
Petri Nets as Models of Linear Logic

Uffe Engberg Glynn Winskel

Computer Science Department

Aarhus University

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

The chief purpose of this paper is to appraise the feasibility of Girard’s
linear logic as a specification language for parallel processes. To this end

we propose an interpretation of linear logic in Petri nets, with respect to
which we investigate the expressive power of the logic.

1 Introduction

Girard’s linear logic has sparked off a great deal of interest in how it
might be useful in the theory of parallelism, not least because of Gi-
rard’s initial claims for it [Gir87]. Linear logic has been described as
a “resource conscious” logic by Mart́ı-Oliet and Meseguer [MOM89]; in
its proofs occurrences of propositions cannot be used more than once or
disappear unless they are explicitly created or used up by the rules of
inference. People were not long in spotting a relationship with Petri nets
where there are similar ideas. Places in a Petri net hold to certain non-
negative multiplicities forming a multiset of places, traditionally called
a marking; as transitions occur, multiplicities of places are consumed
and produced in accord with a dynamic behaviour of nets, formalised in
the so-called “token game”. Independently, Gunter and Gehlot [GG89],
Asperti [Asp87] and Brown [Bro89a] showed that places are like atomic
propositions in linear logic and transitions like proof rules. In [GG89] and

1

[Asp87], the fine grain of linear logic proofs for the ⊗-fragment of linear
logic is related to the token game in Petri nets. Essentially it is shown
how a proof of A ` B in linear logic, where A and B are built from place
names just with ⊗, corresponds to a play of the token game taking the
marking corresponding to A to that corresponding to B.

Recent work of Mart́ı-Oliet and Meseguer [MOM89] extends that of
[GG89] and [Asp87]. It is known that certain kinds of “linear” categories
are models for linear logic. The work [MOM89] essentially proceeds by
letting Petri nets freely generate a linear category and then interpreting
linear logic in that setting. They restrict attention to linear classical logic.
One problem with their approach is its consequence that if a net satisfies
an proposition of linear logic then so does any augmentation of the net,
obtained by adding transitions arbitrarily. This considerably weakens
the case for regarding linear logic as a specification logic with respect to
their notion of satisfaction1. Nor at this exploratory stage, when we are
trying to understand what use linear logic might be on Petri nets, is it so
clear, that a linear category with lots of proof terms as morphisms has
any advantage over a more accessible partial order semantics, of the kind
presented here.

Alongside the work on Petri nets and linear logic, came the realisation
that models of linear logic had arisen before in the form of quantales.
Indeed Girard’s phase semantics in [Gir87] for linear logic uses free quan-
tales. Abramsky and Vickers [AV88] approached quantales from a com-
puter science viewpoint, the hope being that it would lead to a “linear
process logic”. Yetter [Yet] and Rosenthal [Ros] looked at quantales and
linear logic more from the perspective of pure mathematics—how to rep-
resent them and their relationship with other bits of mathematics.

This note points out a straightforward way in which a Petri net induces a
quantale and so becomes a model for linear intuitionistic logic. The model
is for all of linear intuitionistic logic. A prime feature is its accessibility;
this is important with the new logic, where working out what you can
and cannot say is tricky. That it generalises the work of [GG89] and
[Asp87] is clear. The paper provides evidence that linear intuitionistic
logic, with the right notion of satisfaction, can be a reasonably expressive

1No one would take seriously a program logic with the property that if a program satisfied
an assertion then so did the program with GOTO statements inserted arbitrarily.

2

specification logic for parallel processes. It also throws some light on the
use of linear classical logic; via a construction, observed by Abramsky
and Vickers [AV88], generalising that of Girard’s for phase semantics,
a quantale can easily be turned into a model for linear classical logic,
although unfortunately when taken to nets, the resulting semantics of
linear classical logic is often trivial.

2 Linear Intuitionistic Logic

In the Gentzen sequent calculus for intuitionistic logic a sequent,
A1, . . . , An ` A, is written to mean that the formula A is deducible from
the assumption formulas A1, . . . , An (we shall use Γ as an abbreviation for
a sequence of assumption formulas). The calculus has the two structural
rules

Γ ` B

Γ, A ` B
(thinning)

Γ, A,A ` B

Γ, A ` B
(contraction)(1)

for adding an assumption and removal of a duplicate. In the presence of
these rules the following two right introduction rules for conjunction

Γ ` A ∆ ` B

Γ,∆ ` A ∧ B

Γ ` A Γ ` B

Γ ` A ∧ B
(2)

become interderivable in the sense that the first rule can be derived from
the second by thinning, and the second from the first by contraction.

