
1

Technical Report DAIMI/PB-530, March 1998.

Digital Systems Synthesis from Petri Net Descriptions*

Norian Marranghello

Datalogisk Institut
�rhus Universtitet

norian@daimi.aau.dk

Abstract. The design of digital systems has reached a degree of complexity that
virtually prevents their effective realization without computer aided design tools.
Several languages were already proposed to be used in such tools, each with the
objective of capturing as much hardware characteristic as possible. During
about the last fifteen years the importance and use of Petri net as a language for
modeling digital systems have greatly increased. Many computer aided design
tools dealing with Petri nets for the analysis, verification and synthesis of this sort
of hardware have been recently developed as well. With such a growing
importance in mind, this report aims at presenting an overview of the research
going on the application of Petri nets to the description of digital systems and the
synthesis of the corresponding hardware from these descriptions.

1 Introduction

The automation of the synthesis process of digital systems is an issue whose importance steadily
grows with the constant increase in the complexity of such systems. The use of Petri nets in the
modeling and simulation of complex systems has proved very worthwhile. Petri nets have
already been successfully used for the specification, analysis, and synthesis of digital systems for
several years by many groups around the world. The main goal of this report is to provide an
overview of the research going on the synthesis of digital systems from Petri net descriptions.

The first step in the design of a digital system is its specification. The very first ideas are usually
presented in a natural language. The task of the designer is to develop the idea into a collection of
hardware and/or software components to perform the required function(s).

* The relevant portions of this report, mainly those in section 3, were submitted for revision by the
individuals referred to in each paragraph. All comments received from them were incorporated in the
text. Even so, some misunderstanding may still remain. Therefore, whatever comments about other
peopleÕs work, included herein, should be regarded as reflecting the unique impression and
understanding of their work by the author of this report.
 On leave from the Department of Computer Science, S�o Paulo State University, Brazil; with a
post-doctoral fellowship from the Funda��o de Amparo � Pesquisa do Estado de S�o Paulo, Brazil,
grant FAPESP-96/11164-7.

2

Kishinevsky et al.[01] present an example anecdote that, in my opinion, illustrates very well the
vagueness of such kind of specification. Their illustrative story is about the following: A soldier
in the front comes to his commanding officer with the idea of building a weapon to reach far
beyond the enemiesÕ lines so as to cut their supplies. Weakened, the opposing military forces
would more easily be defeated. The soldier was immediately sent to the nationÕs president. When
asked how to build such a magnificent weapon the soldier replied that his duty was to suggest the
idea. Likewise, in order to develop it into a practical device there was a full team of designers
much more qualified than him. Although Kishinevsky and co-workers offer a slightly different
version of the joke, using it in a somewhat unlike context too, it serves very well to show the
level of abstraction in which an initial specification can be proposed. The designer can be
presented with specifications suchlike the one above and has to eventually come up with a
system to carry out the required set of functions.

Considering such a broadness it can be argued that the steps leading from an initial specification
towards a final implementation of a system may be thought of as a process of synthesis. This is
certainly the case that the scope of the terms Òfinal implementation of a systemÓ and Òprocess
synthesisÓ are too coarse. Thus, more specific definitions for them are in order. These two terms
can be represented by three words that will be explained in the sequel, namely: system,
implementation and synthesis.

LetÕs begin by saying that all through this report the word system will mean a digital system, i.e.,
those systems that manipulate discrete elements of information, unless strictly stated on the
contrary.

The second word, implementation, can have two different scopes, i.e., it is used both in the
software and hardware contexts. In the former context it is assumed to be the generation of a
piece of code written in some computer programming language. This code should be ready to use,
if a low-level language is employed, or directly convertible to a machine understandable language,
when the code is produced in a high-level programming language. In the latter context it is
interpreted in this report as the actual generation of an integrated circuit directly into a silicon or
some other suitable substrate.

The third word, synthesis, needs a bit more elaborate and longer explanation, for which some help
from Gajski and co-workers is greatly welcome. In this report it is adopted the more general
definition of synthesis as the process of refining a description given in some higher level of
abstraction into another one at a lower level of abstraction. Considering the above definition of
synthesis and the division of the design space as proposed by Gajski and Kuhn[02], it is possible
to define high- and low-level synthesis as being Òa translation from a behavioral description into a
structural descriptionÓ[03], and a translation from a structural description into a geometrical one,
respectively.

It is possible to identify several levels of abstraction within each region of the design space in
which to describe a digital system. From a more theoretical point of view down to a more

3

concrete one at least four levels of abstraction can be recognized in the composition of the
structural region, namely the architectural, register-transfer, logic, and circuit levels. At the
architectural level the structure of a system is described as a set of processors, memories,
controllers and interfaces. At the register-transfer level the structure of the system is split into a
data path and a control unit. The data path is composed of a set of registers to store information
and some functional units to manipulate the data while transferring them among the registers. The
control unit is a combinational circuit used for sequencing the actions in the data path. At the
logic level the structure of the system is described in terms of logic gates and their timing
relationships. At the circuit level the system is described through a set of transistors with the
corresponding types, parameters and sizes.

The state-of-the-art approach to synthesize digital systems consists in the utilization of the so
called co-design techniques. In this case the design process usually starts with a behavioral
specification of the system. The initial specification is progressively refined in order to obtain the
best match between its software and hardware components. After a series of refinements, the
synthesis of the system is concluded with the implementation of both its software and hardware
constituent parts.

This report is focused on the synthesis of hardware. Therefore, the reader interested in how to
synthesize software or in more details about co-design is referred to the literature on the
subject[04-12].

As for the hardware portion, the behavior of the system is initially provided in a suitable
hardware description language. At the beginning of the design process the system is described
from such a behavioral perspective. Then, a transformation from the behavioral to a structural
viewpoint, frequently at the architectural level, is carried out. Thereupon, this description is
gradually refined to lower levels of abstraction. As a rule, the architectural description of the
system is further detailed down to the register-transfer level. At this point, the description of the
system consists of an interconnection of registers, multiplexers and some other high-order logic
entities, including some time dependence among them as well. At this stage, the so called high
level synthesis process is completed. This is also, the level of detail in which most existing co-
design systems provide the description of the hardware.

