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Upon arrival of an order, a decision whether to accept or reject it is
made in light of the load and capacity of the shop and some crude estimate
ol the processing time of the prospective job at various machines. 11 ac-
cepted, a due date will normally be set. The cusomer’s requirements are
given mainly in functional terms and are transformed by the engincering
department into a set af structural propertics, laid down in product speci-
fications (bluc prints, specifications for material, tolerances)')., Then,
in order to find out what has to be produced, the inventory is checked, and
it is determined furthermore what to procure from outside the company.
For the parts to be produced we now determine the process specifications,
which involve identification of the operations, their technological ordering,
and the estimated processing time at the capable machines. Then, cither a
shedule s made, whereby the time for dispatching the job is calculated,
or the job enters the job shop immediately after a priority has been as-
signed to the job or individual operation.

Arrivals T . Pl.‘cfdmft Ll
of o Lt Specifications. Check.
Orders cject.
— L
What 1o procure
Due Date Blue Prints, and 1o produce,
is set. Tolerances, ete. Baich size.
¥
*
Process Scheduling. Dispatching
Specifications,
- >
Techuological
Ordering, Pro- Assigning
cessing Time. Prioritics.

— Job Shop =2

Fig, 1. Adiminstrative Steps before the Processing of a Job.,
j4 | g

Iy As an example, let the order be for a water pump. The relationship between the
flow and the height of the water is to be lifted will be one of the functional propertics
of the pump. On the other hand, the dimension of the rotor, the number of blades,
and the type of bearings are structural properties of the pump.



251

[t ought to be mentioned that only a part - although the most important
onc — of what 1s going on in a job shop has been discussed here. Such
functions as the procurement of raw material and finished parts, or the
hiring and traning of the labor force do in fact influence the scheduling.
But, as will become apparent later, the part we have described will give
rise to so many complex problems that further complications will make
significant results even more distant. Figure 1 summarizes the steps that
a job will go through before the processing can start.

The Structure of Problems.

An insight into the nature ol the problems encountered can be derived
from the description just presented. Job shop scheduling is not merely a
question of performing a large number of independent functions., They
are highly interrelated and vary with respect to their scope and to the
skills required to carry them out. Therelore, the interrelationship ought to
be studied in the context of an organization. With these thoughts in mind,
we shall state some of the most important problems and classify them ac-
cording to their level in the organizational hierarchy.

Let us bricfly introduce the notion of an administrative unit (dccision
center in an organization. The purpose of such a unit is to control either
another administrative unit or a productive unit. As is indicated in Figure 2
the administrative unit receives information about the state and output of

—_— Productive Unit

Fig. 2. The Relationship betmeen an Administrative and a Productive Uni.

the productive unit that it is supposed to control. In addition to this dircct
fecd-back, the unit will receive indircct information about decisions made
in other administrative units or outside the company. A part of this infor-
mation is transformed into directives or decisions for the productive unit.
Another part of the received information may result in an internal decision
about revision of the decision model or its paramelers.
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[n a large organization we will find many administrative units, some
of which will form a hicrarchy of decision centers. For problems 1o be
solved in a job shop we may conceive of the following hicrarchy:

a) Long Term Problems Scope: More than once year.

Content: 1. Rescarch and development of know-how in designing
and processing certain types of products (jobs).

2. The number and type of machines.

3. The number of permanently employed workers and their
skills.

bl Short Term Problems. Scope: Less than one year.

Content: 1. Identification of operations and their technological or-
dering.

2. What to buy from the outside, what to produce, and in
what quantities (batch size). Production smoothing.

3. Whether to accept a job, and the setting of due dates.

c) Ultra Short Term Problems. Scope: Less than one or two weeks.
Content: 1. Dispatching of jobs.
2, Assigning priorities (o jobs and operations.

