’ Open Roberta

Markus Ketterl

Dr. rer. nat, Research scientist
Fraunhofer-Institut fiir Intelligente Analyse- und
Informationssysteme IAIS.

Beate Jost

BSc, Research scientist
Fraunhofer-Institut fur Intelligente Analyse- und
Informationssysteme IAIS.

Thorsten Leimbach

MBA, Research scientist
Fraunhofer-Institut fiir Intelligente Analyse- und
Informationssysteme IAIS.

Reinhard Budde

Dr. rer. nat, Research scientist
Fraunhofer-Institut fiir Intelligente Analyse- und
Informationssysteme IAIS.

http://www.lom.dk

Abstrakt

Robotter til brug i undervisningen er et efterspurgt paeedagogisk vaerktgij til
hands-on introduktion til moderne informations- og
kommunikationsteknologi. "Roberta - Laering med robotter" initiativet fra
2002 har til formal at engagere og motivere piger og drenge til at interessere
sig for informationsteknologi og naturvidenskab. Mere end 35.000 bgrn og
unge har deltaget i 600 dokumenterede Roberta forlgb. Dermed er Roberta
blevet en fast bestanddel i de tyske uddannelselandskab. Men programmering
af paedagogiske robotter og vedligeholdelse computer hardware er stadig
besveerligt for leerere i klasselokalerne - hvilket ofte rapporteres af elever og
leerere i Roberta-netveaerket. Det vigtigste mal det efterfglgende initiativ "Open
Roberta” er at overvinde de tekniske udfordringer ved et abent og fuldt
webbaseret programmering miljg for leerere og elever, der kan bruges direkte
i webbrowseren hjemme eller i klasseverelset. Den software der praesenteres
- "Open Roberta Lab” bestar af visuelle programmeringsverktgjer til
udvikling og tilslutning af reelle paedagogiske robotter uden langtrukne
systeminstallationer. Et yderligere teknisk aspekt af papiret er indfgrelsen af
NEPO® meta programmeringssprog som en vaesentlig del af Open Roberta
Lab.

http://www.lom.dk

Abstract

Educational robots have become an often asked educational tool for a
hands-on introduction to modern information and communication
technology. The "Roberta - Learning with Robots” initiative aims to engage
and motivate girls and boys to take a sustained long-term interest in
information technology and natural sciences since the project inception in
2002. With more than 35.000 children and young people in over 600
documented Roberta courses a year - Roberta has become a permanent
fixture in the German education landscape and the pedagogical concept,
created books, course material and additional tools are being used
successfully in other European countries. However, programming
educational robots and maintaining complex computer hardware is still a
hassle for teachers in the classrooms - as frequently reported from student
participants and Roberta network teachers. A main goal of the presented
successor initiative Open Roberta is to overcome technical challenges by
providing an open, fully web based programming environment for teachers
and students alike that can be used directly in the web browser at home or
in the classroom. The presented software - the Open Roberta Lab consists
of visual programming tools for the development and connection of real
educational robots without long-winded system installations, preparation
tasks or technology getting in the way. A further technical aspect of the
paper is the introduction of the NEPO® meta programming language as an
essential part of the Open Roberta Lab.

Introduction and the Roberta approach

Constructing and using robots for programming is an ideal tool to
communicate knowledge that is important for understanding technical
problems. Researchers and developers have done a competent job since the
first inception of classroom turtle programming back in the 1970’s
(Feurzeg, 2006), (Papert, 1980). Kelleher and Pausch (Kelleher and Pausch,
2005) have already worked out that Educational robots are highly
motivating for boys and girls hence keeping this motivation on a high level
for children and for teachers is essential. By designing, constructing,
programming and testing mobile robots, children learn the basic concepts
of today’s technical systems. But it also pertains to philosophical questions,
such as those concerning intelligence and autonomy of artificial systems.
By working with robots, kids & co learn to interact with sensors, actuators
such as motors, software programs in a very playful way (Kelleher and
Pausch, 2005). Educators call for making computer science a cornerstone
of the curriculum, even for grade-school kids (Tucker, 2003).

Much earlier than many other coding projects like Girls who code (founded
20121), Ladies learning code (founded 20112) or Women who code
(founded 20113), Fraunhofer IAIS started an initiative called Roberta to

http://www.lom.dk

engage and motivate especially young girls to take a sustained long-term
interest in science, technology, engineering and math (STEM - acronym
referring to the academic disciplines of science, technology, engineering
and mathematics). Different studies conducted during the project period
from 2002 to 2008 reveal that the Roberta concept also promotes active
participation of boys in STEM topics (Rethfeld and Schecker, 2006). For
more than fourteen years, Roberta especially targets the lack of engineers
in general but with a focus on female engineers in Germany and other
European countries by raising children interest in technical professions.
Heart and soul of this successful project are certified and trained Roberta
teachers that spread the word and help newbies as well as advanced users
to build and program robotic devices (Bredenfeld and Leimbach, 2010). To
participate at a basic Roberta-Teacher-Training no previous knowledge is
needed, but mostly the candidates have a didactically or technical
background. Two main objectives of the Roberta-Teacher-Training are:
Number one is to increase the emphasis of the teacher about gender-
sensitive course design. The second one is to provide a hands-on
introduction to the robots, the didactic material and the course concept of
Roberta (Wiesner-Steiner et al., 2005).