Next, an intermediate step converting the register-transfer description into a logic level one is
needed. It is considered here as a changeover procedure because it is not clear at the moment
whether this is part of a high- or low-level synthesis system. Existing synthesis approaches, at
either level, may include or not this kind of transformation. Anyhow, the result is a description
of the system in terms of (possibly simple) logic gates and a reasonably detailed timing
relationship among such entities.

Typically, during the low level synthesis process the gates constituting the logic level description
of the system are converted to transistors, whose parameters, suchlike sizes and types, are
computed taking into account the timing information available. From the circuit level structural

4

description a geometric one is then contrived. Analogously to the structural region of the design
space, the geometrical one can be seen from several levels of abstraction. Nevertheless, letÕs
consider here that the resulting geometrical description be a layout of the final circuit, containing a
profile of the geometric shapes to be used in the manufacturing of the desired system. Each of
these shapes, such as rectangles, squares, and so on, represents a particular type of substrate and
was conveniently sized in order to reflect the characteristics of each transistor in the proposed
hardware.

Perhaps VHDL is the most popular hardware description language at the moment. Nevertheless,
Petri nets are becoming continually more popular for the description of digital systems. This is
especially true in the case of asynchronous circuits, where a great likeness of some fundamental
principles to those of Petri nets can be observed. During the last 15 years or so the importance
and use of Petri nets as a design aid to digital systems have greatly increased. Two main reasons
can be identified as catalysts of such a trend. On the one hand, Petri nets constitute a language
capable of capturing causality relations, concurrency of actions and conflicting conditions from
digital systems in a natural and convenient way. On the other hand, Petri nets embed a theory
that allows the description, analysis and verification of digital systems in a formal yet easy to use
basis.

The rest of this report is organized as follows. In section two a brief review of the main Petri net
related techniques used during the design of digital systems is provided. In section three an
overview of the work going on the subject title is given. In section four a high-level Petri net
extension is briefly described and some ideas that may lead to the development of a synthesis
system are presented. Final comments are offered in section five.

2 Techniques

In this section it is offered an overview of the main Petri net related techniques used during the
design of digital systems. The reader may find some resemblance with the expositions by
Yakovlev and co-workers[13, 14]. This is indeed the case. Notably this section of the report was
positively influenced by their notes. As a matter of fact, this section is mostly a summary of the
relevant parts of those articles, which is included here for two reasons: first to serve as a
reference for the reader not quite familiar with some specific terms, second for the sake of
completeness of the present overview.à

It is assumed that the reader has a basic knowledge both of Petri nets and of hardware. Those
unfamiliar with Petri nets could have profit from the report by Murata[15] and the books by

à It is worth raising a point here: as a summary, the present text cannot be as complete as the
original papers, its virtue should be to reduce a many-pages reading to 2 or 3 pages, highlighting what
the author of the summary regards as more relevant. Furthermore, This text is not only a summary,
it includes some personal views and interpretations of the author. Thus, at no moment should the
reader understand the present text as containing anything else but the authorÕs personal view and
understanding of the several cited works.

5

Reisig[16] and by Jensen and Rozenberg[17]. Those unfamiliar with hardware are referred to the
books by Gajski et al.[03] and by Kishinevsky et al.[01]. Those familiar with both topics that want
more detail on the material presented here are referred to the papers by Yakovlev et al. cited in
the former paragraph. Finally, those familiar with the specific field of application of Petri nets to
the synthesis of digital systems may well want to skip the reading of this section.

The design process of a digital system comprises roughly three parts: modeling,
analysis/verification, and synthesis; each of which is informally explained below.

The formal verification of a system requires it to be described through a formal model. The
modeling language considered here is Petri net, which is a bipartite directed graph, i.e., a graph
with two kinds of vertices: local states (usually referred to as places) of the net, graphically
represented by ellipses, and actions (usually referred to as transitions) of the net, graphically
represented by rectangles. Each transition is connected to one or more input places through
directed edges, which have their origin at a place, and end at the considered transition. Each
transition is also connected to one or more output places through directed edges, which originate
at the transition, and end at the output place(s). The global state of the system (also known as
net marking) is represented by the assignment of tokens to each of the net places, resulting in a
general net marking. A change to the net marking can be seen as the variation of the token
assignments, i.e., by moving the tokens around through the places. A change in the net marking
corresponds to the execution of actions (known as transition firing or occurrence) according to the
following basic rules:

(a) a transition is enabled if each of its input places has at least one token;
(b) any enabled transition can occur, and its firing is represented by removing a token

from each of the corresponding input places and inserting a new token in each of
its output places; and

(c) enabled transitions can occur concurrently as long as they are independent, i.e., use
different tokens.

According to such a definition, a Petri net can be represented by a tuple PN = (P, T, F, Mo) where
P is the set of places, T is the set of transitions, F is a flow relation defining directed edges
connecting either places to transitions or transitions to places, and Mo is the initial marking of the
net. Next, a labeled Petri net is defined as a Petri net in which every transition is labeled with a
symbol from an alphabet A, originating the corresponding labeling function L : T ® A. In order to
bring this theory closer to digital systems a signal transition graph (STG) is defined as a Petri net
whose transitions are labeled with the names of binary signal transitions, i.e., the alphabet
considered is the set A = {a+, a-, a ~}. The elements of the alphabet correspond to the upward (a+),
downward (a-) and either (a~) transition of signal a. Then, an STG can be viewed as a triple
STG=(PN, A, L), where its components are defined as above. As an example, Fig.1 presents de
modeling of an inverter both by Petri nets and STGs. In Fig.1(b) it is assumed that the state of
the system, from which the Petri net fragment was extracted, was reset so that the output y is
equal to zero; it is also assumed that in some other part of the system an action producing a one-

6

to-zero (x : 1 ® 0) transition on signal x will eventually occur, thus, removing the token from
place x = 1, generating a token in place x = 0, and enabling the upward (y+) transition of signal y.