3. Allocation of the machines and the work force (within
certain limits).

The relation between the three levels of problems has been conceptualized
i Figure 3. The decisions are indicated by a loop, because the decision
center (a) may like to discuss with center (b) before final decisions are
issucd. As we come down the hierarchy, the decisions, as well as the feed-
back from the productive unit, become more frequent and specilic. For the
administrative unit (c¢), the feedback may be received several times a day,
while the input to the decision center for the long term decisions may be
received only once a month or even more seldom. It may be seen from
the figure that the time, which clapses from an order is initiated and until
a leedback is received, is very short for (c), while the lenght of a cycle for
(b) and (a) is considerably longer. Due to this fact the problems at level
{a) must be solved to a large extent by means of indirect information.
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Iig. 3. The Hicrarchical Structure of an Organization,

The problems associated with job shop scheduling as presented above have
been defined in much broader terms than the traditional definition of the
job shop problem as that of scheduling N products through M machines
in the shortest possible time. In practice this traditional scheduling prob-
lem may not be conceived of as the most essential problem because the
environment of the job shop has responded to the way in which the sched-
uling function is carried out. For example, by negotiating with customers,
the management may get the delivery dates so far in the future that con-
siderable smoothing of the work is possible. Thus, the shop will be able
to meet almost all due dates. Based on his past experience which includes
visits to various manufacturing plants, W. F. Pounds®) concludes: “The
*} Pounds, W. F.: The Scheduling Environment, p. 7, Chapter 1 of Industrial Sched-

uling, J. F. Muth and G. .. Thompson [(eds.), Englelood Cliffs, N. ].: Prentice-
Hall, 1963,
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job-shop problem is not recognized by most factory schedulers because
for them, in most cases, no scheduling problem exists. That is there is no
scheduling problem for them because the organization which surrounds
the schedulers reacts to protect them from strongly interdependent se-
quencing problems.”

Pounds clearly points out that not only should the problem be defined
in a larger context, but also it should be addressed to decision-makers who
hold higher positions in the organization than do schedulers. The hierarchy
of problems discussed above will indicate the appropriate level of the or-
ganization to which the problems should be addressed.

As an example, consider the long term problem of planning the manu-
lacturing facilities (problem a.2). The decision to acquire new machinery
cannot without loss be reversed within a short period of time. The man-
agement will have the option of influencing either the number and types
of jobs that arrive at the shop, or the capability of the machines, or both,
Whichever option is adopted, the management is faced with the problem
ol matching the incoming rate and technology of the jobs arriving at the
shop with the capability of the machines. The long term problem should
he addressed to the top management because it involves the future structure
of the whole shop.

Another example is the short term problem of determining a due date
for incoming jobs. This decision is ordinarily made in the sales depart-
ment, but must be based in part on the present and [uture load of the
shop. Since the company is committed to deliver the job at (or before) the
due date, the sales department has great influence on the amount of dif-
ficulty that the production department will encounter in its attempt to
mecet the due date. “The sales department — — — is protecting the schedul-
ing function from a scheduling problem when the department begins to
resist requests [or fast service.”™) Since the sales department primarily is
concerned with accepting as many orders as possible, it will ordinarily
be in conflict with the production department which will be interested in
minimizing the production costs, and hence keeping the number of rush
orders down. This problem, therefore, should be addressed to a managerial
level which includes both the sales and production departments, The
traditional formulation of the scheduling problem tends to over-emphasize
the scheduler’s problem of mecting the due dates, and not examine how the
due dates should be set in the first place.

The scheme discussed above has heen phrased in control theoretical

By o 8 op cin footnote 2.
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terms. It has become apparent that in order to find optimal solutions to
the problems at all three levels, or at least to establish appropriate guide-
lines for the decision to be made, it is necessary to obtain an estimate of the
transformation function, that for a given set of decisions transform the input
of the productive unit into completed jobs. Thus, we need a suitable
measure of the performance of the productive unit for each of the three
levels in the hierarchy of problems. The derivation of a method for con-
structing such appropriate descriptions and the analysis of their features
will be our main concern in this thesis. We shall return to this problem
after a brief review of the literature.

A Survey of the Literature.

