Some notes on long range inventory problems.

By M. W. Sasient®)

Introduction

An inventory system is a storage device which from time to time
receives inputs, and from which output is removed. Usually the manager
can control the inputs (when?, how much?) but there are situations where
output is subject to control (water storage systems are the most common
example). In either case there are associated costs and profits which
must be optimized over some period. The difficulty of the decision lies
in the interpretation af the term some period. Very frequently the pro-
cess has no obvious point in time at which it will terminate and some
mathematical device is required which will sum all future costs. Dyna-
mic Programming is such a device, but in an infinite time period any
replenishment policy will yield infite costs. There are two ways of
keeping costs finite; the first is to apply a discount factor to future
costs and the second is to consider the long run average costs'per month.
Realistically the discount factor must be close to one and the two appa-
roaches yield very similar policies in practice.

The Warehouse Problem

In what follows we will assume that decisions about replenishment
are to be made once a month, and that there are costs associated with
the quantity ordered (or produced). We also assume an income associated
with sales and/or costs associated with holding stocks or failure to meet
demand. As an example consider the problem of the owner of a ware-
house of capacity H who has a stock of s < H items. Suppose that in
each of the months to come he can buy unlimited quantities or sell any
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amount up to his current inventory; the cost in month 2 being ¢i and the
sales price pi. Let his planning horizon be n months and assume that
replenishment ordered in each month is delivered after the sales have
taken place. The problem of how much to buy and sell can be formulated
as a linear programming problem as follows.

Letx: 20,y 20 =1, 2,...,n) be quantities bought and sold in
month 7, so the net profit P is given by:

P =23 (piyi—cixi)
fel

However xi, yi and subject to the constraints:

.

For r=1,2 ..., n s+3 (mi—y) < H (capacity limitation)
=1
r—1

Forr=1,2, ...,n s+Z (xi—yi) — 220 (no negative stocks).
i=1

Thus we have a problem in 2n variables with 2n constraints, and for
n = 12, corresponding to a horizon of one year, we have a formidable
calculation.

Let us define fi{u) to be the maximum profit starting with a stock
of # in month (n—¢+1) and continuing for ¢ months until month =,
Then if we buy x and sell ¥y in month # we have

fi(ze) = Max {pny — cn x}
where the maximum is over all x and y which satisfy
xZ0 y=20;, y<uw; wta—y<H
It is easy enough to see that the optimal values of x, y are one of the

following: (See figure)
(0,0): 0m); (H —u0); (Hu)

(0.) (H 1) Since fm >0, ¢x >0 we see
A x =0,y =wuand f;(x) = pau.

/. 3 = x-Fu—I

Now if in month (n—{+1) we

start with #, buy x and sell »

we start the following month
> with a stock of #'=utx—y.
(0,0) (H = u,0) x Hence

fr(u) = Max {Pu-t+1 y—cn-t+1 x+fi—1 (u+x—y)}
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where the maximum is over all x, y satisfying the previous restrictions.
If we know fi-1(2) and it is linear, then the fuction to be maximized is
linear and finding f:-1(«) is comparitively simple.

Now, we know fi(x) and it is linear so we can find fs:(u). Let us
assume fe—1(2) is linear in u, say

fe-1{tt) = Ai—1u + Be—
Then fi(u) has one of the forms below:
If x=0,y=0; filu) = As-1 2 + B~
If x=0,y=u fr(h’]l = Pu—t+1 8 + Bi—1
If x=H—u, y=20; fl() = ca—t+1u + H (A1-1 — cu—t+1) + Be-a
If x=H, y=u; fi(ltt) = po—t+1u + H (At—1 — €a—t+1) + Bi-1
Thus in all cases fi(u) 1s a linear function of #, and we have a complete
system of recursive calculation. A numerical example is given in refer-
ence 4, pages 274-278.

More general problems do not assume that the system is deterministic;
usually instead of unlimited demand, we consider demand in any month
to be subject to a probability distribution and we study expected costs
(or profits). Suppose that we made decisions every month and that if
we start with a stock 5 and order ¢ = § — 5, then the expected costs
during the month of holding inventory plus the penalty costs of failing
to meet demand are / (5,5). Let the procurement cost be & + cq if @ > 0
and zero if ¢ = 0. We wish to find a policy for determining ¢, or what
amounts to the same thing, for determining S.

Let fi(s) be the minimum expected cost over the month following the
decision.

ﬁM=E?{H1—®+mﬁ—ﬂ+fﬁﬂ}
b=t
where 8, =0 S#s
=1 S=g5
Thus fi(s) can be determined (tabulated!) with comparitive ease.
Now assume that the density function for demand during any month
is @ (x), independent of the previous month’s demand. Assume also that
failure to meet a demand results in a lost sale. Let fi(s) be the minimum
expected cost over ¢ months. We obtain the following equation for
fi(s) in terms of fi-1(s).

fe(s) = Min B (1 — 83) + ¢ (S — 5) + I (S, )
8=z

+n\5ff—| {S — x) @ (x) dx + fi-1 {ﬂ)\.ozﬁ (x) dx
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[We assume that a total of ¢ 4 5= § becomes available during the
current month].

Starting with fi(s) we can obtain fz, fs, . ... successively. So long as ¢
remains finite we can obtain the optimal procurement policy. If ¢ be-
comes infinite both sides of the equation tend to infinity for all policies.
To avoid this we can argue that next month’s costs should be discounted
by a factor ¢ = 1/{1 + i) where ¢ is the interest per month. We then
define fi(s) as the minimum discounted costs and obtain:

fis) = Min {1k (1 — ) (S —s)+ 1S,

"5 oo
+§5f=_.1 (S — x) P (x) dx + « fi— {Ugg P (x) do}

It can be shown that so long as 0 <{ @ < 1 the sequence of functions
fi, fo, ... converge to a function f(s) and moreover f is independent
of fi; further, f is the unique solution of the equation obtained by drop-
ping the subscripts in the last equation. Equations of this type have been
discussed extensively. (See references 1, 2, 4).