The model produced must be analyzed, i.e., the designer needs to answer some questions about
the behavior of the system. Furthermore, it is desirable to verify some characteristics of the
system; or putting it in another way, it is desirable to rigorously prove that the designed system
possesses some formally stated attributes. In order to do so, three approaches are considered,
namely: reachability graphs, symbolic traversal, and partial orders.

Reachability analysis consists in producing a graph containing all possible markings of the net
and all possible sequences of firings. The main problem with this method is that the number of
possible states grows enormously even for small examples, causing an effect known as the state
explosion problem. To avoid this problem Valmari[18] proposed a method, named stubborn sets.
In this method only one of a group of concurrently enabled transitions is analyzed at a time.
Nonetheless, in order to overcome the state explosion problem, only part of the reachability
graph is generated. Consequently, not all properties of the system can be analyzed. For instance,
Valmari proved that his method can always detect deadlocks of the system. However, by hiding
some states of the system, it may not be possible to prove the completeness of the state coding
(CSC) property[19], which means that it may not be feasible to verify that the logic circuit
corresponding to the modeled system is implementable. Furthermore, as the states of the system
are manipulated and not all of them are generated this procedure may conceal the causal ordering
of events preventing a timing analysis of the model.

Figure.1 - Example of an inverter logic gate (a);
its description by a Petri net fragment (b);
and the corresponding STG representation (c).

x y

(a)

y=0

y=1

x=0

x=1

y- y+

(b)

y+

y-

x-

x+

(c)

7

The second approach starts by constructing a k-variable boolean function where each variable
represents one place of the net and expresses the binary condition of existence or not of a token
in the corresponding place. In such a way the net is described through a characteristic function,
which in turn is represented as a binary decision diagram (BDD)[20]. A transition function,
transforming markings into one another, is computed for each enabled transition at each marking.
By successively applying the transition function to each marking, the symbolic image of the full
state-space is generated. As compared to the reachability analysis, the symbolic traversal
approach has a better performance due to boolean characterization. Covering all reachable
markings it is also possible to prove the CSC property with this technique. Nonetheless, there
still may be not enough information about the causality ordering of events in order to proceed a
timing analysis of the model.

The partial ordering representation is given by the Petri net unfolding[21, 22]. Informally, the
unfolding of a net is its transformation into another equivalent one in which the cycles are broken
and extra places are inserted to preserve the semantics of the original net. With this approach
there is included enough information to cover all possible markings. As the cycles in the original
net are broken, it could be the case that the information about the causal relationship of events
became hidden by such cuts. Though, Semenov and Yakovlev[23] used it for the analysis of timed
models of asynchronous circuits. In order to do that, time-state classes are associated to the
markings produced allowing the timing analysis.

The third part of the design process is the actual synthesis of the desired system. To this
purpose two approaches are possible. They are the syntax directed and the STG-based
approaches, both of which are commented bellow.

The syntax directed synthesis starts with a description of the system as a labeled Petri net. The
components of this net are effectively replaced with circuit elements. For this to be feasible the
net must be at least bounded, if not 1-safe, so that the generated circuit have a meaningful
implementation. There are two ways to generate the required circuit, they are the place-to-latch
and the event-based mappings. The former maps each place in the net to a memory latch (flip-
flops in the case of 1-safe nets and up/down counters for bounded ones) and each transition to
some appropriate random logic at the input of the corresponding latches. This can be used to
synthesize relatively large circuits as long as the constraints on area and speed are not very
critical. The latter is an extension of PatilÕs mapping. He used six elements and eight modules
composed of these elements to represent Petri net structures[24-26]. This extension, uses a seventh
component, named decision-wait, that allows the synchronization of events in different groups of
mutually exclusive signals. This gives way to the mapping of unsafe, although bounded, Petri
nets. Syntax directed approaches require that all transformations be done at the Petri net level.
The reason for this is that doing any change at the circuit level would at least risk destroying the
semantic soundness of the circuit in respect to the verified net.

A complimentary technique takes the system specification in terms of an STG, and generates its
state graph. The state graph of an STG is the binary encoded form of the reachability graph of

8

the corresponding labeled Petri net. Using boolean minimization techniques a boolean function is
derived from the state graph. Thus, the desired circuit can be generated through one of a number
of methods available[27, 28].

3 Applications

The approach adopted by a group in Link�ping, Sweden, was implemented in the CAMAD high
level synthesis system[29]. The system is specified in a sub-set of the VHDL language named
SÕVHDL[30]. Such specification is then mapped onto an extended timed Petri net (ETPN) model
consisting of two separate but related parts, namely, a control structure and a data path[31]. The
available parallelism is extracted and a register transfer level description of the hardware is
produced[32]. The data path is represented as a directed graph where the nodes capture data
manipulation units such as data storage elements and arithmetic operators, and the arcs represent
the interconnection of these elements. The control structure is represented as a timed Petri net
with restricted firing rules, as defined in PengÕs Ph.D. work[33]. Furthermore, the control structure
communicates by issuing control signals to and receiving conditional signals from the data path.
On the one hand, the data path graph is a register transfer level description extracted directly
from the VHDL specification. On the other hand, the timed Petri net description of the control
structure as well as the corresponding communication signals are usually implemented as
hardware through the synthesis of one or more finite state machines, depending on the style
chosen by the designer of the system.

A group in Paris, France[34], developed an approach to the high level synthesis of embedded
systems based on the description of the system in VHDL[35], and the translation of the
description to a model named interpreted and timed Petri nets (ITPN)[36] for formal verification
of its properties. A system of boolean equations from the Petri net description is constructed
first. System properties are then investigated using symbolic analysis of such equations[37].
Finally, the system is synthesized into a register level VHDL version for implementation with
ordinary synthesis tools for VLSI circuits[38].