The literature on job shop scheduling has mainly been occupied with
the problem of finding sequences of operations and jobs so as to optimize
a specified objective function, usually the total time for completion of the
jobs, or the extent to which due dates were met. The approach has been
[irst to solve the ultra short term problem, (c), with a given duc date,
batch size and given machines; and then hopefully to extend the model
successively to encounter the short term and long term problem, (a) and
(b).

The problem of making a schedule for a fixed number of jobs and
machines was [irst attacked theoretically by S. M. Johnson (1954), who
considered the case of two and three machines. If the jobs had to be
processed on all of the machines in the same order, Johnson showed that
the optimal sequence for one machine (minimizing the total processing
time) was the same for the other machines. Several authors have elaborated
on Johnson’s model, among others Dudek and Teuton (1964), who devel-
oped an algorithm which is based on combinatorial analysis. They assumed
that the jobs were processed in the same sequence for all the machines
(1. e. no passing of operations were allowed). Their mathematical formula-
tion “deals with minimizing of idle time accumulated on the last machine
to process each job.”

H. M. Wagner (1959) and later A. S. Manne (1960) made one of the
most significant theoretical contributions to the job shop scheduling when
they formulated the sequencing problem as an integer linear programming
problem.

In line with the search for [easible schedules of the LP-approach we

have the complete enumeration methods, proposer by B. Giffler and G. L.
Thompson (1960) and by J. Heller and G. Logemann (1962). In the
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former study a Gantt chart is used to describe the relationship between
the operations of the jobs. By means ol combinatorial analysis the number
of cases which must be studied can be reduced to a set of “active” sced-
ules, since it is shown that this set contains an optimal solution. A schedule
1s then selected from the set of active schedules at random (Monte Carlo
technique). Based on these results, Brooks and White (1965) developed
an algorithm which resembles a branch and bound technique.

Heller and Logemann states the problem in terms of lincar graphs.
Their algorithm “embodies a recursive method of considering the graphs
corresponding to technological ordering into one feasible schedule graph.”
‘The [easible schedules were generated at random.

The models mentioned above are all static in the sense that a fixed
number of jobs is to be scheduled, and that the objective function does not
take into account the jobs that are expected to arrive in the future, Thus,
it 15 dilficult to fit the formulation into the continuous situation that we
have presented.

A schedule is sought which simultaneously determines the sequence for
all the machines. This means that the problem basically is that of examin-
ing a vast number of combinations (schedules) and to select the one with
the best value of the objective function. The rapid increase in the dimen-
sions of any combinatorial analysis when the number of clements is in-
creased is a great hindrance to clfective use of the algorithms proposed,

Another approach is to determine in stages the sequence of jobs to be
processed on any of the machines. Then, only the operation to be per-
formed next is found at any given time. The transformation of the sched-
uling problem into a multistage-decision process requires that we deter-
mine criteria for selecting the next operation to be processed. Such criteria
arc ordinarily given by dispatching rules (priority rules). This suggests
a queuing approach, where each machine is considered as a server, and
the jobs are customers. Hence, a job shop may be viewed as consisting
of a set of individual queues interrelated by the technological ordering of
the operations of the jobs.

One of the most important theoretical results along this line was ob-
tained by R. C. Reinitz (1963). He suggested “that we look upon an order
as a member of a population of orders and evaluate the statistical properties
of the population as influenced by the parameters of the job shop”. In his
model the job shop consists of a number of independent quening systems
{one for cach machine-center), which are assumed to be in a statistical
steady state. Assuming that the distribution of arrivals as well as of the
service time are Poisson, Reinitz derives an analytical expression for the
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waiting time distribution (in terms ol inverse Laplace transforms). Un-
[ortunatcly, this indircct form prevents us from drawing any significant
conclusion about the waiting time distribution except in very trivial ex-
amples. Thus, the analytical expression serves merely as a means of com-
puting the distribution function for particular values of the parameters.

Reinitz’s work is signilicant in that he carries the analytical queucing
approach to the utmost extent of feasibility. Unfortunately, the results are
very complicated, in spite of the assumption of independence.

