On the Development of Utility Spaces
for Multi-Goal Systems.

By PerEr MARk Pruzan®) and J. T. Ross Jackson™¥)

As operations research becomes a more highly developed science
and attempts to tackle significant problems of large, multi-goal
systems, theory is required which can provide a framework for
the optimization of such systems. This article attempts to con-
tribute to such theory. In particular, the article discusses the
development of utility functions which express the preferences
of those responsible for the system, when these preferences or
goals are expressed in several units of measure. A series of
theorems is presented which state the necessary and sufficient
conditions for the utility functions to have certain desirable forms.
The article closes with a discussion of the practical application
of the theory developed.

Introduction.

The operations researcher is often confronted with the problem of
recommending a course of action which will optimize a utility function
expressing the preferences of the decision-makers responsible for a
system. Optimizing with respect to a system thus compels the operations
researcher to consider the objectives associated with components of
the system, objectives which may be in apparent conflict with each
other, and which may be expressed in different units of measure.
Furthermore, even the sub-systems may be characterized by multi-goal
objectives, and thus by measures of performance which are expressed
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in different units. A decision-maker may specify, for example, that he
is motivated by a profit incentive, but that he also pays much attention
to certain other variables, such as customer goodwill, market share, sales
level, time, personal prestige among his peers, and very likely, many
more.

The symbolic representation of the utility function for the system is a
fundemental task of the operations researcher. Sub-system optimization
based upon utility functions of a single variable (e. g. profit) has been
widely considered in the literature. However, without a theoretical
treatment of the subject of utility functions for multi-goal systems, large
system optimization is beyound our reach. Once we are to consider such
systems, and to consider decisions which are of such significance that
the resulting outcome may cause the system to move far from its exist-
ing state, then we must have a theoretical basis for developing analytic
expressions for the system’s utility. In other words, if operations research
is to be able to consider total- versus sub-optimization, if it is to aid the
decision-maker when he is faced with significant problems, then the
operations researcher must have a well developed theory for developing
utility functions for multi-goal systems. We hope that this paper will
make some contribution to this important problem arca.

One of the most widely referred to methods for analytically con-
sidering multi-goal systems is the conversion of all the performance
measures into one measure, usually into units of money!). We shall
refer to this method as Method A. For example, with Method A, so-
called “transformations” are assumed to exist between the units used
to describe customer goodwill, market share, sales level, time, etc., and
the money units, thus converting all measures to their equivalent mone-
tary values, while perhaps including some of the measures as constraints
due to the difficulty of obtaining a proper transformation, or due to a
notion that they are not important to the solution of the problem. If for
each alternative course of action under consideration a joint probability
density function for outcomes is developed, and if a utility function for
money is developed, then the expected utility of each course of action
can be obtained, and the alternative which maximizes the expected utility
can be recommended as the optimal course of action.

There exists another widely used procedure for evaluating alternative
actions when the performance measures of the possible outcomes are
expresed in different units. This procedure is based upon the assumption

1) See Ackoff, R. L., Scientific Method, John Wiley and Sons, Inc., New York, 1962,
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that, for each performance measure, a function describes the contri-
bution of that measure to the overall utility of the system, and this
function is independent of the levels of all other measures?). We shall
refer to this method as Method B. The simplest exarple of such a method
is the use of constant weights to represent the relative contribution of
each measure; this is the form of linear value functions such as are used
in linear programming problems. If such a utility function, based upon
the assumption of independence or seperability, is developed and if a
marginal probability density function for each outcome is developed,
the expected utility for each alternative course of action can be obtained,
and the alternative maximizing the expected utility can then be re-
commended as the optimal course of action.

It is hoped that the above comments on multiple-goal utility functions
should suffice to introduce the subject matter of this article. In the re-
mainder of the article, we have attempted to:

I. Analytically consider the calculation of expected utility and to in-
troduce some notions which permit a precise discussion of the
nature of the decision-making problem in a multi-goal system.