A group in Lisbon, Portugal, is developing a framework for the design of complex reactive
systems; applications to programmable controllers were developed. The system is defined as a
reactive Petri net[39] which is a Petri net class based on colored Petri nets (CPNs for short)[40],
synchronous interpreted Petri nets[41] and StateCharts[42]. The model includes transition
priorities and hierarchical structure constructs[43]. The analysis of the model is performed using
the associated state space. The system is still under elaboration, however it is a goal of the
development team to support the implementation of hardware on programmable logic
components such as CPLDs and FPGAs, using direct and indirect synthesis of the Petri net
model, within a co-design development environment.

The work described in this and the next three paragraphs reflects some results of international
cooperation that is described here as being centered in Zielona Gora, Poland. This is the outcome
of several different cooperations established by Prof. Adamski (Technical University of Zielona

9

Gora) with groups in Germany (Ilmenau), Portugal (Minho), and the UK (Bristol). The picture is
about as follows: Prof. Adamski started research in Poland and had good links with the group
headed by Prof. Fengler, in Ilmenau. Later he started collaborating with Prof. Dagless, in Bristol,
UK. Afterwards, he spent some time as a professor at the University of Minho. At this stage he
collaborated with two teams: one headed by Prof. Proen�a and the other by Prof. Monteiro,
establishing a link between the groups in Ilmenau and Minho. Now, so to speak, a traditional
cooperation of Zielona Gora with both Ilmenau and Minho seems to remain strong.

One of the works mentioned in the beginning of the previous paragraph is going on the synthesis
of distributed discrete controller systems using a formalism based on Petri nets and knowledge
based theories[44]. Such a synthesis system generates rule based formal behavioral specifications
of logic controllers in the so called Petri net specification format (PNSF)[45]. The rule based
specification is a description of the system used for the symbolic verification of its
characteristics. Such a description can afterwards be transformed into a format, e. g. VHDL[46],
accepted by some commercial field programmable compilers available, which are then used to
synthesize the controller[47]. The PNSF description is directly mapped into the hardware
library[48].

Another work describes an electronic computer aided design framework (SCBA) for the
specification, validation, and high level synthesis of synchronous interpreted Petri nets (SIPN)
based controller[49]. SIPN is an extension of ordinary Petri nets, to accomplish the specification
of asynchronous parallel controllers. Within this framework, reachability graph analysis of the
SIPN description is used to investigate the properties of the modeled system[49]. A compiler
automatically translates the SIPN specification into a register transfer level VHDL description
that is used for simulation and synthesis purposes by a package that accepts the VHDL subset
generated by the compiler[41]. Recently, the SIPN model was improved to include hierarchies and
object orientation concepts[50]. The new model, named shobi-PN, has been developed to include
both the parallel controllers and the data path behavioral representation[51]. The shobi-PN model
also extends the SIPN in the hierarchical mechanisms, since it supports both the use of hierarchy
in the parallel controller specification (macronodes) and the use of hierarchy in the data path
descriptions (macrotokens), exploiting the use of objects to model the data path resources[52].
The SOFHIA design flow supports the shobi-PN specifications by reusing the CONPAR/VHDL
compiler and the SCBA environment and by generating SIPN specifications written in the
CONPAR intermediate language[53].

In a third work[54], a methodology for the high level synthesis of synchronous controllers was
presented. A Petri net formal specification of the controller is the starting point of the design
process. The Petri net specification is represented by a binary decision diagram (BDD). The
behavioral analysis and the verification of the properties of the modeled system are accomplished
by boolean manipulation on the characteristic functions of the BDD representation. Using the
result of a symbolic traversal of the Petri net and syntax directed techniques, a register transfer
level description of the circuit is generated. The logic circuit is finally optimized and synthesized
as either a field programmable gate array (FPGA) or into ASIC technology.

10

An abounding groundwork on the theoretical aspects of the design and synthesis of speed-
independent asynchronous circuits has been done along the years. A strong research branch
started some 20 years ago with the work of Rosenblum on Signal Graphs[55] a model that evolved
such as defined by Rosenblum and Yakovlev[56]. Independently, Chu investigated Signal
Transition Graphs[57], a model similar to Signal Graphs. The term Signal Transition Graphs is
now commonly used to identify this form of notation. The relationship between STGs and the
original MullerÕs model of speed-independent cirtuits has been studied by Kishinevsky et al.[01]

and by Yakovlev et al.[58]. Centered in such a model Cortadella, Kishinevsky, Kondratyev,
Lavagno and Yakovlev developed a theory[59-61] that was used by Cortadella in the
implementation of the PETRIFY computer aided design tool[62]. A brief description of such a tool
is presented in the following paragraph.

The tool PETRIFY was implemented by Cortadella at the Technical University of Catalunya, in
Barcelona, Spain[62]. In PETRIFY the behavior of the system can be described as a Petri net, an
STG or a transition system (TS). A TS is a special kind of state graph in which arcs are labeled
with abstract names of events[61]. The initial description of the system is analyzed and a simpler
one is produced by PETRIFY either in Petri net notation or as another STG. The digital system is
analyzed utilizing state-based models such as those described by Cortadella et al.[61]. After the
optimization of the specification the synthesis, i.e., the final gate selection from a given
technology library is performed through the boolean function manipulation of the state graph
information. A net list of a speed-independent logic level circuit corresponding to the initial
behavioral specification is generated as the end product of PETRIFY.

Besides the work directly related to PETRIFY, the above people also made independent research
related to both Petri nets and the design of asynchronous circuits. For example:

Cortadella worked with Pastor on a structural method for the synthesis of speed-independent
circuits from STGs[63]. Cortadella also worked with Roig on the verification of asynchronous
circuits specified with STGs. This verification approach is implemented in the tool VERSIFY[64].

Kishinevsky, Kondratyev and Taubin developed research on the synthesis of speed independent
circuits from Petri net like models with OR-causality[01, 65]. Their concepts were implemented in
the tool FORCAGE[01]. They also worked on a method for the verification of asynchronous circuits
by unfoldings[66], which is implemented within the logic synthesis tool SIS[67].

