
Terminological recommendations for software
localization - By: KLAUS-DIRK SCHMITZ
Posted by Michael Lambarena on June 05 2009 10:16:29

Terminological
recommendations for
software localization
1. Software localization

After an explosive growth of data processing and software starting
at the beginning of the 1980s, the software industry shifted toward
a strong orientation in non-US markets at the beginning of the
1990s. Today we see the global marketing of software in almost all
regions of the world. Since software is no longer used by IT experts
only, and since European and national regulations require user
interfaces, manuals and documentation to be provided in the
language of the customer, the market for software translation, i.e.
for software localization, is the fastest growing market in the
translation business.

Internationalization and localization comprise the critical
components in the effort involved in developing products for
multiple regional markets. Internationalization concentrates on
developing a software product in such a way that it will be easy to
adapt it to other markets, i.e. other languages and cultures. The
main goal of internationalization is to eliminate the need to
reprogram or recompile the original program when localized for a
specific regional market. Typical software development errors that
run counter to the basic principles of internationalization are e.g.:

• text embedded in the program code
• length limitations in the text (fields)
• fixed formats for date, currency, units of measure, etc.
• fixed formats for addresses
• textual elements in graphics
• country- and culture-specific icons and symbols

Localization can be defined as the whole process of adapting a
software product to a local or regional market with the main goal
being the consideration of all appropriate linguistic and cultural
aspects. The process of localization is performed by translators,
localizers and language engineers and comprises the translation of

the user interface, the online help, the documentation and all
packing material including the adjustment of all addresses,
examples, units of measure and screen shots.

Internationalization and localization comprise the whole of the effort
involved in developing products for several regional markets. While
internationalization is "stuff" you have to do only once during the
programming of a software application, localization is "stuff" you
have to do over and over again for each regional market. Therefore,
the more "stuff" you push into internationalization out of
localization, the less complicated and expensive the process
becomes.

(Figure 1: Software user interface element: original in English and
localized German version)

2. Terminology of software products

2.1 Terminology as a means of communication and knowledge
transfer

When companies develop software for end-users, they need to
ensure that their customers will be able to use the program for the
intended purpose. Therefore, each software product needs to be
equipped with a user interface, an instruction manual, and other
types of documentation. Companies invest a great deal of effort in
determining details about typical users of their software, what users
really need, and how explicit, detailed and intuitive the user
assistance material must be. Depending on the type of the software
product involved, this material varies in terms of length, complexity
and intuitiveness.

The complexity of the software also influences the extent to which
special language is needed to enable the end-user to operate the
program in a correct and efficient way. Special language and, above
all, the domain-specific terminology involved is not only an essential
part of the written user assistance material (e.g. the instruction
manual), but also of the interface between the user and the
program. Therefore, terminology is the primary means of
communication and knowledge transfer between software
developers and end-users via the user assistance material.
Consequently, avoiding indeterminate, incorrect and inconsistent
use of terms and icons must be one of the major goals of software
development, quality assurance, and usability testing.

2.2 New terms for new concepts

The Information Technology (IT) industry, like any emerging
industry, has seen the development of new technologies, processes,
and products. Terminology theory refers to these new entities and
processes in the real world as objects. When new (concrete or
abstract) objects are invented or created, new concepts, or
cognitive representations of the objects, are established and new
terms or graphical representations like icons are needed to
communicate about them.

New terms can be coined by creating new forms, by using existing
forms, or by borrowing terms from other languages. Before creating
a new term, it is necessary to ascertain whether a term already
exists for the concept in question. Additionally, those responsible for
creating terms need to respect well-established usage: even if the
terms are poorly formed or poorly motivated, they should not be
changed unless there are compelling reasons, such as cultural
sensitivity or homonymy with other terms within the same domain.

2.3 Transparent terms are easier to grasp

All different types of users need to be able to interact intuitively
with the software and understand the user assistance material. A
transparent terminology enables the user to clearly understand
underlying concepts. If a new term needs to be created or selected
to express a certain feature or a particular operation of the
software, a morphological motivation is the best criterion for
constructing a new term. For example, terms like page setup or
error message are in most cases easy to grasp because the
morphological components of the terms are well known by the user.

As a result, the meaning of the term can be directly derived from
the meanings of the parts of the term. Sometimes the relation
between the components of a motivated term is indeterminate and
may cause problems, especially in languages like English or
German: is a data network identification code the identification code
of the network, for the network or within a network? A translator
working from English into German will be untroubled by this
distinction because the two languages are equally abstract, but
someone translating into a Romance language such as French or
Spanish must know precisely what the relationships are between
the critical elements in the multi-word term.