With more than 35.000 participating children and young people in over
600 documented courses each year, Roberta has become a permanent
fixture in the German education landscape. But the project has also been
successfully exported to other European countries within different funding
periods and/or sub projects (see for example "Roberta goes EU”
(Leimbach, 2009)). From crowd sourced generated course and hands-on
material, tutorials and edited books up to specific educational robotic kits
(based on LEGO) one finds everything needed to not just start to learn
coding but also to remain motivated and gain knowledge about ICT,
software development and programming, electrical engineering,
mechanics, physics and robotics (Wiesner-Steiner et al., 2007). These are
the main technical aspects of Roberta. Kids learn that designing,
implementing and the construction of technical systems is a creative
process that may be rather challenging, but fun and finally also rewarding
(Wiesner and Schelhowe, 2004). A further core element of Roberta courses
is teamwork. A group of two to three children work together with their
robot. This develops and strengthens self confidence by following the
System Design Engineering paradigm as mentioned in (Leimbach et al,,
2014a). Using robots like LEGO Mindstorms allows children to easily go
beyond hands-on in a variety of ways. Resnick names this the
constructionist approach. Students can try out things for themselves. M.
Resnick: "They do not simply manipulate physical objects, they construct
personally meaningful products” (Resnick, 1998). With the help of
educationally and technically adapted robots, even young children can

http://www.lom.dk

learn the basics of robot construction and programming in less than two
hours. By designing, constructing, programming and testing mobile,
autonomous robots, children learn how technical systems are developed
and that technology is fun.

During the last years computer platforms and available tools have changed
a lot (e.g. ubiquity, price, user expectations). Whereas many of today’s
educational robotic platforms and programming environments (with
hardware connections) have not yet adapted to these new user
expectations (e.g. easy to use, no installation hurdles, platform
independent, usable on the go or at home) as noted in (Jost et al.,, 2014).
Feedback from Roberta project participants certified a positive overall
impression (Leimbach et al., 2014b) but the lack of web based solutions,
ready for actual hardware connections have been named frequently as an
important factor for the acceptance of the project in the future. Open
Roberta, which has been started in 2013, is our open, platform independent
technological answer, that bridges the gap between real educational robot
hardware and today’s web browser. The remainder of the text is organized
as follows: The second section gives an overview of related work in the
educational robotic domain and sheds light on the advantages of visual
coding which is being used in the user interface components of the Open
Roberta programming tool called the Open Roberta Lab. The drawbacks
reported by the community section gives a resume on lessons learned over
the years from our participating network teachers. The main part of the
text introduces Open Roberta and the Open Roberta Lab technology, the
frequently asked successor of the Roberta project. The technical section of
this work is additionally introducing the meta programming language
NEPO®, which allows to translate and run code on robotic hardware
almost directly from any web browser. The paper concludes with
information regarding participation possibilities and future work.

Related work and the benefits of visual coding

Learning to program is difficult for newbies of all ages. In addition to the
challenges of learning to form structured solutions to problems and
understanding how programs are executed, beginning programmers also
have to learn a rigid syntax, command sequences, package and conventions
that may have seemingly arbitrary or perhaps confusing names. Today
programmers still continue to work with largely textual representations of
source code despite the fact that these textual representation cannot easily
convey the complex graph-based relationships between pieces of source
code across packages, online resources, local folders or foreign libraries
and code snippets. Tackling all of these challenges simultaneously is
overwhelming and often discouraging not only for beginning programmers.

http://www.lom.dk

The Visual Programming Paradigm has been around for several decades -
since the early 1960’s, researchers have built a number of programming
languages and environments with the intention of making programming
accessible to a larger number of people. Definitions of visual languages
have taken many approaches. Some have taken a formal mathematical
approach to defining a visual language (Chang et al., 1986), (Halbert, 1984).
One can summarize positive attributes such as a better user experience
(Booth and Stumpf, 2013), an easier entrance to programming paradigms
(Powers et al.,, 2006) and they are helpful to prevent typical syntactical
errors due to the idea that the syntax of the statements is already
implemented into the visual shapes of the statements (Kelleher and Pausch,
2005), (Rosenbaum et al., 2010). Graphical programming and iconic
language representations are available since the release of the Sketchpad
system from 1963 (Sutherland, 1964). Other early examples can be found
in work from (Hirakawa et al., 1988), (Kozen et al., 1987), (Pong and Ng,
1983). In (Boshernitsan and Downes, 2004) the authors further mention
the genesis of the Pygmalion system (Canfield-Smith, 1975) as one of the
first icon-based programming systems, in which the user created, modified,
and linked together small pictorial objects (icons) with defined properties
to perform computations. Later examples are PICT (developed by Glinert
(Glinert, 1985)) and Prograph from 1983 (Cox and Mulligan, 1985) or Blox
in 1986 (visual programming language made up of puzzle-like pieces that
fit together)(Salvendy, 1987). We also saw iconic languages in data
processing and electronics with LabVIEW since the beginning of the 1980’s.
In the mid 1990’s we had Simulink (Matlab) for data processing. In
education, Alice, eToys, Squeak and later Scratch were providing visual
block programming in the late 1990’s. Also to mention sprite characters for
animations were already in use in Atari game consoles or the Commodore
C64 in the 1980’s and before. By the early 2000’s LEGO also shipped the
first version of a visual block programming tool with their Mindstorms kits
for educational robotics. The similarity of appearance between multiple
visual programming interfaces today is the natural outcome of what
development, user experience and user interface teams have collectively
learned that works well from over 50 years of exploration in that space. In
recent months many previously mentioned visual coding elements and
concepts are being adapted to online platforms, web tutorials and
educational platforms, but they focus mainly on online simulations of
interactions and provide no connection to and feedback from actual
hardware. We have seen a great number of activities directed at engaging
people of all ages into computer programming. For example, The Hour of
Code (Wilson, 2015) has organized more than 70 thousand events
worldwide, and has been tried by over 95 million people, from elementary
students to heads of state. Another prominent example is Code.org (Wilson,
2013). The online platform is a non-profit foundation dedicated to growing
computer science education and provides free online tutorials that anyone

