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Chapter 1

Introduction

Hard coatings can be applied on materials to enhance their mechanical
properties. The coatings can be applied on e.g. cutting tools which can be
coated to enhance wear resistance on gears and bearings to reduce friction
and enhance life.

In this project, focus is on developing methods to link microstructural
characterisation with measurements and calculations of the coating system
including the mechanical and especially the fracture mechanical properties.
The mechanical data will be obtained by nano-indentation which yield hard-
ness, Young's modulus and possibly creep. By comparing nano-indentation
data with theoretical fracture mechanical models, quantitative values of
fracture toughness are obtained.

To understand the wear properties of a coating, it is of paramount im-
portance to know both the hardness and the fracture toughness. In the
project, it is of key interest to establish a link between the mechanical and
fracture mechanical properties and the wear resistance of the coating. It is
a hypothesis, which will be pursued in this project that the wear resistance
of such coatings is linked to the crack pattern which forms in the coating
during indentation, and that the parameters governing this pattern thus can
be used to optimise the performance of the coatings. This general hypoth-
esis will then be used in particular to develop and optimise the properties
of the coatings.

This assignment is composed while the work is in progress and is not in
the �nal form. A number of fracture mechanical models for coatings have
been studied. A selected number of basic models for crack propagation is
presented along with one case of special interest.
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Chapter 2

Single channelling crack

2.1 Basic mechanisms and expressions

A brittle coating under homogenous tensile stress may fail by the extension
of channelling cracks. consider the 3D crack in �gure 2.1. The crack is a
through-thickness crack in a �lm reaching all the way through the �lm to
the substrate. The �lm is loaded by a uniaxial tensile stress σ. The �lm
thickness is denoted h. When the crack reaches a certain length, the energy

Figure 2.1: A 3D through-crack channelling across a �lm [1]
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2.1. Basic mechanisms and expressions

release rate for the crack growth becomes independent of the crack length
and conditions at the crack tip. The crack growth has then reached steady
state growth. Xia and Hutchinson, [2], amongst others cites the results
from Nakumura and Kamath [3] who investigated the three-dimensional
crack growth. The results from this paper states that the crack reaches
steady-state when the crack length is only a few times larger than the �lm
thickness, see �gure 2.2. This results is also con�rmed by [2] who has

Figure 2.2: Qualitative approach to steady-state channelling. [1] based on results
from [3]

made a two-dimensional analysis of through-thickness cracks in thin �lms.
For elastic identical �lm and substrate, [2] concludes that steady-state is
reached for a/h ≈ 4 (a is the crack length) for a central crack. The inves-
tigation performed by [3] investigates only the case with an in�nitely sti�
substrate. Newer results performed by Ambrico and Begley [4] investigates
the propagation of a crack from an initial �aw towards steady-state crack
growth for a through-thickness crack. The analysis is a three-dimensional
�nite-element analysis. Contrary to [3], Ambrico and Begley also inves-
tigates the e�ects of the elastic properties for the substrate. The results
can be seen i �gure 2.3. The elastic mismatch between the �lm and the
substrate is described with the parameter α which is explained in detail in
section 2.2. Shortly, α = −1 corresponds to an in�nitely sti� substrate and
α increases with the relative �lm sti�ness. for an in�nitely sti� �lm, α = 1.
The original result from Nakamura and Kamath can be seen in the top left
corner of the two �gures for α = −1 where it can be seen that steady-state
is obtained for a crack length only a few times the �lm thickness. When α
increases the steady-state length increases too. For α = 0 which is a system

3



2.1. Basic mechanisms and expressions

(a) Center cracks (b) Edge cracks

Figure 2.3: Energy release rate for elastic cracks i a single layer vs channelling
crack length for di�erent material mismatch

with identical elastic properties for the �lm and substrate, the steady-state
length is much longer. For an edge crack, an energy release rate of 90% is
�rst obtained when the crack length is 15 times the �lm thickness.