Now, as remarked in [AV88], if a proof is to be seen as representing
the process of proving, then these structural rules become far from self-
evident. Indeed, in linear intuitionistic logic these rules are dropped and
the rules of (2) are no longer interderivable. Without them, propositions
cannot be introduced arbitrarily into a list of assumptions and nor can
a duplication in the assumptions be removed. It is in this sense that
linear logic is a “resource conscious” logic. As a consequence of dropping
(1) the two rules, (2), become two separate right introduction rules for
two fundamentally different forms of conjunction; they are written as ⊗
and & respectively. These new connectives are part of Girard’s linear
intuitionistic logic, which we shall now present.

3

2.1 Proof Rules for Linear Intuitionistic Logic

The connectives of linear intuitionistic logic are:

⊗ tensor, with unit 1, called one,
& conjunction, with unit T, called true,
⊕ disjunction, with unit F, called false.

We take as the definition of linear intuitionistic logic the proof rules,
Girard and Lafont present in [GL87, Laf88]:

Structural rules

A ` A
(identity)

Γ ` A ∆, A ` B

Γ,∆ ` B
(cut)

Γ, A,B,∆ ` C

Γ, B,A,∆ ` C
(exchange)

Logical rules
Γ ` A ∆ ` B

Γ,∆ ` A ⊗ B
(`⊗)

Γ, A,B ` C

Γ, A ⊗ B ` C
(⊗)̀

Γ ` A

Γ,1 ` A ` 1

Γ ` A Γ ` B

Γ ` A & B
(`&)

Γ, A ` C

Γ, A & B ` C
(l&)̀

Γ, B ` C

Γ, A & B ` C
(r&)̀

Γ ` T

Γ ` A

Γ ` A ⊕ B
(`⊕l)

Γ ` B

Γ ` A ⊕ B
(`⊕r)

Γ, A ` C Γ, B ` C

Γ, A ⊕ B ` C
(⊕)̀

Γ,F ` A

Γ, A ` B

Γ ` A −↪↩ B
(`−↪↩)

Γ ` A ∆, B ` C

Γ,∆, A −↪↩ B ` C
(−↪↩)̀

As an example of a proof, we can derive the rule
Γ ` A −↪↩ B

Γ, A ` B
from (−↪↩`)

by

Γ ` A −↪↩ B
A ` A B ` B
A,A −↪↩ B ` B

Γ, A ` B
.

The absence of the rules for thinning and contraction is compensated,
to some extent, by the addition of the logical operator “of course”. In
[GL87, Laf88] this operator is presented in the alternative, but equivalent,
formalism of categorical combinatory logic and reads as follows in the
setting of the sequent calculus:

4

“Of course” rules

!A ` A !A ` 1 !A ` !A ⊗ !A
(3)

and
B ` A B ` 1 B ` B ⊗ B

B ` !A
(4)

Given a proposition A, the assertion of !A has the possibility of being
instantiated by the proposition A, the unit 1 or !A ⊗ !A, and thus of
arbitrarily many assertions of !A.

How this operator compensates for the absence of the two structural rules
can be seen from the (weaker) derived rules Girard originally presented
in [Gir87]:

Γ, A ` B

Γ, !A ` B

Γ ` B

Γ, !A ` B

Γ, !A, !A ` B

Γ, !A ` B
(5)

and
!Γ ` B

!Γ ` !B
(6)

where !Γ is a shorthand for !A1, . . . , !An where Γ = A1, . . . , An.

Once a logical constant, ⊥, denoting linear-absurdity is fixed on, linear
negation (not to be mistaken for intuitionistic negation) is derivable:

A⊥ = A −↪↩ ⊥

3 Quantales

We have just seen the proof rules of linear intuitionistic logic. What
are its models? As recognised by several people [AV88, Yet, Ros, Sam],
quantales2 provide an algebraic semantics for linear intuitionistic logic.
Quantales are to linear intuitionistic logic as complete Heyting algebras
are to intuitionistic logic. A quantale is a commutative monoid on a
complete join semilattice. Spelled out:

2As originally defined, quantales need not be commutative and should satisfy the idempotency
law q ⊗ q = q. We shall take quantales to be commutative and relax the idempotency law.