http://www.lom.dk

can try in a few minutes without deep knowledge. Further projects that are
targeting the STEM domain in a playful way and that support self directed
learning with online resources are for example: Codeacademy4, Scratch5,
Code School6, Programr?7, Blue]8, Codelearn, CodeAvengers, CodeAbbey,
Codecakes and many more. But also on the frontier of educational
hardware we have seen many new achievements since the inception and
success of the LEGO Mindstorm robots. Figure 1 on page § depicts an
overview of available educational robotic systems.

Out of the box Assembly Kits Crowd funded robots

B LEGO MNOSTOR o
— Fischerte -
-] O o
® C o
[o
C] @ Rot
mR T 5] 4 -]
@y & ATO o
Uttimate Rok Blue @s
@ Kingeran 7 © heccano becanoid @ o
(3] Home 9 vExo @ | <
€ Bectol @ B o @ B
© Ubooly @ Hexbug Vex Robotks @ o
@V] ® | o
- 14 - -
@ pa B
— Self-build and Microboards @B
© sat e ’ w
Humanoid oA
) o N
= « o
© H P 3D printed robots
© DA
O K ATO1 B a
o # o
h @4 OE
@) o
s ¢
b *

$ Diddys -

Figur 1. Overview Educational Robots®

Many of them rely on visual programming concepts to attract and motivate
newbies of all age and their success proves them right. The listing includes
Out of the box systems, Assembly kits, Crowd funded robots, Humanoid,
Self-build and microboards or even 3D printed robots.

Drawbacks reported by the community

Most new students have no particular interest in programming. We have
about 20 seconds to engage them before they get bored and wander off to
play video games. Every barrier to entry (installing Java, or a slow
download, or learning English, or a messy Ul) represents a significant loss
of audience. Nowadays interdisciplinary teaching is the way teachers
promote the school children’s technical competence. These teachers are
not necessarily math, physics or computer science experts. Quite often they
are responsible for different school subjects or are primary school
teachers. Certainly some of the interested teachers already know how to
interact successfully with different (education) robotic platforms,
programming languages and corresponding coding environments but there
is a significant amount of teachers without basic knowledge. Issues that

http://www.lom.dk

arise quite often are technical preparation tasks like system installations
for manifold platforms, network/device setup issues, firewall restrictions
and/or huge required software downloads (not allowed) before they even
can start teaching. Another reality is that technical staff is limited or
oftentimes completely missing at schools (responsible administrator).
Moreover there is a mixture of old/new computer systems, operation
systems and available tools and devices. Closed source systems and
exclusive software vendors are also of strategic long term concern. Many
schools have started to focus on using tablet devices convinced to reduce
the administrative overhead. But this technical changeover does not play
well with the current status of available educational robotic environments
as noted in (Jost et al., 2014).

Since the inception of Roberta back in 2002 the project and partners were
using different programmable LEGO robots and integrated development
environments (IDEs) over the years. Integrated development environments
are referring to software programs and runtimes that provide
comprehensive facilities to computer programmers for software
development on a target computer. Table 1 on page § depicts a time
overview of used educational robotic systems, IDEs and supported
platforms used by Roberta participants.

Until 2013 the Roberta initiative used only the proprietary LEGO
Mindstorms NXT/EV3 IDE software that is available on Windows PC or
Mac. Roberta teachers had to install the software and the required license,
drivers and updates as needed. They also needed to make sure that
computers and the software are functioning properly before each class.
Oftentimes this was reported as a complete showstopper and a barrier of
entry for many teachers since maintaining software and providing PC
support is a job they are often not comfortable with.

