying the constants Aq,
A2, o, p1, p2, 1 and vy produces various other constitutive models.
¢ Giesekus model

A
T+)\7v'+a—'r~7' = —"o%Y (2.42)
"o

The Giesekus model incorporates a nonlinear stress term based on molecular arguments.

11



3 High Order Finite Element Theory

This chapter will describe some of the benefits of using a high order or spectral FEM (also known
as Spectral Element Method (SEM)) compared to a traditional FEM. The FEM was mainly
developed in the 1960s to address structural problems. Through the Principle of Virtual Work
(PVW) the governing equations are put into variational form, where expansions of the unknowns
(usually the displacements) allow the setup of an algebraic system of equations, which then can
be solved. This is a very physical approach, where the equilibrium equations are multiplied with
an arbitrary virtual displacement and the whole term is integrated over the domain of interest
producing a virtual work. Through the use of the product rule of differentiation and Gauss’
divergence theorem the final variational equation is produced. The contributions from the
internal work, body forces and external forces are clearly identified giving an intuitive application
[Cook et al., 2002].

The use of FEM in fluid dynamics was accelerated in the late 1970s. Instead of a virtual
displacement, a virtual velocity is multiplied on the governing equations, and a formulation of
the virtual power is achieved. Generally it can be said that one takes the inner product of the
governing equations and some arbitrary test or weight function. This corresponds to projecting
your equation to some vector space. Babugka [1973] and Brezzi [1974] addressed the instabilities
arising when projecting velocity and pressure to incompatible vector spaces, formulating the
inf-sup-condition, giving a theoretical tool of formulating stable FEM schemes for mixed
problems.

Gottlieb and Orszag [1977] presented the theory, which is the backbone of the modern spectral
methods, and there is quite a lot of literature on the subject, and especially Karniadakis and
Sherwin [2005] and Rgnquist [1988] are emphasised. Spectral methods showed superior
convergence rates for smooth and well-behaved functions compared to traditional FEM.

3.1 The theory of SEM

Setting of in some linear Partial Differential Equation (PDE):

L(u(x)) = f(z), (3.1)

where u is the unknown and f is a known function, which both can be dependent on the spatial
coordinates symbolised by the spatial vector @. Putting this in variational form by multiplying
with a weight function (the virtual term), v(x), and integrating over the domain, :

/ (C(u(x)), v(x)) = / (f(@), v(x)) . (3.2)

Q Q

12



3.1. The theory of SEM

Depending on the linear operator, £, the equation can be rewritten to a more applicable form.
u(x) and v(x) can be represented as a series expansion:

u(x) = Z ai¢i(x) (3.3a)

v() = bii(), (3.3b)
i=0

where a; and b; are coefficients, and ¢; and 1); are basis functions. The approximations are
introduced by truncating these to finite sums:

N

u(x) ~ un(z) = Z aidi(x) (3.4a)
1;0

v(@) ~ oy (@) = Y bii(), (3.4b)
=0

From this it is evident, that the higher truncation number, the better approximation, and hence
already here it is revealed that low order FEM should be inferior to spectral methods, when it
comes to approximating the exact function. It is also seen that since these series are smooth,
non-smooth features are not approximated well using spectral methods. To remedy this the
overall domain can be split into a number of subdomains capturing the non-smooth points at the
interfaces, and then expand each subdomain with a high order polynomial. From (3.2) and (3.4b)
it is clear that b; are common factors, and since these in general are different from zero, they will
be cancelled out. Therefore the unknowns solved for will be the coefficients, a;. The schemes are
varied by choosing different expansion polynomials, 1;(x), where some of them are listed below:

e The collocation method is given by setting ¢;(x) = §(x — x;), where §(x — x,) is the
Dirac delta function, which equals to one at the point z; (called a collocation point) and
zero everywhere else

e The least squares method minimises the (R, R), where R = f(x) — L(u(x)) is the
residual, which for an exact solution should be zero. This is done by setting ;(x) = %

e The Galerkin method sets the expansion polynomial for the test function to be equal to
the expansion polynomial for the unknown, v;(z) = ¢;(x)

¢ The Petrov-Galerkin method chooses any other expansion polynomial than the

expansion polynomial for the unknown, ;(x) # ¢;(x)

The choice of method comes down to preferences, but the most popular seems to be the
collocation method and the Galerkin method, due to their simple implementation. The former
has the nice feature, that the coefficient a; equals the discrete value of the unknown, uy (), at
the collocation point, but the Galerkin method has a slight faster convergence [Gottlieb and
Orszag, 1977]. The least squares method has the nice property that it circumvents the inf-sup
condition and that it has a symmetric matrix for the convection-operator, which in other
methods typical is anti-symmetric. This gives a great advantage, when it comes to solving the
equation system.