Lavagno made research on the synthesis of asynchronous circuits with bounded delay model,
starting from STGs, while at the University of California at Berkeley, USA[68, 69]. This model is
implemented in the logic synthesis tool SIS[67].

Yakovlev, together with Koelmans and Lavagno, developed a two-stage methodology of designing
asynchronous control circuits from Petri net descriptions[70], conducted research with Petrov[71]

11

on the synthesis of speed-independent circuits from STGs and with Semenov and Cortadella's
group on the synthesis and verification of asynchronous circuits using unfoldings[23, 72].

4 Proposal

A high-level Petri net extension was developed by our group, in Brazil, in order to describe the
characteristics of multiprocessor architectures. The analysis of systems described in such a model
can be performed by the use of a computer program implemented to accomplish this end[73]. The
main characteristics of this model are represented in Fig.2 and can be summarized as follows:
· The tokens are represented by natural numbers.

· Each place has a domain representing the set of tokens allowed to be there.

· To each transition there may be associated:

· operations to be effected on the net variables;

· boolean expressions whose absence default to true; and

· time intervals indicating the minimum and maximum delays for the actual firing of the
transition after its enabling, whose absence default to imediate firing.

· Two kinds of branches may connect places to transitions:

· simple input branches, which connect one place to one transition and are labled with
two values (min-max) representing the minimum and the maximum number of tokens
to be removed from the input place when the transition fires; and

· conjunctive input branches, which connect several places to one transition, labled in the
same way as the simple input branches, however, removing the same token set from
each and every input place when the transition fires.

· Output branches connecting transitions to places may have boolean expressions describing
the token set to be put into the corresponding output place when the transition fires (the
default output function is the union of all sets extracted from the input places).

· The conditions for the enabling of a transition are:

· the cardinality of the token set present in each input place must match the one
stablished by the corresponding input branch;

· the boolean expression of the transition must evaluate to true; and

· the token set resulting from the evaluation of the output function must have an empty
intersection with the token set present in the corresponding output place.

· The firing rule that must be satisfied by the enabled transition in order that it is allowed to
fire is that the lower time limit of the candidate transition must be lower than or equal to
the lowest among the upper time limits of all enabled transitions.

· The effect of a transition firing is:

· exclusion of a certain token set from the input places;

· addition of the appropriate token set to the corresponding output places;

· setting of the transition operations results; and

· updating of the net times.

12

Figure.2 - Example of the characteristics of our high-level net

The simulation of a net is performed by changing classes, each of which representing a possible
global state of the modeled system. Each net class is composed by a net marking, the
corresponding time domain, and the values of the net variables. The relationship among the
classes is described by a reachability graph. The nodes of such a graph represent the classes
reachable from a given initial class. The nodes are connected by directed arcs labeled with the
transition whose firing transformed the original class into the destination one. The token sets
removed from each input place are also attached to the corresponding arc label.

After achieving the proper results, which may be confirmed through simulation analysis, the net
model of the system should be converted to a low level Petri net in order to allow for a direct
mapping of the net onto a circuit description, i.e., so that a direct synthesis of the system can be
performed. Such an equivalent low level net can be obtained in a way similar to the one described
by Jensen[74]. CPNs are far more elaborate, having many more facilities than our model, i.e., to
certain extent CPNs can be considered as a super set of our model. Then, basically every
transformation presented by Jensen apply to our model¤. However, there are some minor details
that are presented in our model and, to my knowledge, are not defined in the theory of CPNs.

The main difference between our model and CPNs is the case of conjunctive branches. These
branches can be converted by using the analogy that follows. Each input place of the high level

¤ This statement must be formally proved before it can be taken as a truth.

13

net is converted to as many places in the low level net as there are tokens in the domains of the
equivalent high level net places. The transitions in the low level net should match all possible
combinations of tokens from the input places. This means that if one has two input places, such
as places 3 and 4 in Fig.2, and these two places have two different tokens each (the domain of
each place is {1,2} in Fig.2), they would have to be transformed into four different places and
five different transitions in the low level net, as shown in Fig.3. Note that all transitions in Fig.3
correspond to transition 4 in Fig.2. This transformation can be optimized if the branch
expressions are taken into consideration and only those combinations corresponding to valid
outcomes for each expression are converted to structural objects of the low level net.

After such a transformation, the resulting low level Petri net can be used to perform a direct
synthesis of the system. This synthesis process can be done by using a one-to-one mapping of
the Petri net structure onto a set of pre-defined hardware components. At this phase, methods
similar to the one proposed by Patel[75] could be used. PatelÕs approach consists of four major
steps, respectively involving: the production of a delay free net; the mapping of this net onto a
hardware structure; the minimization of the hardware implementation; and the technology
mapping with the optimization of the hardware implementation.

5 Conclusions

In this report it was presented an overview of the main research going on the application of Petri
nets to the description of digital systems and the synthesis of the corresponding hardware from
these descriptions. This overview is by no means claimed to be complete. To try to ensure a
good coverability of the field I broadcast a message to the Petri net community, through the Petri
net mailing list, asking everyone working in the field to let me know about their work. I tried to
reflect in this report all replies that I received, as well as the data that I found with my own
search. Therefore, it is my belief that most of the work in the field has been covered. At the end

1{1} 1{2} 2{1} 2{2}

Figure.3 - Example of a piece of a low level Petri net.

14

of this report I presented some ideas that perhaps may lead to a fully Petri net based digital
systems synthesis tool.

I would like to conclude this report by once more, so to speak, borrowing a quotation from the
book by Kishinevsky et al.[01]. Their citation is attributed to G.Lichtenberg and reads suchlike
this: But who can stop me from picking a word here and a meaning there and then merging them
together?