The alternative to using a discount factor is to study the asymptotic
form of fis). It can be shown that for any given procurement policy
the total costs over £ months have the asymptotic form v(s) + gt where
v and g depend on the policy and g is independent of 5. We woud choose
the policy to minimize g — the long run average cost.

We have
fls) =v(s) + gt =k (1 — &) + (S — )+ 1S, 5)
+[Si- (§ — x) @ (x) dx + u(ng RE (X)dx+ (t—1) g

Thus o(s) + g =k (1—85) + ¢ (S — s) + I(S, 5)
+F’ (S — x) @ (%) dx + ﬂ[ﬂ}§$ (%) dx

] 54

Now a given policy expresses S as a function of 5 so in the theory we van
solve this equation for v(s) and g. Actually we can only determine v(s)
up to an additive constant. (If v = u(s) is a solution then clearly so is
v = u(s) + ¢). However we are mostly interested in g and we may
assume for example that ©(0) = 0. In practice some form of numerical
calculation is required and the following system due to Howard is
suggested. (Reference3).
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Let the units of s be so defined that s takes the values 0f 0,1, 2, .. ., &.
The effect of a procurement decision is to change s to 5 with a known
probability. Thus if p: is the probability of demand for » and our policy
calls for procurement of S — s, the probability of s is ps-s. (Of course
S may be a function of s).

Let p;i be the probability, that if we use policy 4, a stock of i at the

end of one month will become a stock of j at the end of the next month
Let K¢ be the expected costs, including procurement costs, incurred

during a month starting with stock #; let fi(n) be the minimum costs
over # months, Finally let f4(n) be the costs associated with policy A.

Then fi(n) = K{+ Z pf f{ (n—1) (.

) o) — N k
and fi(n) I""'-}jm {KB + {Eu pﬂ f{ﬂ — 1)} (2)

where the minimum is over all policies.

Howard shows that f4(n) has the asymptotic form
fin) = ngt + ®)

and it is clear that the optimal policy is the one which minimizes g
(the long run average cost).

If we insert (3) in (1) we have
&
ngd + v, = K4 + ;:Jﬂ al(n —1) g4 + v{]
R
or vi+gl=K!+ = p;} tﬁ;. (4)
j=0
From (4) we may determine the v/ (up to an additive constant) and g.
As we are primarily interested in g4 we may arbitrarily set v§ = 0 and

solve (4) for v4, ...,v¢ and g4. Once this is done we can search for
a better policy than 4 as follows:

Let Fli(n) _ .. B S pn 4
= Mﬂn {KE +j=2|} by fi(n— 1)}
E
= Min {K3 + = b7 [vf + (r — 1) g1}
f=
E
= Min {K? +j.;£u P v}i + (n — 1) g4}

The minimum is achieved for that policy B which minimizes

k
K} + X pf vf. Howard shows that if B = 4 for all 4, then policy 4
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is optimal, in the sense that g4 < g€ for any C-{i-4. If B EiEA we can
solve equations (4) for v¥ and g® and repeat the minimization pro-

cedure. If at any stage there is a value of i for which
& k
K4 + Eﬂﬁg v < K% + fﬂ Y vd

we keep policy A for that i, even if some other policy B yields equality.
It may be shown that this process must converge in the sense that we
must eventually find B=A4.

In many cases sales demand has a seasonable pattern. This may be
included in the model by writing pj, for the probability that using
policy A a stock of ¢ at the start of month ¢ becomes j at the start of
month ¢+ 1, (mod 12). Of course in place of Ki and v¢ we have
Ki and v4. (t=1,2, ...,12)

We now define the following matrices and vectors:

P{ = [pf, (k 4+ 1 sided square matrix).
Kji = [Kﬁﬁ K;‘I: cue} Kﬂ;]r (column vector).
vl = [v4; vl - 5 v )" (column vector).
gt=1[gh gt -.; g*17 (column vector).

In place of equations (4) we have

vl + gt = K4 + Phod t=1,2 ..., 11 (5)
vip+ g4 = K{4 P, o] ©)

We can substitute for vf, from (6) into the last of (5) and then sub-
stitute for v4, in the next equation of (5) and so on, until we obtain:

vl = K{ + P4 K} 4+ P4 P§ K4 + .. + P4 P, P K4,
— I 4 P4 4 P4 Pl ...+ PLP4.. . PAY gt
+ P4 PY.... PLof )

Now since each of P4 (¢t = I, ..., 12) is a stochastic matrix with rows
adding to one, so are the products P4 P# .... P4. As g4 is a column
vector of indentical elements, g, we see that

A pd A] pd — g
[PIPE.“.Pw]g_g_

Thus (7) may be written
vf 4 12 g4 =K1 - P4 p4 (8)
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WhETEKAZK‘i“{"P‘% K‘;-J-P‘; P4 K‘a“+ -{-Pi‘ Pg....PfIKi‘E
and ]3"‘1=P‘ii P:_;‘.... sz

Equation (8) has exactly the same form as (4). It may be solved for v
and g4 provided we first set 34 = 0. Once v{ is known, »4, »4, ...
v4 may be found by successive substitutions in equations (6) and (5).
The procedure for finding the optimizing policy is carried out by
successive improvements on policy A, using the technique described for

the non-seasonal case.
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