5

Definition 3.1 A quantale Q is a complete join semilattice (i.e. a partial
order with an operation forming joins of arbitrary sets) together with an
associative, commutative, binary operation ⊗ and constant 1 such that

q ⊗ 1 = q

q ⊗ ∨
P = ∨{q ⊗ p | p ∈ P} 2

Entailment is interpreted as the order relation, ≤, on the underlying
lattice of a quantale. The logical operation, ⊗, is interpreted by the cor-
responding binary operation in the quantale and the logical constant 1
is interpreted as 1 in the quantale. The disjunction, ⊕, of linear logic
is understood as binary join and the conjunction, &, as binary meet.
The logical constants T and F are interpreted as the top and bottom ele-
ment respectively of the complete lattice. Linear implication is a derived
operation:

p −↪↩ q
def=

∨{r | r ⊗ p ≤ q}
with respect to a quantale. The definition is analogous to that of impli-
cation on a complete Heyting algebra, but this time w.r.t. ⊗ in place of
∧. The definition of linear implication ensures the adjunction:

r ⊗ p ≤ q iff r ≤ p −↪↩ q

With respect to a quantale, and interpretations of the atomic propositions
as elements of a quantale, we can inductively associate a proposition A in
linear logic with its denotation as a quantale element [[A]]. An entailment

A1, . . . , An |= A

holds in the quantale iff

[[A1]] ⊗ · · · ⊗ [[An]] ≤ [[A]]

The special case where n = 0 is allowed, in which case the situation
amounts to

|= A iff 1 ≤ [[A]]

It is a routine matter to check that each rule is sound with respect to
this interpretation. For example the right and left introduction rules for
disjunction, ⊕, and conjunction, &, express that they are the join and
meet with respect to entailment while the rules for linear implication

6

express the adjunction which characterise it (with the help of the little
proof given as an example in section 3). In this way it can be seen that,
with respect to a quantale,

Γ ` A implies Γ |= A and ` A implies |= A.

We have so far ignored the treatment of !A. The rules of (3) for !A are
interderivable with the following single rule:

!A ` 1 & A & (!A ⊗ !A)

So, as an interpretation of !q, for an element q of a quantale, we require
an element x such that

x ≤ 1 & q & (x ⊗ x).(7)

This will not in general characterise a unique value of the quantale; for
instance taking x to be the bottom element of the lattice will always do.
However from (4) it follows that any x satisfying (7) should be below !q,
and hence !q should be the greatest postfixed point, and so fixed point,
of

x 7→ 1 & q & (x ⊗ x)

in the complete lattice given together with the quantale. Such a solution
ensures the soundness of the proof rules extended by those for !A.

Another operation is that of linear negation. Its semantics with respect
to a quantale is determined by a choice for the denotation of ⊥. Then A⊥

is understood as A−↪↩⊥. In this abstract set-up, for a general quantale we
cannot hope to say much more. However, in a moment, when considering
quantales got from a Petri net, a special element will be proposed as
being useful. We can observe, following Abramsky and Vickers [AV88],
that from a choice for ⊥ in a quantale, we can obtain a model of linear
classical logic. The key feature of the classical version is that linear
negation is an involution. With respect to an element ⊥ of a quantale
Q, write q⊥ for q −↪↩ ⊥. We cannot expect q = q⊥⊥ to hold for a general
quantale. However, the image of the map (−)⊥⊥ : Q → Q is a subquantale
of Q on which (−)⊥ is involutive, so forming a model of linear classical
logic.

7

4 Petri Nets

Petri nets are a model of processes (or systems) in terms of types of re-
sources, represented by places which can hold to arbitrary nonnegative
multiplicity, and how those resources are consumed or produced by ac-
tions, represented by transitions. They are described using the notation
of multisets.

A multiset over a set P is a function, m : P −→ IN , and the set of
multisets over P . With addition, +, of multisets defined by (m+m′)(a) =
m(a) + m′(a) for all a ∈ P , multisets over P form a (free) commutative
monoid with 0 (∀a ∈ P.0(a) = 0), the empty multiset, as neutral element.
An element a of P can be turned into the singleton multiset a; we write
a for the multiset given by: a(a) = 1 and a(b) = 0 when a 6= b. Observe
that multisets are partially ordered by m ≤ m′ iff ∀a ∈ P.m(a) ≤ m′(a).
For n ∈ IN and m a multiset, the scalar multiplication nm is defined by
(nm)(a) = n · m(a).