II. Examine the assumptions which underly Methods A and B, as-
sumptions which the operations researcher might not always be
willing to make were he aware of their implications. The mathe-
matical proofs of the theorems presented are omitted from the
paper due to considerations of space, and the desire to avoid con-
fusing the non-mathematical reader.

ITI. Present a brief discussion of how, based upon the theorems pre-
sented, the operations researcher and the decision-maker, working
together, may develop appropriate utility functions for operational
decision-making in the “real world™.

I. The nature of the decision-making problem in a multi-goal system:

We introduce the notion of a vector (x1, a2, ... ., xm) as representing
the state of a system, where each element of the vector represents some
measure of a particular state variable, x, 1 = 1, 2, ... ., m. We assume

that to each state there can be associated a unique value, or utility,

%) This assumption of independence or separability is frequently used by Fishburn,
P. C., in Decision and Value Theory, to be published in spring 1964, by John Wiley
and Sens, Inc, New York.
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v = % (x1, ¥2, ...., ¥m) and that a change in any of the state variables
can result in a change in utility to the “individual” whose m-+1, dimen-
sional utility space, (x1, x2, . ..., ¥m, v), is in question. “Individual”
here might refer to a single person, or perhaps a group of people in-
volved in the decision, such as the managers of the various sub-systems
belonging to the overall system to be optimized.

We assume that when a decision-maker must choose between several
available courses of action, and a set of state variables is considered
as representing the outcome of a course of action, he will choose that
action which maximizes his expected utility. That is, if the j'* course of

action, ¢j, yields an outcome state (x1, xs, ...., xm) with probability

dF; (x1, a2, . ..., xm), the decision-maker acts so as to maximize

l{f PR J-ﬂ (xl,xe, s .me}l dFj [.:*.'.'1,.70:2, -1.‘,x'm} Dvﬁralli: 1’ 2, R n;
i

where Rw is m-dimensional FEuclidean space.

We will begin by considering the simple case of only two relevant
state variables, and extend the results to m variables at a later stage.
We introduce the following notions which occur frequently throughout
the development.

1. (a0, y0) represents the initial state of the system.
2. The courses of action available are ¢, ¢2, ... ., ¢j, --- ., €n.

3. To the j™ course of action there is associated a joint probability
density function dF; (x, y) which gives the probability that a course
of action ¢; will have the result that the state changes from (x, y0)
to (x, y). That is, dF; (x, y) = Pr [(x,») | (x0,30),¢1].

4. To each state (x, y) there can be assigned a relative value or utility,
v = u(x,y). To define the scale of v, we assign some arbitrary
value to the present state (xo, yo) and some other arbitrary value
to another state, say (x1, y1).

i

We will consider the following three spaces:
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It is assumed that for any of these surfaces, we can develop the
unique inverse functions of v = u (x, ¥)

(i) y=7 (x v) (i) x= Xy v).
We define the term Vertically Parallel in the following way:
a. In vy space: V.P.y — -%— = I (y)
b. In vx space: V.P.. — z—:— = ha (x)

J
¢. In yx space: V.P.yr — -al = iy (x)
x

That is, two parametric curves are V.P. if their slopes are equal.
For example, in yx space the indifference curves are wvertically
parallel if they are as shown below:

Tangent lines have identical
slopes independent of wv.

ey
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Horizontal parallelism is an identical notion in the horizontal
direction. That 1s,

V.Puy > HP.ye
V.P.oz = H.P.zv
V,P.yz $ H.P..}:ﬂ

We define a trade-off function £ as follows:

Given any n, define ¢ = Y (x—n,v) — Y (x,v) = [ (n, x, v) where
n and ¢ can be either positive or negative. Clearly if n = 0, then
¢=0and f (0, x, v) = 0.

Associated with the notion of the trade-off function ¢ is the notion
of sliding along a particular indifference curve from a state (x, y)
to a new state (x —#, y+¢). The trade-off function then tells us how
many additional units of y the decision-maker requires in order to
remain on a particular indifference curve if he is to give up # units
of x.