As seen in (3.4a) and (3.4b) the approximation improves as N — oo, but not all expansion
polynomials are appropriate. When multiplying with a test function, as in (3.4b), a projection to
a vector space is actually performed, where each term in the multiplication of the two
summations represents a dimension. If these orientations are non-orthogonal they will approach
linear dependency to each other as the dimensions increase (when the degree of the polynomial
increase). This will cause the system of equations to become ill-conditioned, yielding false
solutions, or no solutions at all.
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3. High Order Finite Element Theory

Polynomials are said to be orthogonal in the range [a, b] if:

b
[ @ @@t = e (3.5)

a

where w(x) is a weighting function, d,,, is the Kronecker delta, and ¢, is a constant. If an
orthogonal polynomial is used as a basis, then only polynomials of the same order will produce a
non-zero term. There are numerous classes of polynomials with this property, and they are
typically the solution to the Sturm-Liouville differential equation. Two of the most commonly
used polynomials are the Chebyshev- and the Legendre-polynomials. Both are integrated over the

f et
interval [—1, 1], but the Chebyshev polynomials have w(x) = \/1%7 and ¢, = {: or n=0

z otherwise’

where the Legendre polynomials have w(z) =1 and ¢, = ﬁ
The following example originates from Karniadakis and Sherwin [2005]. A Galerkin approach is
applied to discretise the following weak formulation:

(on,un) = (vN, f), (3.6)

which can be written in the following linear equation system:

Ma =b, (3.7)

where the mass matrix is given by: M,, = (¢, ¢,), and the right hand side is given by:
by, = (¢p, f). The solution is given by multiplying (3.7) with the inverse of M. Three different
expansion polynomials are compared on the interval [—1,1].

e The moment expansion simply increases the order of x in a monomial fashion, such that
the set of order P contains all sets of lower order, Xp_; C Xp; so if Xy = {1, 2,22} then
Xy = {1,7,2% 2%} = Xy J{2®}. The mass matrix is given by:

1

My = / PPaldy = {p+¢21+1 for pra even (3.8)

J, 0 for p+q odd.

e The nodal expansion is expanded by Lagrange polynomials, which consists of P
polynomials of order P — 1, and hence are non-hierarchical (Xp_; ¢ Xp). The basis
function is given by ¢,(z,) = 0pq. This resembles the collocation method, but with the
clear distinction that in the collocation method, the equations are solved exactly in the
collocation points, while in the nodal expansion the coefficients represent an approximate
solution. There is no explicit form of the mass matrix as it is obtained using numerical
integration, but for equispaced nodes, which are common in FEM, it is a full matrix.

e Expansion using Legendre polynomials gives a simple expression for the mass matrix:

2

= m‘quv (3.9)

M,y = /1 Ly(2)Ly(x)dz

which as seen is a diagonal matrix, and hence is very easy to invert.

A measure of how ill-conditioned a matrix is, is the condition number, where the higher the
number, the more ill-conditioned the matrix is. Figure 3.1 shows the impact of the different
expansion polynomials on the condition number measured in the L2-norm, xo. The condition
number for a real symmetric matrix in the L2-norm is the ratio between the maximum and
minimum eigenvalue, so for the Legendre polynomial expansion with order P this is

Ky = —2— =2P + 1, and hence only increases with a factor two. As the inverse mass matrix is

2P+1
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3.2. Numerical example
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Figure 3.1 - To the left from top to bottom are the expansion polynomial at different orders for a
moment, Lagrange and Legendre expansion, respectively. On the right the condition number is depicted
as a function of the polynomial order. Taken from Karniadakis and Sherwin [2005]
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full for both the moment and Lagrange polynomial expansions, the condition number will
increase dramatically as the polynomial order is increased. This is confirmed on Figure 3.1,
where ko oc 107 (however the Lagrange polynomials first starts this trend after P ~ 5). So by
using orthogonal expansions it possible to use high order approximations, but still keeping the
system solvable.