6 Acknowledgments

I would like to express my gratitude to everybody that directly or indirectly contributed with the
information that allowed me to produce this report. Special thanks are due to Dr. Kurt Jensen for
hosting my stay in Denmark, to Dr. S¿ren Christensen for the review of the draft report, to
Dr. Jaroslaw Mirkowski for feeding me with many pointers to people in the field as well as for
the review of the draft report, to Prof. Marian Andrzej Adamski for several comments on his
work in Poland and abroad, to Prof. Michael Kishinevsky and to Dr. Alexandre Yakovlev for
many comments on the work described in the last seven paragraphs of section 3. Besides that I
would like to thank Dr. Alexandre Yakovlev for having fed me with a lot of useful information
since the very beginning of this report, his hints helped me find a way in the always fuzzy outset
of this kind of search. Thanks are also due to everybody mentioned in section 3, whose names I
do not list here to avoid forgetting somebody, but who deserve my highest acknowledgments for
having so kindly reviewed my (sometimes fuzzy) thoughts about their work.

7 References

[01] M.Kishinevsky, A.Kondratyev, A.Taubin and V.Varshavsky Concurrent Hardware: The
Theory and Practice of Self-timed Design John Wiley & Sons (ISBN:0471935360), 1994.

[02] D.Gajski and R.Kuhn Guests EditorsÕ Introduction IEEE Computer Magazine, 16(12)11-14,
1983.

[03] D.Gajski, G.Nutt, A.Wu and S.Lin High Level Synthesis - Introduction to Chip and System
Design Kluwer Academic Publishers (ISBN:0792391942), 1992.

[04] J.Gong, D.Gajski and S.Bakshi Model Refinement for Hardware/Software Co-design ACM
Transactions on Design Automation of Electronic Systems, 2(1)22-41, 1997.

[05] P.Maciel, T.Maciel, E.Barros and W.Rosenstiel A Petri Net Approach to Compute Load
Balance in Hardware/Software Codesign to appear in the Proceedings of the Conference on
High Performance Computing, Boston, Massachusetts, U.S.A., April, 1998.

[06] G.de Micheli (Editor) Special Issue on Hardware/Software Co-design IEEE Proceedings,
vol.85, no.3, March 1997.

[07] P.Pype A New Approach to Hardware/Software Co-design for System Level Integration XII
Congresso da Sociedade Brasileira de Microeletr�nica,
http://www.dsif.fee.unicamp.br/sbmicro/papers/tutor01.pdf, 10pp., 1997.

[08] E.Stoy and Z.Peng Inter-domain Movement of Functionality as a Repartitioning Strategy for
Hardware/ Software Co-design Journal of Systems Architecture, vol.43, pp.87-98, 1997.

15

[09] V.Catania, M.Malgeri and M.Russo Applying Fuzzy Logic to Co-design Partitioning IEEE
Micro Magazine, 17(3)62-70, 1997.

[10] P.Eles, Z.Peng, K.Kuchcinski and A.Doboli System Level Hardware/Software Partitioning
Based on Simulation Annealing and Tabu Search Journal of Design Automation for
Embedded Systems, vol.2, pp.5-32, 1996.

[11] E.Stoy A Petri Net Based Unified Representation for Hardware/Software Co-design
Licenciate Thesis, Link�ping University, Sweden, LiU-Tek-Lic 1995:21, 88pp., 1995.

[12] J.Rozenblit and K.Buchenrieder (Eds.) Co-design: Computer-aided Software/ Hardware
Engineering IEEE Press, (ISBN:0780310497), 1995.

[13] A.Yakovlev, A.Koelmans, A.Semenov and D.Kinniment Modelling, Analysis and Synthesis
of Asynchronous Control Circuits Using Petri Nets Integration - The VLSI Journal,
21(3)143-170, 1996.

[14] A.Yakovlev and A.Koelmans Petri Nets and Digital Hardware Design to appear in
Advances in Petri Nets, Lecture Notes in Computer Science, Springer Verlag, 1998.

[15] T.Murata Petri Nets: Properties, Analysis and Applications Proceedings of the IEEE,
77(4)541-580, 1989.

[16] W.Reisig A Primer in Petri Net Design Springer Verlag (ISBN:3540520449), 1992.
[17] K.Jensen and G.Rozenberg (Eds.) High-Level Petri Nets, Theory and Applications Springer

Verlag (ISBN:354054125X), 1991.
[18] A.Valmari Stubborn Attack on State Explosion Formal Methods in System Design 1(1)297-

322, 1991.
[19] T.A.Chu Synthesis of Self-timed VLSI Circuits from Graph-theoretic Specifications Ph. D.

Thesis, Massachusetts Institute of Technology, MIT/LCS/TR-393, 189pp., 1987.
[20] R.Bryant Graph-based Algorithms fro Boolean Function Manipulation IEEE Transactions

on Computers, 35(8)677-691, 1986.
[21] K.McMillan Trace Theoretic Verification of Asynchronous Circuits Using Unfoldings

Proceedings of the 7th International Conference on Computer Aided Verification, pp.180-
194, P.Wolper (Ed.), Springer Verlag, 1995.

[22] J.Esparza, S.R�mer and W.Vogler An Improvement of McMillanÕs Unfolding Algorithm
Institut f�r Informatik, Technische Universit�t M�nchen, SFB-Bericht Nr.342/12/95-A,
16pp., 1995.

[23] A.Semenov and A.Yakovlev Verification of Asynchronous Circuits Using Time Petri Net
Unfolding Proceedings of the 33rd ACM/IEEE Design Automation Conference, pp.59-62,
1996.

[24] S.Patil and J.Denis The Description and Realization of Digital Systems Digest of Papers of
the 6th Annual IEEE Computer Scociety International Conference, pp.223-226, September,
1972.

[25] S.Patil Circuit Implementation of Petri Nets Computation Structures Group Memo 73,
Project MAC, Massachusetts Institute of Technology, USA, 15pp., December 1972.

[26] S.Patil Cellular Arrays for Asynchronous Control Conference Record of the 7th Annual
Workshop on Microprogramming, pp.178-185, Palo Alto, CA, U.S.A., 1974.