Several different environments are being offered in the context today. In
most cases they belong to or are designed for a specific robotic system. In
(Jost et al, 2014) we took a closer look at available (educational) robotic
IDEs and involved programming/coupling merits and pitfalls - Systems
under evaluation in this study: Enchanting10, EV31 (The LEGO Group,
2014a), GRAPE (Enderle, 2009), miniBloq (Rahul et al., 2014), ROBO pro
(Fischertechnik GmbH, 2014), NXT-G (The LEGO Group, 2014b), RobotC2
(Robomatter, 2014), RoboMind11, Ardublock (Vandevelde et al., 2013).

http://www.lom.dk

Platforms

L >
St % § %] o)
DE S §= = < ~ Programming Robot
= =

RIS 2002 X - - - Event based RCX

NQC 2004 X X X - Procedural RCX
based on C

NXT-G 2006 X - X - Dataflow NXT
based on Lab-
VIEW

NXC 2007 X - - X Procedural NXT
based on C

EV3-G 2013 X - X - Dataflow EV3,
based on Lab- NXT
VIEW

leJOS 2006 X X X - Object RCX,
oriented based NXT,
on Java EV3

NEPO 2014 X X X X Procedural EV3,
based on Java others

planned

Table 1: History of supported educational robotic hardware, IDEs and
supported platforms in Roberta.

These commonly used graphical robot programming environments provide
IDEs for multiple computer platforms and operation systems and also
present graphical programming alternatives in addition to a pure code
based representation to users. Certain robot hardware can be connected
and user generated programs can be downloaded from the computer
desktop IDE to the attached robot device. To choose the right one out of
them for a specific school or learning task is not easy. A lot of questions
have to be answered before a decision for a system can be made. Like for
example: What computer systems do we use and maintain? Is the software
available for our operating systems? Who can do the installation for one or
more classrooms? What do we have to pay? How long will this system be

http://www.lom.dk

supported? How do we select the right target robot hardware (e.g. costs,
stability)? How do we interact with the robots, taking administration
restrictions at our school into account? Manifold educational robotic
system have been invented or enhanced during the last years. But did they
really take into consideration what teachers, the main multipliers, really
need - especially in the classroom?

Roberta teacher training is being evaluated regularly in order to improve
the program and adjust to changing demands. Results can be found in
(Leimbach et al., 2014b). Based on these user surveys and additional
community feedback the ideal system infrastructure needs to support the
following features: Visual graphic programming support with a switch-over
to see the actual text based code representation, fully web based with
possibilities to run the infrastructure remotely or independently on a local
school server or single computer, connections to robots should be easy (e.g.
wifi, Bluetooth) and it should not be restricted to a certain vendor. The
technical complexity like compilation and program preparation should run
in the background (transparent for the technophiles), price sensitive (or
free) in order to allow schools to easily join, test and participate as a
individual or as a group (school class). Currently this demand can’t be fully
satisfied by available tools, frameworks and out of the box development
kits (Jost et al.,, 2014). In summary one can say that it is important to lower
the installation complexity by providing generic open tools that build upon
concepts and ideas people are already familiar with (e.g. web browser)
which can be used across platform borders and devices. The pure focus on
a single educational robotic platform is also somewhat outmoded taking
the current fluctuation and availability of smart computer toys into
account. These are the reasons why we have started Open Roberta, the
successor of Roberta and the Open Roberta Lab technology platform as
explained in the following sections.

Open Roberta

The Open Robertal2 community project is open to all interested
institutions and individuals including commercial providers. It was
initiated together with Google13 in 2013. It is centered around the
frequently asked technology enhancement of the Roberta - Learning with
Robots initiative which targets all issues reported from the Roberta
community and aims at bringing educational robotic programming to the
next level. The authors of this work are actively involved in the system
design, architecture and software development but also steer and maintain
teacher qualification, project planing and community engagement. The free
to use and open source based Open Roberta Lab is the name of the
technical build of the Open Roberta community. The created software is

http://www.lom.dk 10

free available and can be downloaded at GitHub14. This includes technical
descriptions and HOWTOs. Updates have been releases frequently since the
beginning of the project and we have seen contributions from external
individuals and groups.

Open Roberta Lab

The Open Roberta Lab is the connection to the user. The online
programming environment Open Roberta Lab enables children and
adolescents to visually program real robot hardware directly from the web
browser or by using the build in online robot simulator. As a cloud-based
application, the platform can be used without prior installation of specific
software but runs directly in any modern browser, independently of
operating system and device. This enables beginners to seamlessly start
coding without deeper technical knowledge. The program compilation and
machine code preparation is handled completely on the server side (see
section 6 on page § for further explanation). It is important to mention that
the server can be installed locally or in a closed classroom environment
without any dependency to outside internet network connection if needed.

Figur 2. The Open Roberta Lab used by kids in a classroom

The user facing applications running in the browser are implementing
lessons learned from our Roberta network and follow design
recommendations from various groups and researchers (e.g. (Teague,
2002), (Kelleher and Pausch, 2005), (Praf3], 2006), (Zimmermann and
Sprung, 2008), (Sprung et al., 2010)) regarding technology (HTML and
JavaScript), look and feel (Web 2.0), wording (easy language with
additional help texts and pictures) as well as features (e.g. user awareness,
program sharing, social coding) tailored to our intended target group. The
user interface incorporates programming technology based on the
frequently used Blockly project (Marron et al,, 2012). We have chosen
Blockly to not have to do everything ourself and benefit from new features

http://www.lom.dk 11

on the user interface side. Our development team is in ongoing discussion
for the best possibility to return parts of our extensions (as described in
sections 6, 7) back to the Blocky members. First available Open Roberta
Lab software releases enables its users to program LEGO Mindstorms EV3
robots in the browser. A variety of different graphical programming blocks
extend the feature set of Blockly by providing mechanisms to interact with
motors, sensors and the core of LEGO robots, the EV3-Brick. Upcoming
software releases are aiming at a broader online programming support for
additional educational hardware (like robots, toys, etc.). Figure 3 on page §
depicts the web part of the software running in the browser.