One more nice feature of using orthogonal polynomials is that there are clear relations between
the orders, and to its derivatives as well. Recurrence relations can be derived for the different
polynomials, and hence give an efficient computational implementation. The recurrence for the
Legendre polynomials is:

nLy(x) = 2n—DaxLly,_1(z) — (n—1)Lp_o(z) , Lo(z)=1 , Li(z)==x
(1 — 2L (x) = —nxL,(x) + nl,_1(x) = (n+ 1)xL,(z) — (n+ 1)Ly 1 (). (3.10)
The recurrence for the Chebyshev polynomials is:

To(x) =2aT1(x) — Tho(x) , Tolx)=1 , Ti(x)==x
(1 — 2T (x) = naTy,(x) — nThi1 (). (3.11)

3.2 Numerical example

To confirm the superior convergence rate of spectral methods for continuous and smooth
functions a 1D test case is calculated using Legendre based expansion polynomials. The test case
is:

d*u du
e Skt - £ ==
= +2d$+10u f(z) or x=[-1,1]
du
1 _ —
u(=1)+ — . 3
du
— =1. 12
i+ | (312

For f(z) = sin(z) it has the solution depicted on Figure 3.2. Convergence rates are compared on
Figure 3.3 in the infinity norm. It is clear that the p-refinement is superior to the h-refinement.
Also the h-refinement has a linear convergence rate, while the p-refinement has an exponential
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3. High Order Finite Element Theory
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Figure 3.2 - Plot of test case in (3.12) with Figure 3.3 - Comparison of convergence rates for
f(z) = sin(x) h- and p-refinement with f(z) = sin(x).

convergence rate. To show that spectral methods does not perform well for non-smooth functions
f(z) is set to the heaviside step function:

0 for x<0
f#)=H(xz) =144 for x=0 (3.13)
1 for x>0

The result is shown on Figure 3.4, and it is very similar to the smooth case in Figure 3.2, but the
convergence rate for the case with varying interpolation and one element has really deteriorated
as seen on Figure 3.5. It is also seen that a varying interpolation with 2 elements still have
exponential convergence. This is due to the fact that the discontinuity of the forcing function is
placed in the interface of the 2 elements.

5 : T -
10° —— e
Linear interpolation, Varying elements
- - - Quadratic interpolation, Varying elements|
4 <. Cubic interpolation, Varying elements
-~ Varing interpolation, One element
Varing interpolation, Two element
0
3 107 ¢ 1
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= 110° ]
1 =
0 _
107 ]
-1
-15
- . . . 10 : :
2 ~05 0 05 1 10° 10’ 10° 10°
X DOFs
Figure 3.4 - Plot of test case in (3.12) Figure 3.5 - Comparison of convergence rates for

h- and p-refinement.
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4 Mimetic Methods

This section describes the idea of mimetic or structure preserving methods, the general theory
and ends with a draft paper, where the current suggestion to a structure preserving formulation
is presented.

Equilibrium and balance equations are typically derived by observing an arbitrary finite domain,
and then balancing both external and internal contributions of some physical quantity (e.g.
forces, energy, mass etc.). Differential equations are obtained by applying theorems like the
divergence theorem to relate the external contributions on surfaces to the volume of the domain,
and then letting the size of the domain approach an infinitesimal value. The result is that all
geometrical associations are lost, but equilibrium or balance equations should still be satisfied on
any sub domain independently of its shape.

By structure preserving it is meant that the problem is discretised such that the balance
equations are satisfied up to machine precision independently of the number of discrete values.
All interpolations are located in the constitutive equations, which are empirical relations derived
based on observations. In Palha [2013] and Kreeft [2013] mimetic methods are extensively
explained, and in the latter reference the Stokes problem for a Newtonian fluid is discretised
through a VVP formulation. The VVP formulation sets of in the Stokes equation:

—grad(p) + p Au = f, (4.1)
and then the vorticity, w = curl(w), is inserted giving:
grad(p) + p curl(w) = f, (4.2)

The idea is to associate each physical quantity to a geometrical object, and then utilise the exact
relations which exists between arbitrary geometrical objects their boundaries, namely the
fundamental theorem of integrals:

b

/ grad(f) ds = f(b) — f(a), (4.3)

a

//curl(F) ‘ndS= %F ds, (4.4)
s s

///div(F) dQ = #F -n dS. (4.5)
Q 0

Here f is a scalar, F' is a vector, s is a line in space, S is a surface in space with the unit normal

the Stokes theorem:

and the divergence theorem:

vector n and 2 is a volume in space. This can be summarised in the so-called discrete De Rham
complex shown in Figure 4.1.