In view of the enormous difficulties encountered when an analytical
solution is sought, many researchers have resorted to the approach of
simulating the behavior of a particular job shop on a computer. A. J. Rowe
{1960) examined two types of decision rules: 1) Scheduling rules, which
determine the start date of a job considering the value of the job and its
expected completion time, and 2) Dispatching rules, which are aimed
at reducing the probability that a job will miss its due date. R. W. Conway
and W. L. Maxwell (1962) have worked extensively with various decision
rules for selecting a new operation to be procesed (sce also R. W. Conway
{1965 and W. 8. Gere (1966)). Simulation provides useful ideas for im-
proving many sequencing and scheduling procedures.

Although the theory of flows in networks (Ford and Fulkerson, 1962)
al the present cannot handle a network as complicated as a job shop, it
contains interesting aspects which may serve as guidelines for the direction
of our search for a new way of looking at a job shop.

Recently, Conway, Maxwell and Miller (1967) published an extensive
survey over the literature on scheduling as an attempt to organize the work
that has been done in this field. Tts bibliography contains over 200 ref-
erences.

T'he Basic Idea of the Thesis.

As was concluded in a previous section, the solution of each of the many
problems of job shop scheduling calls for an appropriate description of the
behavior of the shop. Such a description is to be determined in accord-
ance with the scope of the problem and its place in the hierarchy of prob-
lems.

Let us first discuss the question of measurement, which will help us
identify the core of the problem and suggest a new approach. When we
want to measure the behavior of a system, we seek symbols to represent
properties of the system, such that the symbols have the same relevant
relationship to each other as do the leatures of the system which we have
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represented. Conceivably, there are many ways in which we can measure
the performance of a system; cach way defines a degree of precision in
measurcment. When we increase the precision, we are able to take into
account more relations among our variables, and the description becomes
more and more specific. At the same time we are losing sight of the gen-
cral characteristics of the system. The more specific our description be-
comes, the less general interest can it attract, and the fewer general fea-
tures can be discovered. Thus, when attempting to add new clements o
the theory of job shop scheduling, we should more be looking for some
general properties, or invariants, of the job shop than search for features of
the system which are valid under very specific conditions only. With
respect to the previous approaches taken in job shop scheduling it may he
said that the emphasis has been on precision, perhaps without realizing
that it becomes more difficult to discover invariants of the system, when
the precision in measurement is increased. On the other hand, if we have
a small degree of precision, the invariants may be so general that they
appear to be trivial.

We conclude that we should try to approach the problem of obtaining
a measure of the behavior of the job shop from a more aggregate point
of view. This suggests, for example, that we seek the probability distribu-
tion function of a variable, rather than the values of the variable itsell.
However, there is a need for measures with various degrees of precision.
Due to the hierarchical structure of the problems and their different scopes,
the description appropriate for each type of problem will vary with respect
to the degree of accuracy. As far as the long term problems are concerned,
only very general characteristics of the job shop are required, such as the
overall capacity in the long run. On the other hand, the description suit-
able for the ultra short term problems ought to be so detailed that we can
measure any significant difference between various dispatching rules.

Unfortunately, it is not always possible to choose a level of accuracy
ad libitum, because the functional relations between the variables are given
only at a very detailed level. As far as the job shop is concerned, we shall
sce for instance that the dispatching rule requires very detailed information.
Hence, in order to obtain a description with a smaller degree of precision,
it is necessary to develop various means of aggregation.

In summary, we shall try to describe the job shop in as general terms
as possible, with the hierarchical structure and scope of the problems in
mind, and with an eye to the degree of precision necessary for representing
the functional relationship between the variables.
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The study falls in three major parts: 1) development of a mathematical
representation, 2) derivation of the long term features of a job shop, and
3) construction of a method for obtaining the dynamic propertics of a
job shop. In the following sections we shall briefly outline the content and
method of these parts.

A Mathematical Representation.