We define a special form of trade-off function, the Complete Trade-
Off Functions, as & = f (x—xo, x,v) = g (%o, x,v). This function
specifies the amount & of y which the decision-maker requires to
keep him on the same indifference curve if we take n = x—x,
that is, if we are to slide from the state (x, ¥) to the state (o, ¥+ ).
Clearly when x = xo, g (a0, x, v) = 0.
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9. We define a “utility line” to be a particular cut through the utility
surface, passing through the initial state (xs, yo). The utility line
t (xo, ¥) represents the intersection of the utility surface u (x, y) and
the plane x = xo. Similarly, the utility line u (x, yo) represents the
line formed by the interesection of the utility surface u (x, ) with
the plane y = yo. It should be noted that a utility line is what
Ackoff refers to as a “value function”).

II. Calculation of Expected Utility, Method A (V.P. . Approximation):

If the functional form of the utility surface were known over the entire
range of possible outcome states, (x, y), the computation and selection of
the optimal course of action would be routine. To obtain this surface
v = u (x, ), the decision-maker would be required to specify a relative
value to each possible outcome state. Ideally, the operations researcher
might attempt to help the decision-maker to construct such a surface
through a series of questions constructed so as to elicit his value structure.
For example, he might help the decision-maker to generate his indif-
ference curves by judiciously choosing intervals of x and y and then
forming iso-value curves via some sort of best fit procedure.

However, the construction of the utility surface would require the
decision-maker to place himself in many hypothetical outcome states
with which he may have had little or no past experience. The conception
of such states could be quite difficult for him. It would seem to be a
logical statement that the further an outcome state (x,y) is from his
initial state (xo, y), the less certain would he be of its relative value;
within a certain domain of outcome states near (xu, y0), we might expect
his estimates to reflect his true relative values fairly well.

3) Ackoff, R. L. Seientific Method. John Wiley and Sons, Inc., New York 1962, p. 42.
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The difficulty is that, as yet, there does not exist a proven methodo-
logy for generating a utility space, even within a well defined region of
the initial state, (xo, yo). However, extensive work has been done in
the area of generating “utility lines” for operational problems; see
Ackoff, Scientific Method?). We shall show that under certain con-
ditions the utility lines can be used to generate the entire utility sur-
face. In cases where the utility lines cannot be used to generate the
entire utility surface, we may be able to use them to generate a surface,
which, through subsequent modifications by the decision-maker, will
lead to an approximation to the actual surface.

Before outlining the procedures for developing the utility surface
from the utility lines, it is necessary to develop a series of theorems:

Theorem I. A necessary and sufficient condition for the complete
trade-off function & = g (xo, x, v) to be of the form & = k (x0, %), inde-
pendent of v, is:

u (x, y) = u (x0, y+ & (x0, x))

where # (xo, ¥) is the utility line for outcome y.

Corollary L
(1) V.Py:
£e = h (20, x) >
(2) H.P.y

Theorem Il. If u{x,y) is such that the indifference curves are ver-
tically parallel, then there exists a unique transform between the units
of the state variable x and the units of the state variable y, independent
of y and given by

ge == h (x0, x)
or, equivalently,
V.Pyr > & = h(x, x)

Interpretation of Theorems I and II:

If we are willing to make the assumption of vertically parallel in-
difference curves, then we can transform any outcome state (x,y) to
a state (xo, y+é&) having the same value (i. e., lying on the same indif-

1) ibid. Chapter 3.
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ference curve) but in a plane such that we know the utility line u (xo, ¥).
We can then generate the entire utility space, which will be of the form

u(x,y) = u (%0, y+5 (%0, %)).

Conversely, if we postulate that we can transform the units of state
variables x into the units of state variable ¥ by a transform function
& = h (x0, x), we are implying that the utility surface is of a special
form, namely having the properties of V.P.yz and H.P.uy.