The orientation of a physical quantity must be taken into account. Orientation describes how a
physical quantity is associated to a geometrical object. A physical quantity associated to a

17



4. Mimetic Methods
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Figure 4.1 - Discrete De Rham complex. Figure 4.2 - Geometrical associations of the
velocity and vorticity.

surface for instance can cross the surface (e.g. a momentum flux or a force), hence the name
outer oriented, or it can rotate within the surface (e.g. a magnetic flux), hence the name inner
oriented. The different orientations can be seen in Figure 4.1, where it is also observed that the
constitutive equations are the link between the two orientations. The VVP formulation consists of
three equations, namely w = curl(u), equation (4.2) and the incompressible continuity equation:

div(u) = 0. (4.6)

The procedure now is to associate the unknowns to geometrical objects, such that exact discrete
relations can be established. Starting with the continuity equation then this describes the mass
flux over the surfaces of a volume, but since the fluid is incompressible it becomes a velocity flux

over a surface given by @ = [[ w-n dS. So accordingly to (4.5) then by considering the velocity
[219)
flux associated to surfaces as the unknown, the continuity equation applied to a volume can be

described by summing all surface fluxes bounding the volume:

/// div(uw) dQ = iu (4.7)
g P

where u; is the velocity flux over a surface of the volume, and Ng is the number of surfaces
bounding the volume. If a domain is decomposed into sub domains, then the continuity equation
will always be satisfied in these sub domains by selecting the velocity flux associated to the
boundaries of the sub domains as unknowns. The equation w = curl(u) can also be satisfied
exact discretely. Figure 4.2 shows a cut out of a sub domain where two velocity flux components,
@ and v are shown. The vorticity is the rotation of the fluid, and since the two velocity fluxes are
normal to their associated surfaces, the rotation describing this must be associated to the
common edge of the two surfaces. So considering the vorticity integrated over the edges of the

sub domains as unknowns, @ = [ w ds, then through the Stokes theorem, (4.4), the velocity flux
as
on a surface will be given by summing the vorticity integrals from all its bounding edges:

u://u-ndS://curl(w)-ndSziwi, (4.8)
g i=1

o0

where @; is the vorticity integrals around an edge of the surface, and Nj; is the number of edges
bounding the surface. It is not possible to apply any of the theorems to (4.2) in such a way that
an exact discrete formulation is obtained, so this equation is not guaranteed to be satisfied in the
discrete sense.

The choice of inserting the approximations in (4.2) is unfortunate because the momentum
equations ought to be satisfied no matter size and shape of the sub domain. In this project the
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flow is described by the Stokes equation with no forcing term:
—grad(p) + div(T) =0, (4.9)

and the incompressible continuity equation, (4.6). The Stokes flow is a simplification of the
general momentum equations, (2.1), where the convective term has been neglected. This is a
good approximation for slow flowing high viscous fluids. Discretising (4.9), (4.6) and a
constitutive equation, which here is chosen to be Newtons law of viscosity, (2.6), the balance
equations are separated from constitutive equations. The problem is that 7 is a second order
tensor, and the relations stated in the De Rham complex of Figure 4.1 only describes the relation
between scalar values and vector values. By analysing the physical quantities, however, a discrete
exact formulation can be derived. The momentum equations are derived by looking at the force
balance on an arbitrary domain. For the Stokes equation the inertial term is neglected, the forces
from 7 and p are external contributions acting on a surface, and the force term f in (4.2) is the
body force in the domain (this is set to zero in this project). The viscous term should hence be
described as the viscous stress integrated over the associated surface, which gives a force. This
force can be regarded as a momentum flux of the surface. The pressure also produce a force
normal to the surface, but since it is isotropic the size of the force will purely be dependent on
the area of the surface, and this is unwanted because it will then be dependent on the size and
shape of the sub domain. If instead the pressure is regarded a potential associated to a point this
metric dependence is removed. This also corresponds with the use of the grad operator, which
acts on scalars.

The conservation of mass is derived by looking at the mass balance of an arbitrary finite volume.
By assuming incompressibility the only contribution is the mass flux over its boundaries, which
also was the geometrical interpretation of the velocity in Kreeft [2013], but this does not comply
well with the strain rate used in constitutive models. The strain rate is the rate of displacement
between two arbitrary points of a deforming volume, so strain rate is geometrically associated to
something which acts along a line. The velocity is therefore naturally associated to the points,
which bound the strain rate line. So a more appropriate geometrical interpretation for the
velocity is a vector associated to a point, which also complies with the divergence operator of the
continuity equation, which naturally acts on vectors.

Figure 4.3 shows the location of the discrete unknowns for 2x2 grid in 2D for illustrative
purposes. Notice that the velocity components are geometrically separated, and that they bound
a sub element. The velocity fluxes over the surfaces of the sub element should be in perfect
equilibrium.