In steady state cracking, the energy release rate can be evaluated with-
out knowledge of the conditions at the crack front and the shape of the crack
front. To obtain the energy release rate, two plane problems are examined.
The strain energy in a unit slice far behind the crack front is subtracted
from the strain energy far ahead. One solution formula to this problem is

Gss =
σ

2h

∫ h

0

δ(y)dy (2.1)

Where δ(y) is the displacement pro�le for a plane strain crack and σ is the
�lm stress. An alternative formula is

Gss =
1

h

∫ h

0

G(a)da (2.2)

Where G(a) is the energy release rate of a plane strain crack of depth a,
see �gure 2.4 [5]. If the system is elastic homogenous the corresponding
plane strain problem is an edge crack in a half plane. This is a standard
fracture mechanics problem and the solution is G(a) = 3, 952σ2 a

Ē
[6]. If
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2.2. elastic mismacth

Figure 2.4: Edge crack in a half plane

this expression is inserted in equation 2.2 the result is

Gss = 1, 976σ2 h

Ē
(2.3)

2.2 elastic mismacth

The above expressions are only valid for an elastic homogenous �lm-substrate
system. For system with di�erent elastic properties for the �lm and sub-
strate the situation is more complicated. To describe the elastic mismatch,
the two Dundurs' parameters are used [7]

α =
k(κ1 + 1)− (κ2 + 1)

k(κ1 + 1) + (κ2 + 1)
, β =

k(κ1 − 1)− (κ2 − 1)

k(κ1 + 1) + (κ2 + 1)
(2.4)

Where:
k is the ratio of the shear moduli, k = S1

S2
.

κ = 3− 4ν for plane strain and κ = 3−ν
1+ν

for plane stress.
The indices 1 and 2 refers to respectively the �lm and the substrate.
If the above expressions for k and κ are inserted in equations 2.4, the
expression for α and β for plane strain is [8]

α =
Ēf − Ēs
Ēf + Ēs

, β =
1

2

Ēs
1−2νf
1−νf

− Ēf 1−2νs
1−νs

Ēf + Ēs
(2.5)
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2.2. elastic mismacth

Where the subscript f and s denotes the �lm and substrate respectively.
Ē = E

1−ν2 is the plane strain tensile modulus. From equation 2.4 it is
apparent that α can vary from -1 to +1. α = −1 is one limit case with
an in�nitely sti� substrate an compliant �lm and α = 1 is for an in�nitely
sti� �lm and compliant substrate. Since k in equation 2.4 is positive ν is
required to be in the range 0 ≤ ν ≤ 1

2
. The physically admissible range for

β with respect to α is then restricted to |α − 4β| ≤ 1. For most practical
material combinations, the value of β typically lies between β = 0 and
β = α/4. Furthermore, β typically has only little in�uence on the results
compared to the in�uence from α. For that reason, results are typically
only presented for the two limiting values of β, β = 0 and β = α/4 [9].

Beuth [9] has developed the approach issued by Hutchinson and Sou [5]
to account for elastic mismatch. Beuth presents solutions to two problems.
One is the fully cracked problem and the second is a partially cracked �lm.
Only the fully cracked case is described.

[9] determines the mode I stress intensity factor KI for the fully cracked
problem with the crack tip at the interface. A sketch of the problem can
be seen in �gure 2.5. For the fully cracked problem Beuth de�nes KI as

Figure 2.5: Crack problem investigated by Beuth [9]

KI ≡ lim
y→0−

[(−2πy)sσxx(0, y)] (2.6)

The stress singularity exponent s is a function of the Dundurs parameters
α and β and s satis�es the following equation derived by Zak and Williams
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2.2. elastic mismacth

[10]:

cos(sπ)− 2
α− β
1− β

(1− s)2 +
α− β2

1− β2
= 0 (2.7)

No elastic mismatch between �lm and substrate giving α = 0 and β = 0
gives s = 1/2 and equation 2.7 corresponds to the classic de�nition of the
mode I stress intensity factor for a crack in a homogenous solid. The stresses
just ahead of the crack tip in the y direction is given by

σxx(0, y) = C1
σhs

(−y)s
(2.8)

Where C1 is a nondimensional function of α and β only. The detailed
derivation of KI and σxx is not given here.

To describe the steady state energy release rate, Beuth introduces the
non-dimensional quantity g(α, β)

g(α, β) =

∫ h
0
δ(y)dy

π σ
Ēf

h2 (2.9)

g is a nondimensionalised integral of the crack opening displacement and is
a function of the two Dundur's parameters. A plot of g(α, β) as a function
of α can be seen in �gure 2.6. The steady state energy release rate for a

Figure 2.6: Plot of g(α, β) as a function of α for β = 0 and β = α/4

through-thickness channelling crack can then be expanded with g(α, β) to

7



2.2. elastic mismacth

account for elastic mismatch. The argument from equation 2.1 can then
be used to give the expression for the steady-state energy release rate for a
through-thickness channelling crack for elastic mismatch.