The implications of the existence of such a transform, which does not
depend on the state variable y, is that the state variable x is important
to the decision-maker only because it can be converted directly into
units of state variable y. If the importance of x is dependent on the level
of y, or if, as will be shown later, the decision-maker does implicitly or
explicitly value x with respect to other state variables in the system,
then the indifference curves cannot be V.P.,- and the unique transform
of x into units of ¥ cannot be made.

[Mlustration:

Suppose the decision-maker is the president of a firm and we define
x = market share (in percent)
y = profit rate (in kroner per unit time).

Then, the existence of a complete transform function & (same for all

£r

X0

levels of y) implies that the market share is of importance to the decision-
maker only in so far as it affects profit rate. In many cases this could
quite possibly be true, particularly in a region not too far removed from
the initial state, (xo, yo). If, however, the value the decision-maker assigns
to an increase in market share is dependent upon the level of the profit
rate, or if he also values an increase in market share because it enhances
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his prestige and/or self-satisfaction, or if it bears some relationship to
any other component of what we might abstractly consider as his entire
value space, then his indifference curves will not be parallel, and no
such transformation will exist. This is not to say that there is no relation
between percent of market and profit rate. In fact, if sufficient data is
available such a relationship can often be established statistically (see for
example Ackoff, Scientific Method, pp. 78-79)5). The importance of the
foregoing theorems is that such a relationship is equivalent to £ only
when the indifference curves are vertically parallel.

Interpretation of Parallelism in m-dimensional Value Space:

In general, we may consider a decision-maker as having a value space
consisting of state variables x1, x2, . ..., X, ¥ where y is used to signify
some important measure, usually in units of money (e. g., profits, costs,
ete.). We can extend Theorem I to the case of m dimensions as follows:

Theorem III. A necessary and sufficient condition for the existence
of a set of complete trade-off functions (or transform functions) & =
Ri (xjo, x5), 7 =1, 2, ..., m, which transform units of x; into equivalent
units of y, is:

m

U= (X1, ., Xmy ¥) = U (X0, - ooy Xmo, Y+ Ry (X0, X))

j=1
where x;0 is the initial value of state variable x5, j =1, 2, ...., m, and
u (X0, - .., xmo, y) is the utility line for y developed for all other state

variables held at their initial values.
Similarly, in analogy to the earlier corollary and theorem in three
dimensional (x, y, # (xy)) space we state the following:

Corollary 1.
(1) ViPogey, j=1,....,m
gje == Ny (xj0, %), 7 =1,.....,m >
(2) H.P.oy
Theorem IV.
V.P.oyr opeie = hi(xi0, i), i=1,2,....,m

&) ibid.
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Summary of Theorems [-IV:

We now have developed the necessary theoretical concepts to generate
the entire m-+42 dimensional (x1, . ..., ¥m, ¥, v) utility space under the
assumption of V.P.ys, which enables us to transform each outcome state
variables into equivalent units of state variable y (usually measured in
units of money). The method of generation is simply to replace y in
its utility line function by

/i3
y+ 2 hi (200, Xi).

f=1

The expected utility of the j*t course of action is thus

m

E(w) = f{....fu(xw, ..., xmo,y +2 hi (%0, 1)) dFj (x1, - - - -y Xm, 3).
Rm 1

+ =1

We can now refer to Method A as V.P. 4. approximation.

Method B (V.P. vz, Approximation):

When, for one reason or another, V.P. ., approximation does not give
a good fit (i. e, the indifference curves are not parallel), a second type
of approximation is to assume vertical parallelism in all vxi spaces,
Xy, X2, ey X

v

J=1,2 ...,m

2
i

:1,2,...,m

Xi

v
VP S>o- =0 (x1), where ¢ (xi) is a function of a; only. Since this

Xi
must hold for all values of the state variables, it holds for the case when
all other state variables take on the initial conditions.
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Thus
ci () = —— u {10, - ..., X0, - .- -y Xmo)
x
where @ (xw0, . ..., Xi, ... ., Xm0} 18 the utility line for xi generated with
the decision-maker's other state variables held constant at their initial
values.