eoe @ =) lab.open-roberta.org 5 h 8 ©

’T

o 0 N =P (O]

PROGRAM NEPOprog ROBOT CONFIGURATION EV3basis

Sensors

Contol J e

logic J Q get Port (12| EE2

E With this as a first block — pe

starts your program. All the
other blocks that are
connected are processed
sequentially.

Variables Additionally, you can add variables by
clicking on the plus. All variables that are
'declared' hear are global. Values can be
stored in the variables and later used in

111}

E]
g
g
g

Figur 3. Open Roberta Lab in the web browser

The Lab provides platform features like user login, program saving/sharing
and easy hardware pairing over wifi or if no network is available with a
USB/Bluetooth connection. If no hardware is around there is also the
option of a basic robot hardware simulation that includes a
sensor/obstacle emulation. Before one can start programming and running
programs on a robot, he or she has to connect the hardware to the Open
Roberta Lab. Pairing is done with a session code shown on the robot
display (see figure 4 on page §) that needs to be entered into a dialog in the
Open Roberta Lab. As previously mentioned our first fully supported robot
device is the EV3 (part of popular LEGO Mindstorm set).

Do you recognize Roberta's eyes at the top right corner of your robots display?

This indicates that your robot is still connected to the Open Roberta Lab.

http://www.lom.dk

12

8.0 Roberta =
10.0.1.1
10.116.20.204
Open Roberta Lab

g0@e=g

Figur 4. EV3 Menu with 'Hello Roberta’ and active server connection

Introduction to programming with NEPO

NEPO is how we call our graphical programming language along with its
hardware connection layer. It is an open source meta programming
language that can be used in the Open Roberta Lab. NEPO translates to
'New Easy Online Programming’. The visual appearance and usability ideas
follow well known concepts implemented by tools like Scratch (Resnick
etal., 2009) or Blockly (e.g. (Marron et al., 2012)). NEPO eliminates the
syntax and logic battle and lets kids focus on the logic behind conditionals,
loops, variables and other core concepts without worrying about
unbalanced parenthesis or missing semicolons. A major extension is the
creation of visual blocks that map to features that robotic hardware really
is capable of. The Open Roberta language supports event based procedural
and object-oriented programming by assembling graphical objects. These
object shapes only allow a certain connections of elements and prevent
typical syntax errors. Different levels of experience hide/show features for
newbies or advanced users are available. This includes also user centered
keywords and an easy language close to natural speaking.

The most prominent extension and difference to other visual programming
solutions that target educational robotics, coding initiatives or browser
programming environments is that NEPO does not stop in the browser. The
NEPO code will be compiled to a code that can be directly run on the target
robot. A NEPO block always represents and encapsulates a certain robot
functionality. Features can easily be recognized through the associated
block category, for example >>sensors<«. Blocks are being interconnected
and will be executed by the robot according to their order. Only blocks that
are successfully connected are executed in the program. Depending on the
mode of a block, the number of the connectors and possibilities may vary.
Some attributes of NEPO blocks exemplified below:

* Start Programming - Each program has a predefined starting point.
This is the red "program-start” block, which is always available and
indelible.

http://www.lom.dk

forwards

13

BlE]

* Type Safety - Generally all parameters and variables belong to a

specific data type. Therefore the user has to declare the type before E e
the variable is used. Further the user can identify the type by the
color on the input and output connections.
* Color matching toolbox - recognize semantics by colors.
e =T
i
* One Click Expandable - Easily expand blocks if needed, e.g. extend do“
the if statement by applying several else if statements. Erat
do
else

Behind NEPO - the complete workflow from
block to code towards hardware

The beginning of the whole workflow is the graphical program defined by
the block sequence. The graphical blocks are JavaScript objects represented
in the browser DOM. Initially thDr.ey are based on a predefined XML
representation schema. Figure 5 depicts the pathway from a client block
over XML to the hardware abstraction part that translates the program
sequence to code suitable for the target robot.