Use of semantic motivation can create terms that are slightly more
difficult to understand. In most cases semantic motivation is
associated with term creation procedures such as terminologization
or transdisciplinary borrowing, leading to homonymy across subject
fields. Examples from the software industry included terms like
worm, virus, infected file or vulnerability. Such terms require that
the user resolve indeterminacy by transferring the meaning from
general language or other subject fields to the new concept as it is
used in computing. But if the motivation of the term is understood
by the end-user and the usage of the term is established by the
community, it becomes transparent and linguistically economical in
the user interface and other support materials (e.g. the term mouse
for a computer pointing device).

The effort of creating transparent and motivated terminology
throughout the user interface and all of the user assistance material
is one of the major preconditions for user empowerment. If users
encounter just one indeterminate term, or even two, in a computing
experience, they might not be dissuaded from further use of the
program; each terminology problem by itself is unlikely to frustrate
users during their experience using the software. However, the
cumulative effect of multiple terminology problems (such as lack of
transparency or clear motivation, for example), can have an
exponential impact on levels of frustration and computer anxiety.

2.4 Appropriate terms will cause less confusion

The language and the terminology in software products need to be
appropriate for the user group. Appropriateness refers not only to
familiarity of terms to the end-user, but also requires that the
terms, instructions or messages don't cause confusion or insecurity
to end users, including those generally unfamiliar with computers
and software products. The following example will illustrate this
criterion: During a particular installation process, the user needs to

select either express installation (to install only components needed
in the current configuration of his or her system) or network
installation (to install all components, even those not necessary for
his or her particular system). In this example, the user is
confronted with the indeterminacy of both terms used - he or she
could worry about missing something in the case of selecting
express installation, a decision which would actually be the more
appropriate choice. In order to avoid confusion and misguidance the
software developer should use terms such as optimized installation
and complete installation, terms that avoid indeterminacy, more
appropriately represent the concepts behind the terms and enable
the end-user to make the right choice during installation.

Another aspect of appropriateness of terminology deals with
connotations of terms. Terms created should be as neutral as
possible; those creating terminology should avoid, in particular,
choosing terms that have negative connotations. One prominent
and controversial example is the pair of terms master/slave, which
was established many years ago in the IT industry. At that time the
negative connotations of slave were not taken into account. This
instance is a good example of transdisciplinary borrowing, where
the concepts of master and slave are drawn from instrument control
technology (hydraulics and pneumatics). In English, this analogy is
very strong, and the negative implication of the root meaning of
slave has long since become a frozen metaphor, whereas it retains
its pejorative connotation in languages where other terms are used
for control systems. Several software producers are now replacing
the term where possible with master/subordinate or, if applicable,
with client/server. In many cases in the past, negative connotations
of terms have been discovered only when localizing them, because
connotations are very much culturally and linguistically dependent.

2.5 Consistency is the overall prerequisite

Another major objective of terminology indeterminacy that has an
impact on end-users is the consistency of terminology. In terms of
consistency, the main goal should be that only one term should
exist for each concept, and no synonymy or homonymy should exist
within each domain. This goal is not so easy to achieve in a complex
and multifaceted development environment because different
developers, product teams and companies all create terms in
different places and time periods.

The end-user will be very frustrated if several terms are used for
the same concept within the user interface, the help system, the
printed documentation, the packaging material and the web

presentation of one specific software product. Software developers,
user interface designers, technical writers and website authors all
have to agree very early during the development process on what a
certain feature of the software will be called. When, for example,
the enter key is called enter key in the user interface and in the first
ten pages of the manual, but on page eleven it is called return key,
the user will assume that this is something different. Thus,
inconsistent terminology impedes communication between the end-
user and the software product and lessens computer and software
ease-of-use.

While terminological consistency is the key to ease-of-use even
within one product, as illustrated above, in general, software is not
used in its stand-alone form. Therefore, the terminology used in a
certain product must be also consistent with the terminology of
other software products used together. Terminology management
is, in this way, crucial to interoperability. As an example, the terms
used in a printer set-up procedure within a word processing
application that is embedded in an office package that runs under a
specific operating system must all be compatible and consistent
with the terms used in the "surrounding" programs.

Consistent terminology increases user confidence by decreasing
indeterminacy caused when a single concept is associated with
more than one term and enables associative learning (when related
terminology reflects a single principle). Consistency also facilitates
interoperability among users' many integrated software products.
As a result, establishing terminological consistency is one of the
most important aspects of user-friendly software products and
therefore of user empowerment.