Hence the following theorem:

Theorem V. A necessary and sufficient condition for V.P.or, i =1,

2, . ..., m, is that the utility surface be
i

U (X1, ooy Xm) = vo+2 M (xi)
fmt

where Mi (xi) is the marginal utility of x; and is given by
Mi(xi)) = 2 (%0, ..., %, ..., Xmo)—0

i=1,2, ....,m; vo=1u(x0, ...., Xmo).

- Comments on Theorem V:

The V.P. vz, condition might be described as a “separability” or “in-
dependence” condition where the value contributed by each state
variable depends in no way upon the levels of other state variables. It
is difficult to conceive of such a relation holding over the entire utility
space. However, it may give a good approximation within a decision
domain near the initial state (x1, . ..., &mo).

If we assume the V.P. vz, condition then the calculation of expected
utility is greatly simplified for we no longer require a joint density
function as with V.P. y, conditions, but need only the marginal prob-
ability density functions, dF; (x:). That is, for a given course of action,

m

E{v}——-Un—i—jj'.n..._j';M;(:::ﬂdﬂ{::h....,xm]

=1

= m—]—.g'f M (x:) dF; ().

i=1 RI
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Combination of V.P. ... and V.P. o Approximations:

It is interesting to note the effect of assuming vertical parallelism in
both yx space and vx space, or equivalently, assuming both the one-to-
one transformation functions and the “independence” of state variables.
It turns out that both assumptions combined imply a linear utility curve
in . Hence, we no longer have a problem in value theory.

In fact an even weaker condition, namely, V.P..y, when combined
with V.P.yz, i=1, ...., m implies V.P.uy, hence “independence”.
Therefore V.P.yr, and V.P.,; combined imply a linear utility curve
in y.

Theorem VI. The combined properties of V.P.ye, 1=1,2, ..., m
and V.P.sy are necessary and sufficient for a utility surface to be of the

m
form v = vo+ki (y—yo)+k1 2 hi(x0, x;) where ki is a constant and

im]

hi (xi0, 2i) is the complete trade-off function for xi implied by V.P. ...

Corollary 1. The combined properties of V.P.ys, i =1, 2, ... ., m, and
V.P.uy are necessary and sufficient for “independence” as defined by
V.P.ﬁ;.rl.,i= 1,2, s ey T

Corollary 1I. Under combined properties of Theorem VI, the utility v
is just the sum of initial state value, vo and the marginal utilities of y
and of x; which in this case are identical with the transform functions
gie,2=1,2, ...., m.

Comments on Theorem V:

From the point of view of value theory, applying the assumptions of
Theorem VI results in a degeneracy. Under the assumptions of this
theorem, if we for the moment assume that y represents profit, then we
maximize expected utility by maximizing expected profit, taking into
account that we transform all other state variables into their equivalent
profit. This is the same as saying that we assume that the decision-
maker’s utility line for profit is linear. It will be noted that in most
applications of operations research, “intangibles”™, such as shortages in
inventory problems, machine down-time in replacement, customer wait-
ing time in queueing, etc, are transformed into equivalent costs and
revenues, and then the “optimal” policy is chosen as that which maxi-
mizes expected profit. Thus, when they follow such a procedure, the
operations researchers implicitly assume that the decision-maker’s utility
line for money is linear!



270

We can now formally state, in terms of value theory, the implicit
assumptions we are making about the nature of the utility space when
we follow these standard procedures; namely, we assume vertical paral-
lelism of all indifference curves, vertical parallelism in all vxi spaces,
and horizontal and vertical parallelism (hence linearity) in vy space.