HAL I

xvi =g 1axe A ast

Client Server

Robots

Figur 5. NEPO workflow: From client blocks to machine code

For further processing the created program is stored back into XML on
client side and send to the server if needed (e.g. to check against the robot’s
hardware description or to start the program on the robot). Once the XML
is available on server side a tree of Java objects is created by unmarshalling
the XML based on JAXB (Java Architecture for XML Binding). Therefore a
well defined XML schema for the representation has been developed. The
unmarshalling procedure can be reverted by marshalling Java objects back

http://www.lom.dk 14

to XML. A second tree, the Abstract Syntax Tree (AST) is created to add
additional information for the final code generation. As an example, class
visitors are added to each node of the AST to enable transformations to
JAXB by gathering the required class attributes or by checking semantics
(following the visitor pattern). The last step is the code generation itself.
This transformation can either be source code or compiled machine byte
code. For the EV3 system Java source code is generated out of the AST.
Depending on the type of robot it is also possible to apply a special
Hardware Abstraction Layer (HAL). With the HAL useful available libraries
can be bound to access the robots hardware features. In order to generate
executable EV3 programs the leJOS libraries15 are accessed from the HAL.
At the end of the workflow the generated code is compiled on server side if
necessary. The code is now ready to be executed on the robot. To receive
and execute code, the operating system of the robot has to provide the
capability to connect to the Open Roberta server to receive the program or
the binary. Different possibilities are mentioned in the next subsection.

le]JOS - one operating system ready to connect to Open Roberta

The operating system of the robot is generally the bottleneck of the
workflow. Ideally the robot is capable to connect via wifi to the internet,
thus to the Open Roberta server. This way of connection makes it possible
to easily exchange information, programs and commands between the
robot and the server. The stock EV3 firmware does not easily allow
modifications without flashing/overwriting the system. The alternative
open source 1leJOS16 operation system provides the required combination
of libraries and firmware to fit to our needs. Some of the educational robot
systems may not have access to the internet. For those devices it is still
possible to establish a connection to the Open Roberta server via Bluetooth,
USB, near field communication (NFC) or even audio. Figure 6 on page §
depicts the current used connection between the Open Roberta server and
an EV3 robot. Via an unique token, generated on the EV3 system, each
robot can be identified and allocated to the right client (user) session.

QFD I
N &

Figur 6. Open Roberta: Indirect connection from client to robot via the server

http://www.lom.dk

For the EV3 robot a slightly adapted le]JOS operating system was created.
Once the user has established a connection, programs and other commands
e.g. firmware updates can than be exchanged between the Open Roberta
server and the EV3 robot until the connection is stopped again by the user.
Figure 4 on page § depicts the Open Roberta icon on the right hand side. By
selecting this icon the robot tries to connect to the Open Roberta server via
HTTP. At the same time it generates a token which can easily be confirmed
in the web browser.

7.2 One concept useful for other robot systems and hardware

The previous section tried to explain that the underlying concept of the
Open Roberta architecture is open for code generation for many different
robot systems. Where common features can be reused, e.g. graphical blocks
for similar robot kinematics, the whole workflow can be adopted to
generate the specialized executable code for any other system. As an
exemplifying further idea from a foreign domain we’ve created an
extension of the building blocks and visual workflow capabilities of NEPO
that can be used by an automatic camera tracking systems to define special
target following behavior rules as described in (Wulff et al., 2015).

How to get involved

The created technology and its concepts are free to use for anyone and are
available as open source contribution17 released under the Apache
License, version 2. In a first step, the development team at the Fraunhofer
Institute for Intelligent Analysis and Information Systems (IAIS) reached
out to teachers, IT and education experts within the partnering Roberta
network as well as to universities and their students to involve them in the
development work. In the ongoing second step, the open source
community has been opened to all interested parties and programmers. By
doing that Roberta still follows its main mission namely the encouragement
of female newbies in order to help them becoming role models for the next
generation of programming experts.

http://www.lom.dk

16

U} # Edit © Watch [2 Share & Tools

Open Roberta Wiki

Created by Markus Ketterl, last modified by Bording, Josef on Jul 15,2015

Hil

Here we will give you all the information necessary to work with our Open Roberta Lab. Right now only
the EV3 set up is available in English. We are working very hard to add all the other information as
soon as possible.

General Info: Information about Open Roberta Lab and about our Robeta-EV3-Firmware (based on
leJOS).

EV3 set up: Description of what is needed to get your EV3 robot started with Open Roberta Lab.
Programming: Description of our programming languague NEPO®.

FAQ: Here you find all questions aksed so far - and also questions we aked ourselfs. Tips, questions,
hints, or improvements are always welcome! Just write an email to Roberta-Headqua or join our

Figur 7. Open Roberta Wiki

The programming platform Open Roberta Lab18 is online available for
tests and for usage feedback reports. Additional information, tutorials, tips
and developer instructions are available in the user wiki19 as shown in
figure 7.

Conclusion and Future Directions

The article presented Open Roberta, the successor project which arose
from the Roberta initiative. Essential parts of Open Roberta are the meta-

programming language NEPO as well as the cloud based Open Roberta Lab.

The OR Lab is intended to be an open source online programming platform
for pairing with different educational robotic systems and additional
hardware.

Our current work focuses on an extension of the abstraction layer to
further support additional intelligent (educational) toys and gadgets but
also to open the system for other use cases. Actually NEPO is biased
towards a conventional imperative language. From that "compatible” Java,
Python or C code is generated. But there are other great paradigms that fit
well to robot programming. One example from the field of real-time
languages are synchronous programming languages (like Esterel, Lustre).
They support parallel programming without threading, priority based
scheduling among other. Code generation is reminiscent of creating
hardware circuits. Adding constructs of these languages as blocks to NEPO
is an demanding exercise in compiler construction. If you are coding a
program it is very helpful to have dubbing functionality.