Idioms, colloquialisms, slang and analogies are especially culture
and language dependent and often cause similar problems of
indeterminacy during the localization process, as do problems
encountered with the use of humour and sarcasm. Avoiding these
stylistic features in the English version of the software will not only
facilitate the localization process, but will also empower end-users
who are non-native English speakers who have to use the English
version of the software.

3. Terminology management for software localization

3.1 What are the terms to be managed?

ISO 1087 defines the term as a "verbal designation of a general
concept in a specific subject field." The term serves as the
representation of the concept. We can write it down, think it, say it

out loud, and use it for communication. Some terms consist of more
than one word. These terms are called multi-word terms or
compounds. In Germanic special languages such as in English and
German, multi-word terms usually consist of several nouns or
adjective-noun combinations. The way words combine to form
terms varies from language to language.

Example 1: Single-word terms: printer

 Multi-word terms: laser printer

 serial port

 printer with single-sheet feed

There is no doubt that software user interface terms used in menus
and dialog boxes like file or options are representing concepts in the
traditional terminological view. But linguistic elements like open file,
save as ... or insert table also represent concepts of the user
interface although they are traditionally classified as phrases.
Similar problems arise with menu items like templates and add-ins,
spell check and grammar or convert into Adobe PDF and send via e-
mail that are not seen as single concepts but as combination of
concepts.

Figures 2 and 3 show examples of terms in menus and dialog boxes
of an English user interface.

(Figure 2: Menu)

(Figure 3: Dialog box)

Linguistic elements used in error or system messages are much
more problematic. The following list shows examples of this type of
messages:

Example 2: paper jam

 unexpected error in application program

 not enough memory for display the graphic file

 please check network configuration

 file %f could not be opened

All these linguistic units are identified as individual items for the
localization process by specific localization tools such as Catalyst or
Passolo. They should be managed and documented as individual
entries in terminology management systems and therefore also
understood as localization concepts.

Accepting the view that all these linguistic units of software user
interfaces are terms in a broader sense, problems arise when
identifying and differentiating the concepts and objects behind
these terms. If we have installed the same version of a software
product on several computers, we certainly have different objects
for one concept represented by an individual term. E.g. the term
Print... in different installations of MS Word 2003 represents exactly
one concept with several objects in each installation. But represents
Print... in different versions of a software, e.g. in MS Word 2003
and MS Word 2007, or in different software products, e.g. in MS
Word 2003 and MS Excel 2003, different concepts? There are
arguments supporting this differentiation referring to the different
functionality behind these menu items and therefore to the different
characteristics of the concepts behind the term. A consequence of
this will be that Print... has to have several terminological entries in
a concept-oriented terminological database.

This more software localization oriented view to terminology theory
and terminology management not only influences a specific
understanding of term, concept and object for this domain, but also
affects other data categories for terminology management such as
definition and context (see Schmitz 2008).

3.2 Terminological data modelling for software localization

The previous discussion of terminology management principles and
methods supplies the basis for a specific data modelling applicable
for terminology in software user interfaces. From June 2005 to May
2007, the national funded research project DANDELION (Data
Modeling and Data Exchange for Software Localization) was carried
out at Cologne University of Applied Sciences. The main objective of
the project was to develop methods for a more adequate
documentation and management of software user interface texts in
localization-specific tools and formats. One of the results was the
design of a data model for software-specific terminology
management and the specification of adequate data categories for
that model.

Figure 4 shows the Dandelion data model for localization specific
terminology management with German and English as sample
languages.

(Figure 4: Dandelion data model)

Special attention was laid on the data category <LION-Type> that
indicates the software user interface element the term belongs to.
Possible values for <LION-Type> are e.g. menu item, dialog box,
check box, radio button or tool tip.

One of the industrial partners of the Dandelion project, SDL-Trados,
implemented the data model as a predefined termbase template
within the terminology management software MultiTerm 2007 (see
Figure 5 and 6).

(Figure 5: Dandelion termbase template in MultiTerm 2007)

(Figure 6: Data categories of the Dandelion data model with
properties of <LION-Type>)

5. Conclusion

Innovative domains as well as new concepts, terms and icons are
characteristics of software products and their documentation. The
development of user interfaces, online help systems, user manuals,
websites etc. requires the application of terminological working
methods and principles, especially if we focus on software
internationalization and localization. Aspects of term creation and
term selection, such as motivation, transparency, appropriateness
and consistency have to be taken into consideration in order to
provide the software user with clear and determinate terminology.

Since the exact definition and consistent use of terms in all parts of
the software product is a fundamental precondition, software
localization requires appropriate terminology management.
Traditional approaches for designing and modelling terminology
management solutions have to be adapted to the specific needs of
user interface terminology. The Dandelion data model is a first step
in the right direction.