Gss =
σ

2h

∫ h

0

δ(z)dz =
σ

2h
g(α, β)

πh2σ

Ēf

=
1

2

σ2h

Ēf
πg(α, β) (2.10)

Looking at elastically identical materials, it is recalled from equations 2.1
and 2.2 that the steady state energy release rate can be expressed in two
ways:

Gss =
σ

2h

∫ h

0

δ(z)dz, Gss =
1

h

∫ h

0

G(a)da (2.11)

Equating these two expressions and inserting
∫ h

0
δ(y)dy = g(α, β)πσh2/Ēf

from equation 2.9 and remembering that for linear elastic fracture mecha-
nics G = K2

I /Ēf the following expression is derived

g(0, 0) = 1, 12152 (2.12)

It is used that for an edge crack in an homogenous half-planeKI = 1, 1215σ
√
πa

[6] . Inserting this value for g(0, 0) in equation 2.11 gives Gss = 1, 976σ
2h
Ēf

,

which is the same as equation 2.2 from [5].
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Chapter 3

Multiple cracks and crack

interaction

When gradually increasing the stress in a �lm attached to a substrate and
given that the interface fracture toughness is high enough to prevent delam-
ination, the �lm will fail by the formation of a number of cracks propagating
from the surface to the interface and subsequent channelling across the �lm.

A number of di�erent models for the interaction and saturation of par-
allel channelling cracks has been set up.

3.1 Crack interaction and crack spacing

Thouless [11] carried out an analysis for parallel cracking of a system with
identical elastic properties of �lm and substrate. The cracks are assumed
to be propagating simultaneously and have obtained steady-state.

The procedure to determine the energy release rate is the same as pre-
sented by Hutchinson and Suo [5]. The energy release rate is obtained by
comparing the strain energy stored in a unit slice far ahead and far behind
the front of parallel propagating cracks. As for the single crack this can be
found by integrating a text book solution for an array of edge cracks, see
�gure 3.1.

Gss =
1

h

∫ h

0

G(y)dy (3.1)

Where G(y) is the energy release rate for one crack for the problem in

9



3.1. Crack interaction and crack spacing

Figure 3.1: Fracture-mechanical problem used to compute the energy release rate
[6]

�gure 3.1. The solution to the integral is.

Gss ≈ 1, 98
σ2h

Ēf
L ? 8h

Gss ≈

[
0, 5

l

h
− 0, 0316

(
l

h

)2
]
σ2h

E
L > 8h (3.2)

It can be seen in equation 3.2 that for a crack spacing larger than 8h the
cracks do not interact.

If the stress in the �lm is gradually increased, then, according to Thou-
less, an array of cracks will form when a critical stress is reached. This
critical stress can be found by isolating σ in the �rst line in equation 3.2.
The spacing of these initial cracks will be determined by the position of any
existing �aws in the �lm but it will be larger than 8h. If the stress is larger
than this critical stress, minimum crack spacing will be given from isolating
L/h in the second line in equation 3.2.

λ

h
≈ 8

1−

√
1− 0, 5

(
ΓfE

σ2h(1− ν2)

)2
 (3.3)

Where Γf is the fracture toughness, the critical energy release rate for the
�lm. Note that this is a minimum crack spacing, the actual crack spacing
may di�er from this. The λ notation is used to emphasise that this is a
material value for the speci�c �lm.

Hutchinson and Suo [5] uses the same argument as Thouless [11] to
investigate the energy release rate for an array of cracks.

10



3.1. Crack interaction and crack spacing

Hutchinson and Suo develops this approach to consider not only the
simultaneously propagation of an array of cracks. Consider a situation
where a �lm is already cracked due to a certain loading σ. If the loading is
increased, a new set of cracks is nucleated and propagates halfway between
the existing cracks. The energy release rate for this new set of cracks can
be computed with the same argument as used when calculating the energy
release rate for a single crack. The strain energy far ahead and far behind
the crack front for the new set of cracks is used to calculate the energy
release rate for the new set of cracks. The strain energy in a unit slice
containing one �old� and two �new� cracks is considered. Far behind the
crack tip the crack spacing is L and there are two �new� cracks. Far ahead
the crack tip there is one �old� crack with a spacing 2l. Denoting the strain
energy behind the crack tip Ul and the strain energy ahead of the crack tip
U2l the energy release rate can be calculated as

Gss,seq = (2Ul − U2l)
1

h
(3.4)

Inserting the solution from equation 3.2 for Gss for the simultaneously prop-
agation the following expression for sequential propagation is derived.