III. A Suggested Procedure for the Practical Establishment of Ulility
Surfaces.

The motivation behind this section is to show how, using the theorems
presented earlier, the operations researcher may help the decision-maker
to establish his appropriate utility surface. The general outline of the
procedure is to consider whether:

Method A (i.e., V.P.,- ) is an appropriate assumption

Method B or “independence” of utilities (i. e, V.P. ) is
an appropriate assumption.

In the discussion that follows, we restrict ourselves to the case where
the decision-maker's value space is assumed to be adequately described
by two state variables, x and y, and the corresponding surface v = (2x,5)%).

By considering only two state variables, the presentation is simplified
and we can take advantage of graphic demonstrations. Many of the
results can be extended into a general n-dimensional state space but this
is beyond the scope of this section.

The assumption is made that it is difficult for the decision-maker
to describe his feeling about relative values, trade-offs, etc., when he
1s removed from his present state, described by xo, yo and wo = u (x0, y0).
Therefore, we attempt to develop a procedure for eliciting information
about the actual utility space by continually allowing the decision-
maker to refer to at least one of x, yo or va.

Depending on the nature of the problem at hand, the operations
researcher may wish to check for V.P.,- parallelism first or for V.P..:
(or V.P.y) parallelism first, as he may consider one or the other to be

%) To select relevant state variables, the partial derivates of v with respect to these
variables must be different than zero. That is, if x, ¥ and # (»,y) are sufficient to
describe the value spacer over some reasonable decision-domain, the decision-maker
considers that

Ju
—(u,y,2) =10
Ezl: » )

for any other state variable =z
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more desirable. It is likely that if he is considering many state variables,
he would wish to check first for V.P.: (or V.P.y) parallelism as this
form of parallelism would permit him to use marginal density functions
for x and y when calculating expected utility of an action. On the other
hand, he may wish to have yx parallelism when dealing with a state
space described by only a few state variables.

(A) Determining appropriateness of an assumption of parallelism in
yx space:

[t is clear from the theorems that if there exists 1V.P.;. then there exists
a unique complete trade-off function which can be used to translate
units of x into units of y, independent of the actual magnitude of the
state variable y (or v into units of x in the case of V.P.;).

Thus, if such transformations are considered as proper, the value
space describable by x, ¥, u (x, ¥) can be equally described by y', # (xo, ¥},
where ¥y = y+/n (x, x), which is far easier to generate than the former
space. This becomes all the more true when the number of state variables
increases. However, when the number of state variables becomes large,
the assumption of “independence” is more desirable mathematically than
that of yx parallelism; the latter requires the use of a joint density
function associated with each course of action in order to determine
expected utility of action, while the former requires only the marginal
density functions.

The following steps are suggested to determine the appropriateness of
the assumption of parallelism in yx space.

1. Generate the indifference curve v which passes through (xo, yo).
This can be done by presenting the decision-maker with a series

Yy

oL | JE R
} ,.“L‘-—...H."c_.- h

i
I
]
¥
1 x

1)

of different states of x and asking him to select the corresponding
states y which would permit him to be indifferent between remaining
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at (xp, y0) or moving to (x,y), a state having the same value, wo,
to him.

2. Hold x at xy and generate u (xo, y) by the Case Method or some
other suitable method. Assume a value for v, say v equal 100, and
assume a value for some other state (xo, y1) say v1 equal 200. This
is sufficient to uniquely define a scale of relative values for the
utility line # (xo,y). See Figure 2 below.

h vy = u (X0, ¥)
Vg == ==X =200 L R L L LTS
]
¥i g ==X vy T S i
- :
] T Y ' '
1 I 1
= II.]“ e ===== : : :
] L ] ] a
- : 1 | i ]
X T 5 f— 4 }'
X ¥ Yo ¥ M

Figure 2

3. Holding y at yo, determine the states (x, yo) which correspond to the
same relative value as the points (xo, 1), (x0, y2) - ... . These points
can be obtained by asking the decision-maker what value of x; he
would require to be indifferent between being at the state (o, y1)
and the state (x1, yo), etc. This permits determination of « (x1, yo), ete.
See Figure 3 for the resulting points of equal value for »s = u (x, yo).