The pressure and viscous forces bound sub cells which should have perfect force balance in the
x-direction (marked with blue in Figure 4.3) and in the y-direction (marked with green). The
location of the discrete values are described by a dual grid approach. A primal grid is built using
Gauss Lobatto Legendre (GLL) points (marked with black lines in the upper left illustration of
Figure 4.3), and a dual grid is constructed using Gauss Legendre (GL) points (marked with red
lines in the upper left illustration of Figure 4.3). This is a normal approach in Palha [2013] and
Kreeft [2013], where balance equations are described on individual grids, and then linked
together through constitutive relations. Here a change in basis have been performed such that
the physical quantities are located on both the primal and the dual grid. Notice though that the
forces associated to the x-momentum are lying between the x-velocity components, and the forces
associated to the y-momentum are lying between the y-velocity components. The link between
these is the constitutive relations. This is done to be consistent with the physical behaviour,
where stresses should be in the same space as the strain rates, which is the gradient of the
velocity, and hence the stress should be one order lower than the velocity.

To obtain a square matrix system, the equations are put into variational form, and the weight
function for continuity equation is chosen to be in the same space as the pressure, the weight
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Figure 4.3 - Location of the discrete values of velocities, pressures and momentum fluxes.

function for the momentum equations is chosen to be in the same space as the velocity, and the
weight function for the constitutive equation is chosen to be in the same space as the viscous
forces. This is the traditional approach known from the Galerkin FEM, and perfect mass and
momentum conservation are observed when applied to the lid driven cavity flow test case, but
small spurious fluctuations in velocity are observed at the boundaries, which though diminish as
the polynomial order is increased as seen on Figure 4.4. Considerable time has been invested to
figure out what the root cause of these spurious oscillations is, and recently it was considered
that compatibility between stress and velocity is not satisfied. Compatibility is shortly explained
a requirement, which are to be fulfilled to ensure that a strain-rate field has a unique velocity field
associated to it. Remember the strain-rate tensor given in (2.7). It contains the gradient of the
velocity field. So if the velocity field is given in a domain then a unique strain-rate field can be
calculated. This is not the case for the opposite situation, where the strain-rate field is known.
Say a reference velocity is known, and the velocity in an arbitrary point is desired, then this is
accomplished by integrating. It is a fair requirement, that no matter which integration path that
is chosen, then the result is the same. This is the compatibility requirement. This requirement is
as mentioned always satisfied for the often used velocity-pressure formulation, where the stress is
not solved for. There is a compatibility requirement in this formulation however, and that is the
famous inf-sup condition formulated in Babugka [1973] and Brezzi [1974] saying that the pressure
approximation space must be smaller than the velocity approximation space. In Maday and
Patera [1989] it was shown that for spectral elements the pressure approximation space should be
Py _s if the velocity approximation space is Py .

To achieve structure preservation it is required that the stresses are solved for, so a compatibility
between stress and velocity is required. In Gerritsma and Phillips [1999] the compatibility
requirements for the Velocity-Pressure-Stress (VPS) formulation was stated. The
velocity-pressure requirement still follows Maday and Patera [1989], and the velocity-stress
requirement is found to be that the approximation space of the stress should be at least the same
size as the velocity space. This is however quite unfortunate because as seen above the stress
space is smaller than the velocity space.

This is the current status of the formulation. The current idea to amend the issue of compatibility
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Figure 4.4 - Streamline plots with different polynomial order, and the last illustration shows the mass
and momentum conservation of the mass and momentum cells, respectively, evaluated with the infinity
norm.

is to choose a larger space for the stress, and then apply extra stress boundary conditions to
ensure that the structure is preserved. A suggestion for such a formulation is outlined in the
draft paper inserted below and will end this chapter. It is ongoing work and it reflects the status
at the submission of the progress report. The paper is inserted with the format of this report.
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4. Mimetic Methods

STRUCTURE-PRESERVING FORMULATION OF STOKES FLOW

Kennet Olesen', Bo Gervang? and Marc Gerritsma?

Abstract

This paper describes conservation of mass and momentum in Stokes flow in terms. By a suitable
choice of basis functions and an appropriate weak formulation mass and momentum are exactly
conserved in the L*-norm. The method is applied to the lid-driven cavity problem.