Gss,seq = (2Ul − U2l)
1

h

= 2

[
0, 5

L

h
− 0, 0316

(
L

h

)2
]
σ2h

Ēf
−

[
0, 5

2L

h
− 0, 0316

(
2L

h

)2
]
σ2h

Ēf

= 2 · 0, 0316

(
L

h

)2
σ2h

Ēf
(3.5)

Delannay and Warren [12] has carried out an analysis much similar to
the above.

Thouless et. al. [13] uses a di�erent argument to look at the crack
spacing than originally posted by Thouless [13]. Thouless et. al. uses an
energy argument to derive an equilibrium crack spacing. The strain energy
in the uncracked �lm is

U0 = 0.5
σ2h

Ēf
(3.6)

Using the result from equation 3.2 which gives the energy di�erence between
the cracked and uncracked �lm, the strain energy in the cracked �lm can
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3.1. Crack interaction and crack spacing

be found to be

Ul = 0, 0316
L

h

σ2h

Ēf
(3.7)

The critical energy release rate Γf and the energy associated with the crack
array can be related by

Uc = Γf
h

L
(3.8)

The energy equilibrium crack spacing must then be when the total energy
of the �lm is minimised. The total energy can be expresses as

Utotal = Ul + Uc = 0, 0316
L

h

σ2h

Ēf
+ Γf

h

L
(3.9)

The minimal total energy can the be found by �nding the minimum for the
expression in equation 3.9

∂Ul
∂L

+
∂Uc
∂L

= 0⇒

0, 0316
σ2h

Ēf

1

h
− Γfh

L2
= 0⇒

λequlibrium
h

=
√

0, 0316−1

√
ĒfΓf
σ2h

≈ 5, 6

√
ĒfΓf
σ2h

(3.10)

This expression gives a larger spacing for the same �lm properties than the
expression stated in equation 3.3 which is the thermodynamically smallest
possible spacing. The argument from equation 3.5 gives a spacing inter-
mediate to these two. Another interesting di�erence is that equation 3.3
predicts that the absolute crack spacing L should decrease for increasing
�lm thickness h. Equation 3.10 on the contrary states that L increases as√
h. [13] con�rms the latter relation by experiments.

3.1.1 Elastic mismatch

Xia and Hutchinson [2] have presented a solution for the driving force for
propagation of parallel cracks in an elastic inhomogenous system. To im-
plement the elastic mismatch, a characteristic length l is introduced

l ≡ π

2
g(α, β)h (3.11)

12



3.1. Crack interaction and crack spacing

Where g(α, β) is the nondimensional factor describing the elastic mismatch
introduced my Beuth, [9], see section 2.2. For an elastic homogenous sys-
tem, l = 1.976h. By the use of the factor l, the energy release rate for the
simultaneous propagation of a crack array can be expressed as

Gss =
lσ2

Ēf
tanh

(
L

2l

)
(3.12)

Like the expression developed by [11], equation 3.2, the expression ap-
proaches that for a single crack when the crack spacing is increased. When
L = 3l, the value for Gss is 90% of the value for an isolated crack. In [11],
the value for Gss for a crack array equals the result for a single crack when
L = 8h. For L = 8h and elastically identical materials, tanh

(
L
2l

)
= 0, 97.

The crack interaction distance depends on the elastic mismatch coe�cient
g(α, β). For sti� substrates, the elastic mismatch has a strong in�uence on
the crack interaction distance. Figure 3.2 shows a plot of Lhsinglecrack as
a function of the elastic mismatch parameter α. Lhsinglecrack is the crack
spacing at which Gss for the parallel array of cracks has reached 97% of the
value for a single crack, i.e. the value L

h
= 8 from [11] for elastic identical

materials. Figure 3.2 shows that when the �lm is very sti� compared to the

Figure 3.2: Crack spacing for no interaction for varying α

substrate the interaction distance increases drastically. Using the argument
from [5], equation 3.4, the energy release rate for the sequential propagation
of cracks cans be expressed as [2]

13



3.1. Crack interaction and crack spacing

Gss = 2 ·Gss,L −Gss,2L

=
lσ2

Ēf

[
2 tanh

(
L

2l

)
− tanh

(
L

l

)]
(3.13)