In order to obtain a formal language in terms of which the activities
of a job shop can be expressed, we have developed a mathematical re-
presentation. It relates functionally the state variables at -1 to the state
variables at ¢ and the new jobs arrived duing (£,t-1). Thus the represen-
tation is Markovian. It is noted that many of the state variables can be
expressed as Boolean variables which take on only two values: Yes or No;
[or example, at any given time a machine is either idle or busy; the
operations preceding a given operation have either all been completed or
not. Thus, the description relies heavily on Boolean operations, most of
which we have defined ourselves, and it focuses on two events. The first
event occurs when an operation has been completed, and the second event
indicates that a new operation may start its processing, because its pre-
ceding operations are [inished. The mathematical representation constitutes
a new way of looking at a job shop which has proveen useful in the anal-
ysis of the long term properties, and in the use of simulation. From a theo-
retical point of view the description is an interesting application of Boolean
algebra as a means of representing a complex system. The neecd for such
new approach was clearly pointed out by the extreme difficulties encoun-
tered when an attempt was made to extend queuing theory to the complex
system of a job shop, cfr, Reinitz (1963),

As an illustration of the idea of the representation let us discuss how
we can describe 1) the technological ordering, and 2) the event that the
technological requirements for an operation are met *),

For each job because of technological requirements there exists an order
in which the operations have to be performed. For example, a hole has to
be drilled before the bolt can be mounted; a chassis of a radio must be
made before the soldering of the wire can take place. This ordering of
operations can be represented by an “immediately precedes”-relation. The
interpretation of the statement that operation 7 immediately precedes oper-
ation j(i<€j) is that operation i must be completed before operation j can
1}y For o more detailed description see, ] O, Riis: “A Mathematical Representation

of a Job Shop”, submitted to the Journal of Operations Research Soctety of Amer-
ica.
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be started. Further, any given operation can be started, if and only if all
its immediate prodecessors have been completed.

Let there be N operations in the job shop. Then, in view of the “imme-
diately precedes” relation introduced above, the technological ordering of
the operations can be represented by an (NXN) incidence matrix, 4,
defined as follows
1, if the # operation

immediately precedes
the j operation,
0 otherwise.

A = {az} is (NXN), and aij =

The j" column of A will contain all operations that must be completed
before the j* operation can start. These are indicated by ones.

Let us introduce an incidence vector to denote the extent to which the
operations have been completed. Let Z(¢) be (NX1), such that

0, if processing of the i* operation
zi{l) = has been completed at time ¢,
1 otherwisc.

If all z:(¢) are equal to one, then no operation has ben completed yet.

We shall introduce another vector, X (¢), which will indicate whether
all the preceding operations have been completed, i. e, whether the tech-
nological ordering is satisfied. Let X(f) be (NX1), such that

0, if and only if the j* operation
can start at time ¢ (with respect
to the technological ordering),

1  otherwise.

x(l) =

xi(f) is a function of some of the z;(t), namely for the j's corresponding
to operations preceding the i operation. In order to express the relation-
ship between X () and Z(t) we shall define the product of an incidence
matrix and an incidence vector, Pyzy © Quet = Run, as follows

Rin=1{n); ri=p0qa@paOq® ...0pn0Oqy,

where @ is the Boolean product of two Boolean variables (equal to the
arithmetical product)

101=1; 1G0=0; 001=0; 000=0.
0 is the Boolean sum for two Boolean variables
1@1=1; 1©@0=1; 0®@1=1; 0D0=0.
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Having defined this particular operation © for matrices, and denoting
the transpose of A by 4’, X () can be related to Z(¢) in the following way
X(t) = AOZ(1). (1)
Hence, if the degree of completion for all the operations (1. e., Z(t)) is
known, we can obtain an expression for the extent to which the techno-
logical requirements are met, i. e, X(¢).
To prove (1), consider

() = a;OQz(t) DaOz(t) D ... @ an; O zx(t).

If the j*" operation is immediately preceded by operation 7, then ai = 1;
and if further the M operation has been completed, we have zi(t) = 0.
Hence, ai; @ zi(t) = 0. Since this holds for all i <€ j, and since aij © zi(#)
= 0, if ai; = 0, regardless of zi(¢), we have established a proof of neces-
sity.