Within Open Roberta we are looking for a functionality which shows the

http://www.lom.dk

17

developers which (NEPO) programming block is currently activated and
running on the robot. This functionality needs an established and stable
connection between the robot and the Open Roberta Lab. Another
currently open field and option is social coding, user awareness and user
collaboration support in the platform (features that can also be switched
off by a teacher). We guess that this extensions might address sociological
barriers (including people not seeing the relevance of programming or
perceiving computer science as being a socially isolating career path) that
are harder to identify than technical difficulties.

Acknowledgment

Besides the members of the Open Roberta community and the Roberta
teacher network we would like to thank Google for their generous project
support.

thttps://en.wikipedia.org/wiki/Girls. Who Code
*http://ladieslearningcode.com/about/
Jhttps://www.linkedin.com/company/women-who-code
*https://www.codecademy.com
*https://scratch.mit.edu
*https://www.codeschool.com
Thttp://www.programmr.com

Shttp://www.bluej.org
*https://educational-robots.zeef.com/roberta.roboter0
Dhttp://enchanting.robotclub.ab.ca/tiki-index.php
Uhttp://www.robomind.net/en/
Bhttp://www.open-roberta.org

Bhttp://9to5google.com/2014/11/04/googles-open-roberta-project-is-
teaching-germanys-youth-how-to-program-robots/

Yhttp://code.open-roberta.org
Lhttp://www.lejos.org
Lhttp://sourceforge.net/p/lejos/wiki/Home/
Uhttp://code.open-roberta.org
Bhttp://lab.open-roberta.org
Dhttps://wiki.open-roberta.org

http://www.lom.dk

18

References

Booth, T. and Stumpf, S. (2013). End-user experiences of visual and
textual programming environments for arduino. In Dittrich, Y., Burnett,
M., Mgrch, A., and Redmiles, D., editors, End-User Development, volume
7897 of Lecture Notes in Computer Science, pages 25-39. Springer
Berlin Heidelberg.

Boshernitsan, M. and Downes, M. S. (2004). Visual programming
languages: a survey. Technical Report UCB/CSD-04-1368, EECS
Department, University of California, Berkeley.

Bredenfeld, A. and Leimbach, T. (2010). The Roberta Initiative. In in
Workshop Proceedings of Intl. Conf. on Simulation, Modeling and
Programming for Autonomous Robots (SIMPAR 2010, pages 558-567.

Canfield-Smith, D. (1975). Pygmalion: A Creative Programming
Environment. PhD thesis, Stanford, CA, USA. AAI7525608.

Chang, S., Ichikawa, T., and Ligomenides, P. (1986). Visual languages.
Management and information systems. Plenum Press.

Cox, P. T. and Mulligan, 1.]. (1985). Compiling the graphical functional
language prograph. In Proceedings of the 1985 ACM SIGSMALL
Symposium on Small Systems, SIGSMALL ’85, pages 34-41, New York,
NY, USA. ACM.

Enderle, S. (2009). The qfix Robot Kits. In Gottscheber, Achim and
Enderle, Stefan and Obdrzalek, D., editor, Research and Education in
Robotics — EUROBOT 2008, pages 84-95. Springer Berlin Heidelberg.

Feurzeg, W. (2006). Educational technology at bbn. IEEE Annals of the
History of Computing, 28(1):18-31.

Fischertechnik GmbH (2014). ROBO pro.

Glinert, E. P. (1985). Pict: Experiments in the Design of Interactive,
Graphical Programming Environments (Iconic, Programming
Languages). PhD thesis. AAI8508052.

Halbert, D. C. (1984). Programming by Example. PhD thesis. AAI8512843.

Hirakawa, M., Iwata, S., Tahara, Y., Tanaka, M., and Ichikawa, T. (1988). A
framework for construction of icon systems. In Visual Languages, 1988.,
IEEE Workshop on, pages 70-77.

Jost, B., Ketterl, M., Budde, R., and Leimbach, T. (2014). Graphical
programming environments for educational robots: Open roberta - yet
another one? In Multimedia (ISM), 2014 IEEE International Symposium
on Multimedia, pages 381-386.

Kelleher, C. and Pausch, R. (2005). Lowering the barriers to
programming: A taxonomy of programming environments and
languages for novice programmers. ACM Comput. Surv., 37(2):83-137.

http://www.lom.dk

19

Kozen, D,, Field, ., Chen, W., and Teitelbaum, T. (1987). ALEX : an alexical
programming language. Technical Report TR-87-0835, Cornell
University (Ithaca, NY US).

Leimbach, T. (2009). Roberta goes EU. Technical report, Fraunhofer IAIS.

Leimbach, T., Jost, B., Petersen, U., Bording,]., and Hartig, S. (2014a).
Roberta-Grundlagenband EV3. Fraunhofer Verlag, Stuttgart, Germany.

Leimbach, T., Jost, B., Petersen, U., Bording,]., and Hartig, S. (2014b).
Roberta-Grundlagenband EV3. Fraunhofer Verlag, Stuttgart, Germany.