3.1.2 Yielding substrate

If the substrate is ductile, the crack spacing is dictated by the substrate yield
stress. The crack spacing for a yielding substrate can be approximated by
a simple shear lag analysis. The shear lag analysis is described by Hu and
Evans [14] and Agrawal and Raj [15]. The procedure is also described by
Beuth and Klingbeil [16]. The concept of the shear lag model is that the
substrate yields at the surface. This results in a shear yield stress τ being
transferred to the �lm from the substrate. Hu and Evans [14] suggests a
constant shear stress. It is assumed that a crack exist in the �lm. At the
crack face the �lm is stress free. The stress in the cracked �lm can be found
by considering a series of free body diagrams for di�erent values of x. This
gives:

σfx =
1

h

∫ x

0

τdx⇒ (3.14)

σfx = τ
x

h
, (x < Lslip)

σfz = σf , (z > Lslip) (3.15)

Where x is the distance from the crack. Lslip is the slip length, that is the
length necessary to �build up� the �lm stress σf , see �gure 3.3. Enforcing
equilibrium in the �lm gives a relation for the slip length

Lslip =
σh

τ
(3.16)

For the shear lag case, minimum or saturation crack spacing Lsaturation is
typically determined to be the order Lslip < Lsaturation < 2Lslip. This is
because crack spacing larger than 2Lsaturation leaves segments of �lm which
satis�es the cracking condition. On the other hand, for small crack spacings
smaller than Lsaturation the critical crack condition is not satis�ed in this
range. Using that τy = σy√

3
gives the following condition for the crack spacing
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3.1. Crack interaction and crack spacing

Figure 3.3: An illustration of the shear lag behaviour

for a yielding substrate [14] (interface)

√
3
σf
σy

<
lsaturation

h
< 2
√

3
σf
σy

(3.17)

Agrawal an Raj [15] assumes that the shear stress transferring the load
to the substrate has a sinusoidal distribution instead.

τ = τ̂y sin
2πx

λ̂
, 0 ≤ x ≤ λ̂

2
(3.18)

Where λ̂ is the wave length for the sine function in equation 3.18. The
relation between λ̂ and the slip length lslip,agrawal is λ̂ = 2lslip,agrawal. Using
this expression in equation 3.14 gives the following expression for the shear
lag crack spacing

π
√

3
σf
σy

<
lsaturation

h
< 2π

√
3
σf
σy

(3.19)
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3.2. Comparison

3.2 Comparison

The plot in �gure 3.4 shows a comparison of the crack spacing as a function
of normalised �lm stress σ2h

Γf Ēf
. For comparison, all the plots are an elastic

homogenous system. For a �xed value of the �lm toughness, Γf , �gure 3.4

Figure 3.4: Comparison of expression for crack interaction

shows the predicted crack spacing as a function of the normalised �lm stress.
For a given �lm stress σ, the �gure shows the crack spacing given by the
various models. The model by [11] dictates the lowest crack spacing. This
spacing is given by the expression for the energy release rate for an array
of cracks. The crack spacing given by [13] is based on an argument that
the equilibrium crack spacing is given by the spacing which minimises the
energy in the system. The argument accounts for the sequential propagation
of cracks, that a new set of crack will form between existing cracks when the
�lm stress is increased. This argument, equation 3.10, gives a higher spacing
that the minimal possible spacing given by equation 3.3. Intermediate to
these two crack spacings is the argument for the energy release rate for
sequential crack propagation presented by [5]. This argument is presented
by two curves. One for equation 3.5 which is the argument from equation 3.4
used on equation 3.2. And one calculated from equation 3.13. These two
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3.2. Comparison

curves should be equal but this is not quite the case. The reason for this is
not clear, but a reason might be that equation 3.5 is based on equation 3.2
which is not an exact solution. The two expressions giving the crack spacing
for a parallel array, equation 3.3 and equation 3.12 are nearly coincident as
expected. The vertical dash-dot line indicates the critical normalised stress
for a single channelling crack. All the models except equation 3.13 either
crosses the line or are very close to the line at L/h = 8 which is the spacing
at which the cracks do not interact.