16

[27] A.Kondratyev, M.Kishinevsky, B.Lin, P.Vanbekbergen and A.Yakovlev Basic Gate
Implementation of Speed-independent Circuits Proceedings of the 31st ACM/IEEE Design
Automation Conference, pp.56-62, 1994.

[28] M.Sawasaki, C.Y.-Couvreur and B.Lin Externally Hazard-free Implementation of
Asynchronous Circuits Proceedings of the 32nd ACM/IEEE Design Automation Conference,
pp.718-724, San Francisco, CA, U.S.A., 1995.

[29] Z.Peng and K.Kuchcinski Automated Transformation of Algorithms into Register-transfer
Level Implementation IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, 13(2)150-166, 1994.

[30] P.Eles, K.Kuchcinski, Z.Peng and M.Minea Synthesis of VHDL Concurrent Processes
Proceedings of the European Design Automation Conference, pp.540-545, 1994.

[31] Z.Peng and A.T�rne A Petri Net Based Modelling and Synthesis Technique for Real-time
Systems Proceedings of the 5th Euro-Micro Workshop on Real Time Systems, 1993.

[32] P.Eles, K.Kuchcinski and Z.Peng Synthesis of Systems Specified as Interacting VHDL
Processes Integration - The VLSI Journal, 21(3)113-138, 1996.

[33] Z.Peng A Formal Methodology for Automated Synthesis of VLSI Systems Ph. D. Thesis,
nr.170, Department of Computer and Information Sciences, Link�ping University, Sweden,
1987.

[34] I.Aug�, R.Bawa, P.Guerrier, A.Greiner, L.Jacomme and F.P�trot User Guided High Level
Synthesis Proceedings of the IX IFIP International Conference on VLSI, August, 1997.

[35] R.Bawa and E.Encrenaz A Platform for the Formal Verification of VHDL Programs
Proceedings of the 4th International Workshop on Symbolic Methods and Applications in
Circuit Design, Louvain, Belgique, 1996.

[36] R.Bawa and E.Encrenaz A Tool for Translation of VHDL Descriptions into a Formal Model
and its Application to Formal Verification and Synthesis Lecture Notes in Computer
Science, vol.1135, pp.471-474, 1996.

[37] E.Encrenaz A Symbolic Relation for a Subset of VHDLÕ87 Descriptions and its Application to
Symbolic Model Checking Proceedings of the IFIP WG10.5 Advanced Research Working
Conference on Correct Hardware Design and Verification Methods, pp.328-342, Lecture
Notes in Computer Science, vol.987, Springer Verlag, 1995.

[38] R.Bawa and L.Jancomme Synth�se de Descriptions Comportementales S�quencielles en
Conformit� Avec la S�mantique VHDL Actes de Colloque CAO de Circuits Int�gr�s et
Syst�mes, pp.303-306, 1997.

[39] L.Gomes and A.Gar��o Programmable Controller Design Based on a Synchronized Colored
Petri Net Model and Integrating Fuzzy Reasoning Proceedings of the 16th International
Conference on Application and Theory of Petri Nets, Lecture Notes in Computer Science,
vol.935, pp.218-237, 1995.

[40] K.Jensen Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use
Springer Verlag, vol.1 (ISBN:3540609431), 1992; vol.2 (ISBN:3540582762), 1994; and
vol.3 (ISN:3540628673), 1997.

[41] J.Fernandes, A.Pina and A.Proen�a Simula��o e S�ntese de Controladores Paralelos
Baseados em Redes de Petri Anais do VII Simp�sio Brasileiro de Arquiteturas de
Computadores - Processamento Paralelo, pp.481-492, 1995.

17

[42] D.Gajski, F.Vahid, S.Narayan and J.Gong Specification and Design of Embedded Systems
Prentice Hall Inc. (ISBN:0131507311), 1994.

[43] L.Gomes Sobre Algumas Atividades de Pesquisa na Uninova Private Communication, 1997.
[44] M.Adamski, J.Monteiro, W.Fengler and A.Wendt Distributed Petri Net-based Discrete

Controller Systems Proceedings of an International Conference on Control, vol.2, pp.777-
782, Oporto, Portugal 1996.

[45] T.Kozlowski, E.Dagless, J.Saul, M.Adamski and J.Szajna Parallel Controller Synthesis
Using Petri Nets IEE Proceedings, part E - Computers and Digital Techniques, 142(4)263-
271, 1995.

[46] M.Adamski and J.Monteiro Petri Net Modeling and VHDL Simulation of Descrete
Mechatronic Systems Proceedings of the International IEE Conference on Mechatronics,
vol.1, pp.397-402, Guimar�es, Portugal, 1996.

[47] M.Wegrzyn, M.Adamski and J.Monteiro Reconfigurable Logic Controller with FPGA
Proceedings of the 4th IFAC Workshop on Algorithms and Architectures for Real Time
Control, Algarve, Portugal, 1997.

[48] W.Wegrzyn, M.Adamski and J.Monteiro VHDL Simulation of Xilinx-FPGA-based
Concurrent Controller Proceedings of a Workshop on Application of Programmable Logic,
pp.12-15, Lisbon, Portugal, 1996.

[49] J.Fernandes, M.Adamski and A.Proen�a VHDL generation from hierarchical Petri Net
Specifications of Parallel Controllers IEE Proceedings, part E - Computers and Digital
Techniques, 144(2)127-137, 1997.

[50] R.Machado, J.Fernandes and A.Proen�a Redes de Petri e VHDL na Prototipagem R�pida de
Sistemas Digitais 4o Encontro Nacional do Col�gio de Engenharia Eletrot�cnica, Ordem dos

Engenheiros de Portugal, 1997.
[51] R.Machado, J.Fernandes and A.Proen�a Specification of Industrial Digital Controllers with

Object-Oriented Petri Nets IEEE International Symposium on Industrial Electronics,
Guimar�es, Portugal, 1997.

[52] R.Machado, J.Fernandes and A.Proen�a An Object-Oriented Model for Rapid Prototyping of
Data Path/Control Systems - A Case Study To appear in the 9th IFAC Symposium on
Information Control in Manufacturing, Nancy and Metz, France, 1998.