The Boolean expression of xi(¢) i1s a sum of N terms. So, x;i(f) 1s zero,
if and only if all the terms are equal to zero. For 2<|<j (n not immediately
preceding j) ani = 0, and aw © zu(1) == 0, regardless of z.(¢). For i < j,
aij=1 and a; @ x(t) =0, if and only if zi(¢{) = 0. We conclude that
whenever xj(¢) = 0, the operations that immediately precede j have all
been completed. This concludes the proof of sufficiency.

Above we have developed an expression for the operation that may be
started as far as the technological ordering i1s concerned. However, the
machines may not be able to cope with these operations at time {. Hence,
the next step is to find an idle machine that is capable of processing a
particular operation for which the technological requirements are met
(i.e., xi(t) = 0). A matrix is introduced to represent the capabilities of
the machines with respect to processing a particular operation. Ordinarily,
the machine which can perform the processing the fastest is sclected. As
far as choosing an operation to be processed next on a machine, several
decision rules may be employed. To select the operation with 1) the smal-
lest processing time, 2) the highest value, 3) the carliest arrival time are
just a few of the many decision rules, all of which may be represented
by a priority matrix.

The state of the machines are indicated by an incidence matrix for the
operations currently being processed, and by a vector denoting the number
of time units before the processing is completed. By means of a series of
transformations (matrix operations) we produce a list of operations that
have been selected to start their processing at time f, and for which pro-
cessing time is available on the machines.
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With this result and knowledge of the new jobs just arrived we are able
to update the state of the machines and the operations. This means that
we can oblain an expression of the state of the job shop at time -4 1,
when we know the state at time ¢, and the new jobs arrived during
(6, £+ 1). The representation has thus been made Markovian, because
the state of the system only depends upon the input during the past time
unit and the state of the system one time unit earlier. By advancing the
time we can describe the proceedings of a job shop.

The Analysis of Stability.

The management of a job shop must mevitably be concerned with the
problem of whether the present value of the input will eventually lead to an
infinitely large queue size. Thus, it is important to determine the criteria
lor stability of a job shop.

The mathematical representation is used (o study the behavior of the
system over a long period of time. New variables are introduced expressing
the work load at cach machine, and the time-averages of these variables
arc derived. The analysis results in a theorem stating the conditions for
stationarity. In addition, it is shown that the incoming demand for pro-
cessing which yields a stationary system is independent of the technological
ordering of the operations. Besides revealing some interesting time-average
properties, the analysis provides a useful framework for studying the prob-
lem of stability from a more general point of view.

By means of the time-average analysis we can cxamine the clfect of a
particular sequence ol arriving jobs. This description may be generalized
by characterizing the new jobs in a probalistic sense. Hence, the incoming
demand for processing at the various machines is defined as a stochastic
process, and the concept of boundedness must then be defined in prob-
abilistic terms. A job shop is said to be stable if the distribution [unction
for the work waiting for processing tends to an honest distribution®). It was
possible to prove the following theorem

Theorem [: A job shop is stable, if the incoming demand forms a metri-
cally transitive and strictly stationary sequence of random
variables, and if the expected demand for processing is less
than one.

5y A vandom variable and its distribution function are said to be honest il the random

variable is almest everywhere finite. Let F{a) be the distribution function {or a
random variable. Then, Fia) is honest if F{a) — 1, as a = o¢. Sce for example

R. M. Loynes: The Stability of a Quene with Nen-Independent Inter-Arrival aned
Seevice Times, Camb. Philos. 58,3, 1962,
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In his classic paper Lindley (1952) proved that a single server system
was stable, if the input formed a scquence of independent and identically
distributed random variables, and if the expected input, EUj, is less than
one. This result was extended by Loynes (1962) to the more general case
where the input constitutes a strictly stationary sequence of random vari-
ables. Loynes also studicd a scquence of qucuing systems, proving that the
total system was stable if EU; <1 for all j.