For a given crack spacing and normalised �lm stress, being above and
left to the lines would indicate crack propagation.
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Chapter 4

Radial cracks patterns from

indentations

4.1 Case description

A case of special interest is the one of radial cracks spreading from an in-
dentation crater as seen on �gure 4.2. The �gure is a picture of a Rockwell
C indentation into an aluminium oxide �lm. A Rockwell C indentation is a
standard hardness measurement device in most material laboratories [17].
Equipment used to determine the fracture toughness for thin �lm is typi-
cally micro- or nano indentation equipment [18, 19]. Being able to perform
a reliable test on a standard Rockwell indenter would greatly simplify these
tests. Also, a Rockwell indentation is a standard method to evaluate the
adhesion of the deposited �lms [20]. The analysis is analogous to the intro-
ductory work done by Jensen [21]. The object is to determine the fracture
toughness of the deposited �lm. This is done by linking the stresses in the
�lm to the theoretical models for steady state crack growth described in
chapter 3. The models presented is for uniaxial stress in the �lm. For the
current analysis, it is assumed that the models can also be implemented
to the axisymmetric stress state present in the vicinity of the indentation
crater.

18



4.1. Case description

Figure 4.1: Radial crack from Rockwell C indentation in an Al
2
O
3
- stainelss steel

316 L system

Figure 4.2: Geometry of analysed system
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4.2. Determining �lm stresses

4.2 Determining �lm stresses

Firstly, an expression for the circumferential stresses is needed. It is as-
sumed that the �lm thickness h is very small compared to the radius of the
indentation crater R and the substrate thickness H. Under this assumption
the following expression can be used

σθθ(r) =
E

1− ν2

(
u(r)

r
+ ν

du(r)

dr

)
(4.1)

Where u(r) is the radial displacement of the substrate at the interface. The
displacement u is a function of r, the radial distance from the indentation
centre. Two properties follow from the assumption h� R and enables the
use of the expression in equation 4.1 to describe the circumferential stress.
Firstly, when the �lm is thin compared to the indentation radius and sub-
strate thickness it is a reasonable assumption that the displacement of the
�lm equals the displacements of the substrate without the �lm. Secondly,
the contribution to the elastic energy in the �lm caused by bending can be
ignored [22]. Equation 4.1 determines the �lm stresses from the substrate
displacements. This makes the method useful for systems with dissimilar
sti�ness for �lm and substrate. If the circumferential strains εθθ are avail-
able the �lm circumferential stress can be determined directly. if there is
no elastic mismatch between �lm and substrate, results for σθθ can also be
used if available.

A �rst approximation for u(r) is found in [22].

ln

(
u(r)

R

)
= b0 + b1

r

R
+ b2

( r
R

)2

+ b3

( r
R

)3

(4.2)

The coe�cients b0 . . . b3 are in [22] tabulated for various values of yield
stress, σy, and hardening coe�cient, n, in a Ramberg-Osgood true stress-
logarithmic strain curve in uniaxial tension

ε̃ =
σ̃

E
+

3

7

σy
E

(
σ̃

σy

)1/N

(4.3)

Using common values for σy and n for stainless steel 316L the best values
tabulated in [22] can be found in table 4.1. The circumferential stress
determined using equation 4.1 and equation 4.2 and the values for b0 . . . b3

in table 4.1 can be seen in �gure 4.3. The indentation edge at r = R is
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4.2. Determining �lm stresses

N σy
Es

b0 b1 b2 b3

0,1 0,0025 2,0424 -5,3558 1,1811 -0,0961

Table 4.1: Values for b0 . . . b3 used in the analysis

Figure 4.3: σθθ calculated on base of equation 4.2

the left edge of the plot. The plot shows that σθθ very quickly drops to be
negative in the range 1, 04 . r/R . 2, 22 which means that, according to
this model, σθθ is negative in the entire range for crack growth in the current
case. This is clearly unrealistic and [22] also writes that the expression in
equation 4.2 is only valid for 2 ≤ r/R ≤ 6. This means that this expression
is not very well suited as a �rst guess for the displacements.

4.2.1 Residual stresses

Residual stress is typically of great importance when considering thin �lms.
Residual stresses can for instance come from the mismatch in coe�cients
of thermal expansion for the �lm and substrate. When the �lm-substrate
system is cooled down after manufacturing, large residual stresses can occur.
The residual stresses can be in the GPa size range [22]. However, for the
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4.3. Determining �lm properties

Al
2
O

3
�lm considered here, the residual stresses were measured with a wafer

bending test on two Si wafers. The stress was measured to be 2MPa to
−34MPa respectively which is around the precision for the used method
and the �lm is considered stress free, see section 4.4.