Introduction

Conservation laws and constitutive equations play very distinct roles in physical models.
Conservation laws express fundamental relations which need to be satisfied for all materials,
whereas constitutive equations represent, macroscopic relations of more fundamental processes at
the microscopic level. Conservation laws are devoid of material parameters, while constitutive
equations contain parameters which characterize the material under study. Earlier studies
revealed that conservation laws can be exactly represented at the discrete level, while the
numerical approximation occurs in the constitutive equations. In this paper we want to extend
these ideas to vector-valued conservation laws, such as conservation of linear momentum in
continuum mechanics.

In order to satisfy conservation of mass exactly at the discrete level, the velocity unknowns should
be staggered similar to what has been done by Kopriva [1996], and what is common in staggered
finite volume methods. As a result of this choice, the normal velocity components are readily
available at the boundary, while the tangential velocity components are added using ghost points.
This positioning of unknowns has consequences for the momentum equation. A weak formulation
is presented in which the normal stress components are treated differently from the shear stress.

In Section 2 the weak formulation will be presented. In Section 3 the spectral basis functions and
the treatment of boundary conditions will be introduced. Results of this spectral scheme will be
given in Section 4 for Stokes flow in a the lid-driven cavity. Conclusions and future work are
discussed in Section 5.

Weak formulation of Stokes formulation

Let Q a bounded domain with Lipschitz boundary 0f, then the incompressible Stokes flow in
vector notation is described by the momentum equation:

dive = —grad(p) + divi =0 in Q, (4.10)
together with conservation of mass for an incompressible medium:
divi=0 in (4.11)

and a suitably chosen constitutive model, which links the strain-rate to the stress. In this paper
Newton’s law of viscosity is chosen:
T =2uD. (4.12)

Kennet Olesen
Aarhus University - Department of Engineering, Inge Lehmanns Gade 10, 8000 Aarhus, Denmark, e-mail:
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Here p is the pressure field, 4 is the velocity field, 7 is the second order viscous stress tensor, p is
the constant viscosity coefficient of the fluid, and D is the symmetric part of the strain-rate tensor

1
D=3 (gradT 7+ grad a‘) :
The model is supplemented by the boundary conditions
4 =0 along 0N} .

Earlier work on mimetic spectral element methods for Stokes flow Hiemstra et al. [2014]; Kreeft
and Gerritsma [2013] based on the vorticity-velocity-pressure (VVP) formulation, will not be
used here. The VVP formulation is only applicable for constant viscosity coefficients and does
not ensure conservation of linear momentum. This paper instead focuses on the
velocity-pressure-stress formulation which can be used for non-constant viscosity coefficients and
also guarantees force equilibrium. A similar approach was described in Toshniwal et al. [2014],
but approach described in that paper was more akin to a spectral finite volume method.

In Gerritsma and Phillips [1999] a mixed velocity-pressure-stress formulation is given derived
from a Lagrangian. In this paper a similar approach is applied with a slightly modified functional

L(#,q,0) = i(a o) — b(o, ) + (¢, V - 5) | (4.13)

where g € L?(Q), ¥ € H(div;Q) and o € [H(div; Q)]2X2 which is the space of symmetric

S
2-tensors with square integrable coefficients and its divergence is square integrable.

o — 055 g 7
o Onn

and the vector field ¥ = (u,v)” then the bilinear form b(a, %)) in (4.13) is given by

b(o, 7)) = /Q (—%’?u to (Zz + glf) - 8;;" v) a0 . (4.14)

A stationary point (i, p, ) of the Lagrangian needs to satisfy the variational formulation

Let the tensor o begin by

(V- U,p) —b(7,7) =0 Vo € H(div; Q)
(V-1i,q) =0 VgeL*Q) (4.15)
—b(o, @) top(T:0) =0 Vo e [H(div; Q)2

This system constitutes a symmetric, doubly constrained, mixed formulation, see Gerritsma and
Phillips [1999]. For well-posedness the various function spaces need to satisfy appropriate inf-sup
conditions.

In the discrete setting we select finite dimensional subspaces Q C L?(Q), V C H(div; ) and
T C [H(div; Q)ﬁX2 for which the variational statement reads: Find (a@",p", 7") € V x Q x T
such that

(V-vhphy  —b(rh,oh)=0 ViheV
(V-i", q") =0 V¢i"eqQ (4.16)
—b(a", ") —‘rﬁ(Th coh) =0 Vol eT

These discrete spaces have to satisfy compatibility conditions to ensure a unique solution. Let
Zy C V be the space of discrete vector fields, 9" which satisfy V - " = 0, then Zi+ ~ Q leads to
a locally mass conserving scheme. If Z& is too large we only have approximate mass
conservation, while if Z‘J; is too small spurious pressure oscillations will result. Finite
dimensional spaces V and @ which satisfy Z‘J; ~ () have been studied in Hiemstra et al. [2014];
Kreeft and Gerritsma [2013]; Toshniwal et al. [2014] and will be used here.
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4. Mimetic Methods