y o= (% )
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S NS — T UV s memmce e mer e e ————-
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I T . X< . . x 1 ' ,
Il " \.\r‘ ¥ 1 :
. l a ¥ L
T B pr=mmd Tz . 1 77 T, N ! 1
. b . ! ] : .
[ ] & Y i i ® .
: 1 1 E X + -+ 1 i *
X2 X X3 X1 Xa X0 Xy X
Figure 3

4. Check for parallelism in yx space. This can be done by sliding the
indifference curve for v upward and downward and seeing how
well it passes through iso-value points. If it passes through these
points reasonably well, we can assume V.P.y:. (Similarly we check for
H.P.yz=> V.P.zy). In order to determine the “goodness of fit” various
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procedures might be used, including the “eyeball” method, or more
sophisticated tests.

[f yx parallelism exists, this implies that there exists a unique com-
plete trade-off function and all that is required for decision-making
which is consistent with the objective of maximizing expected utility
exists in the form of the complete trade-off function &, the joint
probability distribution associated with a course of action, and the
utility line v = #u (xo0, ¥).

(B) Determine the appropriateness of the independence assumption:

IS

From (A) we have developed both # (x, ¥) and u (x, ye), the so-called
utility lines. Furthermore, these curves are appropriately scaled with
respect to each other via steps (A-2, 3). We now develop an analytic
expression for each of these curves, perhaps in terms of polynomials,
cte.

Assuming the property of independence we then derive the mathe-
matical form of the indifference curve with v equal vo. That is, we
solve analytical or numerically for the values of x and y which will
be such that vz vy equal vo.

Compare this plot of y versus x with that graph of y versus x ob-
tained in step A-1 (see Figure 1). It will be recalled that that plot of

the indifference curve w0 was obtained via a direct questioning of
the decision-maker.

If, based upon some statistical or other form of test procedure, it is
concluded that the agreement between these curves is sufficient to
allow the assumption of independence (i. e., V.P. .., ), then, given the
marginal distribution of x and v for action ey we can immediately
calculate the expected utility of choosing the course of action as

E(v) = fv:dFn (x)4 [ vy dGw (¥)
7 B

where R: and Ry represent the decision domain for x and y, and
where dFx (x) and dGx (y) represent the marginal density functions
of x and y respectively with the N course of action, ¢y, and where
vr and vy are the utility lines established from steps A-2 and A-3.
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(C) If neither assumption of parallelism nor independence is acceptable:

If neither of the assumptions appear at first to be acceptable by the
test criteria, then the decision-maker and the operations researcher
must generate the value space v = u (x, y), either by placing the de-
cision-maker in a large number of hypothetical situations (i. e., states)
and then attempting to assign relative values to each such state, or else
by modifying the utility surface which would be generated under either
assumption, until it is acceptable to the decision-maker. The first of
these alternatives will be a very difficult procedure, even in the case
of only two relevant state variables, and almost impossible with more
than two such state variables. (Clearly then, before the two assumptions
are both rejected, rejection must be based upon some economic considera-
tions of the cost of error, cost of additional investigation, etc. It has not
been our goal to consider the test procedures used in accepting or re-
jecting the assumptions, but this is a significant problem if the above
approaches are to be followed).

The second of the two alternatives, that of modifying the utility
surfaces which would be generated under either the assumption of yx
parallelism or of independence, is therefore a much more appealing
alternative. Certainly the fact that the decision-maker and the opera-
tions resarcher could have originally rejected the notions of parallelism
or independence, supplies information which can be used to modify
the surface so as to more closely represent the actual, but as yet unknown,
utility surface.

Furthermore, it may be found that one or the other of these assump-
tions hold in part of the decision domain and thus permit the descrip-
tion of this part of the surface with information already available. This
could then provide a lead into determining how the remainder of the
surface should be changed so as to more accurately represent the de-
cision-maker’s true utility surface.