4.3 Determining �lm properties

The fracture toughness of the �lm can evaluated using the fracture criterion

Gss = Γf (4.4)

Where Gss is the steady-state energy release rate and Γf is the fracture
toughness of the coating.

The models for the propagation of channelling cracks in chapter 3 can
all be presented in the form

L

h
= F

(
h, σ(r), Ē,Γf

)
(4.5)

Ē, L/h and h are known values in this analysis. The �lm stress can generally
consist of two components. The �rst component is the circumferential stress
caused by indentation, σθθ(r) and the second component is the equi-biaxial
residual stress σ0 giving σ(r) = σ0 + σθθ(r). Unknown quantities in this
analysis are the �lm toughness Γf and the residual stress.

The expression in equation 4.5 can the be written for two values of L/h
and σ(r). One for the crack initiation at the edge of the indentation crater
and one for the arresting of crack growth at r = R + a

L0

h
= F

(
h, σ(r = R), Ē,Γf

)
and

L1

h
= F

(
h, σ(r = R + a), Ē,Γf

)
(4.6)

With these two equations, two unknown quantities can be determined, the
fracture toughness Γf and the residual stress σ0. Because of the lack of a
reliable expression for σθθ(r) an actual determination of Γf is not carried
through.
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4.3. Determining �lm properties

4.3.1 Crack regimes as function of residual stress

When cracking has been initiated at the indentation edge, the propagation
of cracks may be in one of three regimes depending on the residual stress.

� For no residual stress, for small compressive stresses and for tensile
residual stresses below a critical value, the cracks will arrest some
distance from the indenter when the circumferential stress drops below
the value de�ned by the crack spacing model showed in �gure 3.4.
This is the regime seen in �gure 4.2. The critical value is given by the
driving force for a single crack, equation 2.3

σ0,critical =

√
Γf Ēf

1, 976h
(4.7)

� If the residual stresses are higher than σ0,critical the cracks will not
arrest and the �lm su�ers complete failure by unlimited channelling
cracking.

� For compressive stresses of high magnitude, the �lm stresses may not
become high enough to initiate crack growth and no radial crack will
form.

The three di�erent regimes are sketched on �gure 4.4. for illustrative rea-
sons, only the crack criteria from equation 3.13 is included in the �gure.
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4.4. Film data

Figure 4.4: Skecth of di�erent cracking regimes

4.4 Film data

The data for the Al
2
O

3
�lm analysed are listed in table 4.2

Efilm

1−ν2 h R σ0

[Gpa] [µm] [µm] [Mpa]
213± 40 4,1 197 -34 � +2

Table 4.2: Film values used in the analysis

The crack pattern can be seen in mode detail in �gure 4.5. As seen
in �gure 4.5 the crack pattern is not completely homogenous. The crack
distances and crack lengths wary signi�cantly. It is di�cult to recognise
any pattern in the �uctuations. If every second crack was signi�cantly
shorter it would indicate that the cracks has developed sequentially. Then
the long cracks would have developed �rst and the shorter cracks would
have developed when the load was increased. The reason for this is that
the �original� cracks would shield the new cracks, decreasing the driving
force [5].

As the pictures does not indicate any clear trend for the crack spacing
and crack length, mean values are used in this preliminary study. The
mean values for L0, L1 and h will be used. The mean values are listed in
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4.4. Film data

Figure 4.5: Crack pattern in Al
2
O
3
�lm

table 4.3. The Dundurs' parameter α for elastic mismatch can calculated

L0
L0

h
L1

L0

h
a

[µm] [−] [µm] [−] [µm]
28 6,9 43 10,6 126

Table 4.3: Mean values for L0, L1 and a

from equation 2.5. The Poisson's ratio for the �lm is not known, it is
estimated to νfilm = 0, 3. α is calculated to

α = −0.04 (4.8)

The results yields that the elastic mismatch can be ignored for the current
analysis.
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4.5. Issues for further investigation

4.5 Issues for further investigation

4.5.1 Indenter friction

Another issue which must be considered if the analysis is to be used for
determining the residual stress in the �lm. Begley et. al. [23] has analysed
the mechanical behaviour of a DLC �lm on a steel substrate indented with
a spherical indenter. They showed that the radial strain under the indenter
and at the indentation edge is very sensitive to changes in the coe�cient
of friction between the indenter and the �lm. Their results for the radial
strain can be seen in �gure 4.6. When the coe�cient of friction mu is lower