Author

Prof. Dr. Klaus-Dirk Schmitz, full professor of terminology
studies and language technology at Cologne University of Applied
Sciences, President of the International Information Center for
Terminology (Infoterm), Vice-president of the German Terminology
Association and Chairman of the German National Standards
Committee "Systems for managing terminology, knowledge and
content".

References

Arntz, Reiner; Picht, Heribert; Mayer, Felix (2004): Einführung in
die Terminologiearbeit. Hildesheim: Olms.

Esselink, Bert (2000): A Practical Guide to Localization.
Amsterdam/Philadelphia: John Benjamins.

Galinski, Christian; Picht, Heribert (1997): "Graphic and Other
Semiotic Forms of Knowledge Representation in Terminology
Management". In: Wright, Sue Ellen; Budin, Gerhard (eds.):
Handbook of terminology management (Volume I).
Amsterdam/Philadelphia: John Benjamins.

ISO 704 (2000): Terminology work - Principles and methods.
Geneva: ISO.

ISO 1087-1 (2000): Terminology work - Vocabulary - Part 1:
Theory and application. Geneva: ISO.

ISO 12620 (1999): Computer applications in terminology - Data
categories. Geneva: ISO.

ISO 16642 (2004): Computer applications in terminology -
Terminological markup framework (TMF). Geneva: ISO.

Mayer, Felix; Schmitz, Klaus-Dirk; Zeumer, Jutta (eds.) (2002):
eTerminology - Professionelle Terminologiearbeit im Zeitalter des
Internet. Akten des Symposions, Köln, 12.-13. April 2002. Köln:
Deutscher Terminologie-Tag e.V.

Reineke, Detlef; Schmitz, Klaus-Dirk (eds.) (2005): Einführung in
die Softwarelokalisierung. Tübingen: Narr.

Russi, Debora; Schmitz, Klaus-Dirk (2007): DANDELION-Projekt.
eDITion, 1/07, 18 - 19.

Schmitz, Klaus-Dirk (2004): „Terminologiearbeit,
Terminologieverwaltung und Terminographie". In: Karlfried Knapp
et al. (eds.): Angewandte Linguistik. Ein Lehrbuch. Tübingen:
Francke, 435 - 456.

Schmitz, Klaus-Dirk (2005): "Terminological Data Modelling for
Software Localization". In: Nistrup Madsen, Bodil; Erdman
Thomsen, Hanne (eds.): Terminology and Content Development -
TKE 2005, 7th International Conference on Terminology and
Knowledge Engineering. Kopenhagen: GTW, 27 - 35.

Schmitz, Klaus-Dirk (2006): "Data Modeling: From Terminology to
other Multilingual Structured Content". In: Wang, Yuli; Wang, Yu;
Tian, Ye (Eds.): Terminology, Standardization and Technology

Transfer, Proceedings of the TSTT'2006 Conference. Beijing:
Encyclopedia of China Publishing House, 4 - 14.

Schmitz, Klaus-Dirk (2007a): "Indeterminacy of terms and icons in
software localization". Antia, Bassey Edem (ed.): Indeterminacy in
LSP and Terminology. Amsterdam/Philadelphia: John Benjamins, 49
- 58.

Schmitz, Klaus-Dirk (2007b): „Die Bedeutung der
Terminologiearbeit für die Softwarelokalisierung". In: Thelen,
Marcel; Lewandowska-Tomaszczyk, Barbara (eds.). Translation and
Meaning, Part 7. Maastricht: Universitaire Pers Maastricht, 29 - 36.

Schmitz, Klaus-Dirk (2008): „Überlegungen zu Begriffen und deren
Repräsentationen in Softwareoberflächen". Paper presented at the
LSP 2007 Conference Hamburg (forthcoming).

Schmitz, Klaus-Dirk; Wahle, Kirsten (eds.) (2000):
Softwarelokalisierung. Tübingen: Stauffenburg.

Wright, Sue Ellen; Budin, Gerhard (eds.) (1997): Handbook of
terminology management (Volume I). Amsterdam/Philadelphia:
John Benjamins.

Wright, Sue Ellen; Budin, Gerhard (eds.) (2001): Handbook of
terminology management (Volume II). Amsterdam/Philadelphia:
John Benjamins.

This article was uploaded to http://www.languageatwork.eu in July
of 2009 and published under a “Creative Commons license
Attribution Non-commercial (by-nc)” for more information please go
to: http://creativecommons.org/about/license/

 	