[53] R.Machado, J.Fernandes and A.Proen�a SOFHIA: A CAD Environment to Design Digital
Control Systems In C.ÊDelgado Kloos and E.ÊCerny (Eds.) Proceedings of the XIII IFIP
Conference on Computer Hardware Description Languages and their Applications, pp.Ê86-
88, Chapman & Hall, 1997.

[54] K.Bilinski and E.Dagless High-level Synthesis of Synchronous Parallel Controllers
Proceedings of the 17th International Conference on Application and Theory of Petri Nets,
J.Billington and W.Reisig (Eds.), Lecture Notes in Computer Science, vol.1091, pp.93-112,
1996.

[55] L.Ya.Rosenblum The Signal Graph Language for the Modeling of Exchange Protocols and
Aperiodic Circuits Proceedings of the Simulation of Digital Control and Computer Systems,
Sverdlovsk, IMM, 1981 (in Russian). This work is cited as reference 35 of the book by
Kishinevsky et al. [01].

18

[56] L.Rosenblum and A.Yakovlev Signal Graphs: from Self-timed to Timed Ones Proceedings of
the International Workshop on Timed Petri Nets, pp.199-206, Torino, Italy, 1985.

[57] T.A.Chu On the Models for Designing VLSI Asynchronous Digital Systems Integration: the
VLSI journal, 4(1)99-113, 1986.

[58] A.Yakovlev, L.Lavagno and A.Sangiovanni-Vincentelli A Unified Signal Transition Graph
Model for Asynchronous Control Circuit Synthesis Formal Methods in System Design,
9(3)139-188, November 1996.

[59] J.Cortadella, M.Kishinevsky, A.Kondratyev, L.Lavagno and A.Yakovlev Complete State
Encoding Based on the Theory of Regions International Symposium on Advanced Research
in Asynchronous Circuits and Systems, Aizu, Japan, 1996.

[60] J.Cortadella, M.Kishinevsky, A.Kondratyev, L.Lavagno and A.Yakovlev Methodology and
Tools for State Encoding in Asynchronous Circuit Synthesis Proceedings of the 33rd

ACM/IEEE Design Automation Conference, pp.63-66, 1996.
[61] J.Cortadella, M.Kishinevsky, L.Lavagno and A.Yakovlev Synthesizing Petri Nets from State-

based Methods Proceedings of the International Conference on Computer Aided Design,
pp.164-171, 1995. Also published as technical report UPC-DAC-95-09, Universitat
Polit�cnica de Catalunya, 36pp., 1995.

[62] J.Cortadella, M.Kishinevsky, A.Kondratyev, L.Lavagno and A.Yakovlev Petrify: A Tool for
Manipulating Concurrent Specifications and Synthesis of Asynchronous Controllers
Proceedings of the 11th Conference on Design of Integrated Circuits and Systems, pp.205-
210, 1996.

[63] E.Pastor, J.Cortadella, A.Kondratyev and O.Roig Structural Methods for the Synthesis of
Speed Independent Circuits Proceedings of the European Design and Test Conference,
March, 1996.

[64] O.Roig The home page of VERSIFY - http://www.ac.upc.es/vlsi/versify, VLSI CAD Group,
Technical University of Catalunya. When this report was writen the last updated had
occured in November, 1996.

[65] A.Yakovlev, M.Kishinevsky, A.Kondratyev and L.Lavagno OR Causality: Modelling and
Hardware Implementation Proceedings of the 15th International Conference on Application
and Theory of Petri Nets, J.Billington and W.Reisig (Eds.), Lecture Notes in Computer
Science, vol.815, pp., 1994.

[66] A.Kondratyev, M.Kishinevsky, A.Taubin and S.Ten Analysis of Petri Nets by Ordering
Relations in Reduced Unfoldings Formal Methods in System Design, 12(1)5-38, 1997.

[67] E.M.Sentovich, K.J.Singh, L.Lavagno, C.Moon, R.Murgai, A.Saldanha, H.Savoj,
P.R.Stephan, R.K.Brayton and A.L.Sangiovanni-Vincentelli SIS: A System for Sequential
Circuit Synthesis Technical Report UCB/ERL M92/41, University of California at
Berkeley, May 1992.

[68] L.Lavagno Synthesis and Testing of Bounded Wire Delay Asynchronous Circuits from Signal
Transition Graphs PhD thesis, University of California at Berkeley, Technical Report
UCB/ERL M92/140, November 1992.

[69] L.Lavagno and A.L.Sangiovanni-Vincentelli Algorithms for Synthesis and Testing of
Asynchronous Circuits Kluwer Academic Publishers, 1993.

19

[70] A.Yakovlev, A.Koelmans and L.Lavagno High Level Modelling and Design of Asynchronous
Interface Logic IEEE Design and Test of Computers, pp.32-40, Spring 1995.

[71] A.V.Yakovlev and A.Petrov Petri Nets and Parallel Bus Controller Design Proceedings of
the 11th International Conference on Application and Theory of Petri Nets, Lecture Notes
in Computer Science, vol., pp.244-263, 1990.

[72] A.Semenov, A.Yakovlev, E.Pastor, M.Pe�a and J.Cortadella Synthesis of Speed Independent
Circuits from STG-unfolding Segment Proceedings of the 34th ACM/IEEE Design
Automation Conference, pp.16-21, 1997.

[73] W.L.A. de Oliveira Proposta de uma Rede de Petri de Alto N�vel Incluindo Temporiza��o
Master Dissertation, S�o Paulo State University at Rio Preto, Department of Computer
Science, 131pp., 1997.

[74] K.Jensen Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use
Springer Verlag, vol.1, pp.78-85, (ISBN:3540609431), 1992.

[75] M.R.K.Patel Random Logic Circuit Implementation of Extended Timed Petri Nets
Microprocessing and Microprogramming, 30(1-5)313-320, North Holland, 1990.