Figure 4.6: Radial strain at di�erent coe�cients of friction, [23]

than 0,3 then εrr is very sensitive to friction. When µ ≥ 0.3 slip between the
indenter and �lm is prevented. This indicates that to accurately describe
the strain and stresses at or near the indentation edge, the friction between
indenter and indented material must be examined thoroughly. Begley et.
al. describes that µ can be determined by examining the pile-up at the
indentation edge. This require detailed knowledge of the plastic properties
of the indented material since the yield strength and hardening coe�cient
also e�ects the pile-up [24, 23, 25].
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4.5. Issues for further investigation

4.5.2 Film stress model

It is clear from the above that a precise expression for the circumferential
stresses is needed. Work is in progress to use stresses from an FEM model
of a Rockwell indentation made by Søren Ste�ensen. The FEM model is
an elastic-plastic analysis including contact and large displacement which
simulates a Rockwell C indentation. As an introductory method to validate
the FEM results, the results for the radial displacement u are compared to
the results given by [22]. The FEM analysis is performed for a Young's
modulus E = 180GPa and plastic properties are chosen to be N = 0, 01
and σy

E
= 0, 005 in the Ramberg-Osgood relation from equation 4.3. The

function in equation 4.2 is given for these plastic values and a comparison
can be made. Figure 4.7 shows the deformed surface from the FEM

Figure 4.7: surface pro�le of the indented surface from FEM analysis

analysis. The indentation edge is clearly seen at r = 261µm. Some pile-up
can also be seen.

The radial displacements u(r) for the FEM analysis and equation 4.2 can
be seen in �gure 4.8. The plot is shown for 2 > r/R > 4 since equation 4.2
is valid only for 2 > r/R > 5 and the FEM results are given only for
r/R > 4. The �gure shows that the two sets of results are far from equal.
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4.5. Issues for further investigation

Figure 4.8: Comparison of radial surface displacements from FEM analysis and
equation 4.2

The FEM model used has been thoroughly tested and validated. Such a
large di�erence does require further investigation which has not been carried
out at current time.
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Chapter 5

Conclusion and future work

The general topic in the ongoing project is investigation of the fracture me-
chanical properties of thin �lms and linking these to wear properties for the
coated systems. Basic mechanisms in thin �lm fracture has been described.
A number of models describing the propagation and interaction of cracks in
thin �lms has been investigated and explained. The mechanisms described
includes crack interaction, yielding substrate and elastic mismatch between
the �lm and substrate. An approach has been set up to determine fracture
toughness and residual stress in a thin �lm by studying the density and
propagation of radial crack from a standard Rockwell indentation. Issues
to consider when developing this model to a reliable method is described.

5.1 Future work

A number of topics need further investigation before results and conclusions
can be made from these. Other crack types than the radial stresses seen in
�gure 4.2 has been observed, see �gure 5.1.

The circumferential crack case is being investigated with a number of
approaches. One approach is to treat the �lm-substrate system as a beam
or plate resting on an elastic or yielding foundation. When loaded by an
indentation, the �lm cracks where tensile stresses at the surface has a max-
imum. This maximum may be determined by bending stress and in-plane
stresses in the �lm. This plate-bending approach has been explored by [26],
[27] and [28]. Another approach when considering circumferential cracks is
to assume that the substrate yields beneath the indenter and the circum-
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5.1. Future work

(a) circumferential crack (b) Radial crack

Figure 5.1: Two crack types detected during indentation with a Berkovich inden-
ter

ferential crack forms at the edge of the plastic zone. This approach has
been used by [29] and [30] in combination with �nite element simulation
and nano-indentation response results.

Wear is another key topic in this research project. A focus point in
the project is to link fracture mechanical properties to the wear properties
and wear mechanisms of the �lms. The fracture mechanisms taking place
is tightly connected to the kind of load applied to the coating. The load
scenarios relevant in the project is considered to be sliding contact and
rolling-sliding contact. [31], [32] and [33] have visually investigated wear
surfaces of DLC coatings under sliding and rolling sliding load by the use
of focused ion beam cutting and have set up fracture mechanical models
for the surface wear. Sliding wear is also investigated by [34], [35] and [36].
These references in generally combines contact stresses and friction forces
with models for the initiation and propagation of microcracks in the wake
of the load.
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