In accordance with the results from the time average analysis Theorem 1
implies that the criteria for stability are independent of the technological
ordering of the operations. Hence, we do not have to know the technology
of the incoming jobs. The theorem thus extends Loynes’ results according
to which two jobs had to be processed on the same machines in the same
order.

Furthermore, Theorem 1 marks a generalization as far as the priority
rule is concerned. Both Lindley and Loynes used the waiting time as their
state variables. In order to obtain simple expressions they both assumed
that the “first come, first served” priority rule was used. We took a dif-
ferent approach, By virtue of the fact that the busy period is independent
of the priority rule, the state variable was defined to be the total amount
of work waiting in the queue, because this quantity could be bounded by
the busy period. Our result is thus completely general with respect to the
priority rule.”).

In practice, the production facilitics are very often extended at the time
where the waiting times have become extremely large, Such ad hoc decisions
will ordinarily not be optimal, because they are only based on the current
state of the job shop. The theorem on stability has provided a means of
determining a long term program for cxpansion (or reduction) of the
production facilities, if the expected incoming demand for processing is
known and assumed stationary. Hence, one of the interesting and im-
portant implications of the theorem is the possibility of introducing long
term planning of the manufacturing facilitics in order that the incoming
rate and technology of the jobs arriving at the shop can match the cap-
ability of the machines.

The Study of the Dynamic Behauvor.

In the preceding section the focus was on the asymptotic behavior of
a job shop as time tended to infinity. The analysis of that problem resulted
in general theorems about the long term properties. However, this approach

%) For a complete description of the proof, see ]. O. Riis: “Stability of a Job Shop”,
submitted to the Journal of Applicd Probability.
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did not disclose any of the dynamic features, This has pointed out the
need for a new approach to the problem of obtaining measures a job shop's
short term behavior.

A detailed description stating the degree of completion and the location
of each job in the shop will contain more specific information than is of
general interest. In order to make the results more gencral, a probabilistic
representation has been sought. Thus the problem has been to derive prob-
ability distributions {or means and variances) for variables which describe
the most important [eatures of a job shop. However, the functional rela-
tionship between the variables as well as the decision rules require minute
details about the state of the system. In view of the lack of conformity
between the aggregate level of description sought and the detailed level
necessary for a complete representation, we have developed a method for
generating a sequence of distribution [unctions for the most important
variables. The method makes use of the mathematical representation
discussed in a previous section.

The basie idea of the method is, by means of the Boolean algebra, to
transform each point in the sample space of jobs at time f into a point
ol the corresponding sample space at t41. If we at time { know the
probability density function for all the points in the sample space of jobs,
we can obtain a probability distribution for the jobs at time £+1. When
the distribution function for the incoming jobs is given, we can add the
new jobs to each of the old points. No assumptions need to be made about
the distribution function for the initial state or of the new jobs.

The idea behind the method appears to be a very direct way of gener-
ating a probability distribution, in spite of the complex expression of the
transiormation which yields the state of the shop at ¢ +1 for a given
state at £. In fact, the most interesting feature of the method is that we
need not make any assumption about the form of this transformation. The
method proposed in this thesis may be considered as an attempt to avoid
the restrictive assumptions of a conventional analytical approach, and to
utilize the information about the probabilistic structure of the input as
well as the initial state in a better way than does a simulation approach.
The method accomplishes this by asigning weights to each string of realiza-
tions.

Let us illustrate the basic idea of the method in a more [ormal way.
Suppose x(t) describes the state of a system at time £; and that y(¢) is
a stochastic variable delined on the sample space £, 1. c., (1) = y(m,t)
e, Assume now that x(t-+1) is functionally related to x(2) and y(m,t)
in a deterministic way, such that for each pair of values [x(1), y{mwd)] =
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[xi, yi] there exists a unique value of x{t+1) = xy. Similarly, let z(¢-+1)
be a variable which is functionally related to x(¢) and y (mw,0)7).
Then,
x(t41) = flx(t); y(w,t)]
2(t+1) = glx(t); y(o,)].%)
If re(w;tsx) is the conditional probability density [unction for the sample
space £ at time { and for a given value of x(?), then we can find the
conditional distribution functions for x{{-+1) and z(¢{+1), assuming
1s discrete.
For a given x(¢) = xi let all the points i, for which the pair [xi, y(wit)]
results in the same x(¢41) = 1, be denoted by £y, 1. ¢.,

Qr = {mi| 21 = flai(t); p(wit)]}.