Marron, A., Weiss, G., and Wiener, G. (2012). A decentralized approach for
programming interactive applications with javascript and blockly. In
Proceedings of the 2Nd Edition on Programming Systems, Languages
and Applications Based on Actors, Agents, and Decentralized Control
Abstractions, AGERE! 2012, pages 59-70, New York, NY, USA. ACM.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

Pong, M. C. and Ng, N. (1983). Pigs—a system for programming with
interactive graphical support. Software: Practice and Experience,
13(9):847-855.

Powers, K., Gross, P., Cooper, S., McNally, M., Goldman, K. ., Proulx, V., and
Carlisle, M. (2006). Tools for teaching introductory programming: What
works? SIGCSE Bull,, 38(1):560-561.

Praf3], M. (2006). FEMUIS - Frauen und User Interfaces. Diplomathesis, FH
JOANNEUM Gesellschaft.

Rahul, R., Whitchurch, A., and Rao, M. (2014). An open source graphical
robot programming environment in introductory programming
curriculum for undergraduates. In IEEE International Conference on
Innovation and Technology in Education (MITE), pages 96-100.

Resnick, M. (1998). Turtles, termites, and traffic jams - explorations in
massively parallel microworlds. MIT Press.

Resnick, M., Maloney,]., Monroy-Hernandez, A., Rusk, N., Eastmond, E.,
Brennan, K., Millner, A., Rosenbaum, E,, Silver,]., Silverman, B., and Kafai,
Y. (2009). Scratch: Programming for all. Commun. ACM, 52(11):60-67.

Rethfeld,]. and Schecker, H. (2006). Evaluationsergebnisse zum projekt
roberta - madchen erobern roboter. In Lehren und Lernen mit neuen
Medien., pages 114-116.

Robomatter, I. (2014). ROBOTC for LEGO MINDSTORMS.

Rosenbaum, E., Eastmond, E., and Mellis, D. (2010). Empowering
programmability for tangibles. In Proceedings of the Fourth
International Conference on Tangible, Embedded, and Embodied
Interaction, TEI '10, pages 357-360, New York, NY, USA. ACM.

http://www.lom.dk

20

Salvendy, G., editor (1987). Cognitive Engeineering in the Design of
Human-Computer Interaction and Expert Systems, Proceedings of the
Second International Conference on Human-Computer Interaction,
Honolulu, Hawaii, August 10-14, 1987, Volume 2. Elsevier.

Sprung, G., Zimmermann, L., Strohmaier, R., and Nischelwitzer, A. (2010).
Touch::tell:it tendencies and consequences for the usage of educational
programming languages. In EDULEARN10 Proceedings, 2nd
International Conference on Education and New Learning Technologies,
pages 2445-2451. IATED.

Sutherland, L. E. (1964). Sketch pad a man-machine graphical
communication system. In Proceedings of the SHARE Design
Automation Workshop, DAC '64, pages 6.329-6.346, New York, NY, USA.
ACM.

Teague, J. (2002). Women in computing: What brings them to it, what
keeps them in it? SIGCSE Bull., 34(2):147-158.

The LEGO Group (2014a). LEGO® MINDSTORMS® Education EV3-
Software.

The LEGO Group (2014b). LEGO® MINDSTORMS® Education NXT
Software 2.1.6 (inkl. Messwerterfassung).

Tucker, A. (2003). A model curriculum for k-12 computer science: Final
report of the acm k-12 task force curriculum committee. Technical
report, New York, NY, USA. ACM Order No.: 104043.

Vandevelde, C., Saldien,], Ciocci, C., and Vanderborght, B. (2013).
Overview of technologies for building robots in the classroom. In
International Conference on Robotics in Education, Proceedings, pages
122-130.

Wiesner, H. and Schelhowe, H. (2004). Handlungstragerschaft von
robotern: Robotik zur forderung von chancengleichheit im schulischen
bildungsbereich. In Fachzeitschrift fiir Mentoring und Gender
Mainstreaming in Technik und Naturwissenschaften. ADA-MENTORING.

Wiesner-Steiner, A., Schelhowe, H., and Wiesner, H. (2007). The didactical
potential of robotics for education with digital media. IJICTE, 3(1):36-
44,

Wiesner-Steiner, A., Wiesner, H., and Schelhowe, H. (2005). Technik als
didaktischer Akteur. Robotik zur Férderung des Technikinteresses.
Hochschulinnovation: Gender-Initiativen in der Technik.

Wilson, C. (2013). What's up next for code.org? Computer, 46(8):95-97.

Wilson, C. (2015). Hour of code: Maryland, washington and san francisco
move to support computer science. ACM Inroads, 6(3):14-14.

Wulff, B., Wilson, A., Jost, B., and Ketterl, M. (2015). An adopter-centric api
and visual programming interface for the definition of strategies for
automated camera tracking. In Multimedia (ISM), 2015 IEEE

http://www.lom.dk

21

International Symposium on Multimedia, pages 587-592, Miami,
Florida, USA.

Zimmermann, L. and Sprung, G. (2008). Technology is female: How girls
can be motivated to learn programming and take up technical studies
through adaptations of the curriculum, changes in didactics, and
optimized interface design. In iNEER (Ed.), editor, International
Conference on Engineering Education (ICEE).

http://www.lom.dk

22