Similarly, conditions between the finite dimensional velocity spaces V and T need to be imposed.
Consider the space Z7 C V consisting of vector fields " for which the symmetric part of the
velocity gradient vanishes, i.e.

r={" e V|V + VT§" =0} = (" € V|b(o,d") =0, Vo € [H(div;Q)]>**}. Note that
Zr is the space of all solid body motions (translations and rotations). Compatibility now
requires that Z ~ 7. If Z% is too large we satisfy conservation of momentum locally, but we
have spurious velocity modes, while if Z% is too small then we only approximate conservation of
momentum. In case we prescribe both normal and tangential boundary conditions for the
velocity — as we do in this paper —, we eliminate potential solid body motions, Z7 = ().

Spectral element basis functions

In this paper we use a blend of basis functions. Let &;, i =0,..., N be the
Gauss-Lobatto-Legendre (GLL) points of polynomial degree N and &,i=1,...,N the
Gauss-Legendre (GL) points. Note that &_ < & < &, fori=1,...,N. Fur‘rhermore we
introduce the extended Gauss-Legendre (EGL) points, (& = —1 52,§N+1 =1), i.e. the
Gauss-Legendre points plus the points —1 and 1. The Lagrange polynomials associated with the
GLL points will be denoted by h;(¢), the Lagrange polynomials associated with the GL points
will be denoted by ﬁi(f) and the Lagrange polynomials associated with the EGL points will be
referred to as ize(f) From the Lagrange polynomials we can construct the polynomial edge
functions, given by Gerritsma [2011]

=3 dh(§), i=1,....,N and &=-Y dh°(¢), i=1,....N+1.

ei(§) is a polynomial of degree N — 1 and €;(€) is a polynomial of degree N. With these basis
functions, we express the velocity field in a spectral element as

N N N N
m) =D wihi(©hi(n) + YD vihi(€)hy(n) - (4.17)
i=0 j=1 i=1 j=0
Note that the {-component of the velocity is a polynomial of degree N in the ¢-direction and a
polynomial of degree N — 1 in the n-direction, v € PNV =1, Similarly, the 1-component of the
velocity field, v € PN~V Tt follows that div @ € PV~1N=1 and therefore the pressure field will
be expanded as

n) = ZZ pijei(§

This combination of velocity and pressure expansion guarantees that Zi ~ @ and therefore we
have exact mass conservation without spurious pressure modes. The only singular mode in the
pressure field is the physical singular mode which states that the pressure is determined up to a
constant. We can remove this mode by imposing

/ "Em)dédn =0 = ZZp”fO (4.18)

1=1 j=1
We expand extra-stress components as
N+1 N N N+1
ng (&n) = Z ZT&H ej(n) , Z Tomi,j€il )hf(ﬁ) )
=0 j=1 i=1 j=0

and

N N
Tghn(fan) = 7#5(5777) = ZZTﬁnz,jhz(g)hJ(n) .

i=0 j=0
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With these expansions we have that

N+1 N

Z Z Teeij — Teei—1,5)€i(§)ej(n) € PN

=1 j=1

875 ¢

and

N N+1
=D > (Tanij = Tamig-1)ei(€)e;(n) € PYTLY
=1 j=1

So, in terms of polynomial degree 87’55/85 is in the same space as the ¢-component of @ and
0Ty, /0n is in the same polynomial space as the n-component of @". However, since u needs to be
zero on the left and right boundary, we need to constrain Tghg by setting

ork
8—? =0 for&=+=+1.
Similarly we impose
orh
" =0 forn==+1.
on

With these additional constraints we ensure that 67&/85 can be expresses in the discrete

u-velocity space and vice versa, every u van be expressed in terms of the space of TE’LE— derivatives.
The same holds for 87‘5"5 /0& and wv.

For the weak formulation of the shear stress we need to discretize the shear rates du/0n and
Ov/9¢. These are given by:

Ou N N

o Z Z(umﬂ — wij)hi(§)&;(n) , (4.19)
=0 j=0

By N N

o€ Z; Z Vig1,j = vij)€i(§)hi(n) (4.20)

Note that in (4.19) and (4.20) we introduced expansion coefficients which were not in the velocity
expansion (4.17). These additional coefficients are used to insert the prescribed tangential
velocity components along the boundary. So whenever in (4.19) we refer to w; o or u; y4+1 we
replace it by the local tangential velocity and whenever we refer to vg; and vy1; we replace
these values by the prescribed tangential velocity at the left and right boundary, respectively.