Then,
Plz(t+1) = x| xi(8)] = 2 flai(t); pleit)] - p(ondxi).
ml.:!'.!j.
Similarly,
Pl(i+1) = 2| xi(0)] = X glxi(t); ploid)] - se(wiitsm).
-I'PIJ,!-.F;

From the density functions given above we can derive the distribution
functions.

In the case where the initial condition is given as a probability distribu-
tion we can find P[x({+1) = x] by summing over all x(f} and weight
the conditional probability P[x(t-1) = 21| x(t)] by Plx(t) = x].

As may be seen in Figure 4, the function f{ ) and g( ) arc employed
to evalvate x(t+4+1) and z(¢+1) for cach pair [x(¢), y(2)]. The prob-
ability density functions for x(f+4-1) and z(f+1) arc obtained by first
summing over £ and then over X (), and each time weighting the events
by the appropriate probability.

The idea presented above has been applied to the job shop where f{ )
and g( ) take on such a complicated form that it appears to be impossible
to find the distribution functions in the usual manner (e. g, assumc a
certain distribution function for y(¢) and x(t), and then use the moment
generating function to derive an expression of the distribution function for
2(t+1) and z(¢+1)). The mathematical representation provides a suit-
able expression for the functions f{ ) and g{ ).

Ty ox(t), ylw,t) and z(f) may be vectors.
£) The functional relationship may even be a [unction of time, such that x(f-}-1) =

flx(t)splat);t].
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Associated with the number of jobs of each type, cach of which con-
stitutes 2 point in the sample space of jobs, is information about the state
of the operations, Z, and about the state of the machines, § and M. Henee,
a new point having a particular number of jobs of cach type at £-+ 1, may
have been formed by old points with different values of Z, $ and M. For
cach new point we may thus have several sets {Z, S, M}. The method
could be repeated for each of these sets, but the number of points and sets
will increase exponentially with the number of time periods. By proposing
a way of aggregating the different sets {Z, S, M} associated with each new
puint into one set, and by deleting the points with a very small probability,
the method has been made recursive, and the number of points in the
sample space of jobs remaing almost the same. Other means ol aggregation
has heen outlined; for example, it could be assumed that all jobs belonging
to one type had the same technological ordering.

A small example with 5 machines and 3 types of jobs has been cal-
culated on a computer (IBM 360/65). Some of the main features of the
job shop were obtained for various input distribution, and we studicd the
elfect of changing the number of points in the sample space which char-
acterizes the state of the shop. In addition, a special simulation program

M A= {.:j} incdicates the degree of completion, § = {.t”} denotes the operations
currently being processed, and M = {rn_;} gives for cach machine the time until the
processing will be completed. Thus, Z indicates the state of the operation, while

N oand M oindicate the state of the machines.
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was developed for testing the method. In view of the conplexity of the
problem of obtaining measures of the dynamic behavior of a job shop,
we conclude that the method proposed above is based on a interesting
idea which deserves a thorough investigation. Unfortunately, the dimen-
sions of the problem have not been reduced to an extent where the method
can be used in practice on a large scale basis.

A Generalization.

In this paper the job shop has been the main object for our investiga-
tion. But the problem as well as the results are related to the more general
problem of representing a complex system at appropriate levels of aggrega-
tion. The methodology applied thus seems to be suitable for the analysis
of a system in general. Accordingly, the following three steps should be
carried out: 1) development of a mathematical representation, 2) analysis
of the system’s long term propertics, cspecially with respect to the concept
of stability, and 3) analysis ol the system’s short term propertics.
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