Note that du/0n and dv/0¢ are in the same polynomial space as the shear stress representation.
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5 Conclusion

The content of this progress report reflects the current status of this PhD project. The majority
of the time so far has been utilised to learn and understand the theory of rheology, high order
methods and the mimetic method, as well as completing the required 30 ECTS points of courses.
A structure preserving formulation of the Stokes problem has been suggested, which ought to
preserve mass and momentum for arbitrary constitutive models.

Only selected theory of rheology has been presented in this report, and no numerical application
has been given. This will be a substantial part of the future work.

It has been shown that the high order FEM obtains convergence rates, which is superior to low
order methods. Non-smooth functions are not captured well by high order methods unless the
non-smooth point is located at the interface between elements, in which case the convergence
rate is unchanged. Since the rheological models described in this progress report in general are
smooth, it is assessed that high order methods are applicable.

Considerable time have been spend to understand the essence of mimetic method, where Palha
[2013] and Kreeft [2013] has been considerable inspirations as well as guidance from Marc
Gerritsma. The topic extensively relies on differential geometry, which deliberately has been
omitted in this report due to readability.

A formulation has been derived which preserves mass and momentum to machine precision
independent of the resolution of the domain decomposition. This has been shown on the lid
driven cavity test case. Spurious velocity oscillations are observed though, which have been
traced to the non-satisfied compatibility condition between velocity and stress. This can be
amended by choosing appropriate approximation spaces for the stress. Unfortunately if the stress
space is too small compared to the velocity, spurious oscillations will be present, but if it
becomes too large on the other hand, structure preservation is lost. Finding a formulation which
satisfies these two requirements is currently ongoing work.
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6 Future Work

This section is dedicated to describing how the remaining time of the PhD project will be
utilised. It is divided in three sections, namely a theoretical part, an experimental part and an
application part. The order of these sections corresponds to the order at which they will be
executed in the project.

6.1 Theoretical

The general ideas and theory of the mimetic method are established, but a compatible
formulation is still not found. Only the Newtonian fluid constitutive model has been considered,
so more advanced models like the upper convected Maxwell model described in Section 2.5 is to
be implemented. If the theory holds then mass and momentum should still be conserved to
machine precision. The more advanced constitutive models will be challenging to discretise,
because it is no longer possible to obtain explicit expressions for the stresses, and the non-linear
expressions require iterative methods.

The current code is implemented in MATLAB using for-loops, which is very ineffective. The code
is to be optimised through vectorisation and applying build-in operators. To really optimise the
code for applications in 3D, the code should be written in C or C++. Resources like the Fenics
project! could be applied.

6.2 Application

The mimetic method are to be compared with traditional high order methods and FVM, which is
very common in commercial codes, due to its robustness. Various test cases are to be compared

on convergence rates, efficiency and the ability to reproduce the correct flow pattern. Open source
codes like Nektar++2 for the high order methods and Openfoam? for the FVM are to be utilised.

6.3 Experimental

GEA Liquid Processing* in Skanderborg Denmark produces solutions for treatment and
production of different liquids. They are currently developing their CFD capabilities, and have
endorsed their support to experimental work on some of their products. One of their products is
a high shear mixer, which mixes immiscible liquids like oil and water by applying high shear
forces. The principle is shown on Figure 6.1. It resembles a centrifugal pump, but it has small
holes in the casing. The immiscible liquids are lead into the impeller where they are mixed and
then forced through the small holes. This introduces high shear forces, and a consistent liquid is
produced. The resulting liquid is often high viscous, and have non-Newtonian properties. It
could be interesting to determine these properties, and see if the flow trends could be reproduced
in a simulation by applying an appropriate constitutive model.

Thttp://fenicsproject.org
*http://www.nektar.info

3http://wuw.openfoam. com/
*http://www.gea-1liquid.dk
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6. Future Work
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Figure 6.1 - High shear mixer consisting of an impeller rotating inside a casing with small holes.
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Glossary

Notation Description

CFD Computational Fluid Dynamics.
FDM Finite Difference Method.

FEM Finite Element Method.

FVM Finite Volume Method.

GL Gauss Legendre.

GLL Gauss Lobatto Legendre.

PDE Partial Differential Equation.
PVW Principle of Virtual Work.

SEM Spectral Element Method.

VvPp Vorticity-Velocity-Pressure.
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