We take a Petri net N to consist of (P, T, .(−), (−).), where P , a set of
places, and T , a set of transitions, are accompanied by maps .(−), (−).

on transitions T which for each t ∈ T give a multiset of P , called the
pre- and post (multi)set of t respectively. There will be none of the
usual restrictions on the net, such as absence of isolated elements, and in
particular transitions with empty pre sets and/or post sets will be allowed.
And we are actually considering place/transition nets with unconstrained
capacity.

A Petri net possesses a notion of state, intuitively corresponding to a
distribution of resources, formalised in the definition of a marking. A
marking of N will simply be a multiset over P . We will generally use
M to denote the set of markings of a net, understood from the context.
Sometimes nets are associated with an initial marking m0. The behaviour
of a net is expressed by saying how markings change as transitions occur
(or fire). For markings, m,m′, and a transition t ∈ T , m [t〉 m′ stands
for t fires from m to m′; that is

m [t〉 m′ iff ∃m′′ ∈ M. m = m′′ + .t and t. + m′′ = m′

So t is enabled at m if there is an m′ ∈ M such that m [t〉 m′. We shall
write m → m′ for the reachability relation, the reflexive and transitive

8

relation given by:3

m → m′ iff
∃t1, . . . , tn ∈ T,m1, . . . ,mn ∈ M, n ≥ 0. m [t1〉 m1 · · · [tn〉 mn = m′

The markings forwards reachable from m form the set ↑(m) = {m′ ∈
M | m → m′}. Similarly, we shall use ↓(m) to denote the set of markings
which can reach m. We will generally call this set the downwards closure
of m. It is defined by ↓(m) = {m′ ∈ M | m′ → m}. We shall also
use this notation, extended pointwise, on sets of markings M , taking e.g.
↓(M) = {m′ | ∃m ∈ M. m′ → m}.
Petri nets can be presented by using the well-known graphical notation,
which will used throughout this paper. Places are represented by circles,
transitions as squares, and arcs of appropriate multiplicities used to in-
dicate the pre and post sets. The formal definitions can then be brought
to life in the so called “token game” where markings are visualised as
consisting of a distribution of tokens over places; the number of tokens
residing on a place expresses the multiplicity to which it holds according
to the marking. The tokens are consumed and produced as transitions
occur. A basic reference for Petri nets is [Rei85].

Since we are dealing with place/transition nets without capacities we
have the following proposition which is crucial for the net semantics of
linear logic in the sequel.

Proposition 4.1 For any m,m′,m′′ ∈ M we have:

m → m′ implies m + m′′ → m′ + m′′

The notions and definitions in the following will be relative to a given
Petri net, N , over a fixed set of places P , giving rise to a set of markings
M and reachability relation →. Only when necessary will definitions be
subscripted to indicate the relevant net.

3Because we shall be chiefly concerned with the reachability relation between markings, we
can get by with single steps in the firing relation, and ignore the variant in which transitions
can fire concurrently.

9

5 Quantales from Nets

From a given net N , and associated markings and reachability relation
M,→ a quantale, Q, can be constructed. Its elements are to be the
downwards closed subsets of markings; a subset M of M is downwards
closed iff it satisfies

m′ → m and m ∈ M implies m′ ∈ M.

The set Q is ordered by inclusion, ⊆. With respect to inclusion, it is easy
to see that union and intersection form the join and meet operations.
The binary operation ⊗ has as unit element: 1 = ↓(0). For p, q ∈ Q the
binary operation ⊗ is defined by:

p ⊗ q = ↓(p + q), where p + q = {mp + mq | mp ∈ p,mq ∈ q}

Thus
p ⊗ q = {m | ∃mp ∈ p,mq ∈ q. m → mp + mq}.

The downwards closure, ↓, in the definition of ⊗ above is needed to make
⊗ well-defined as can be seen from this net with P = {a, b, c}:

g
g

g
��:- XXza

b

c

Clearly ↓(b) + ↓(c) = {m} 6= {a,m} = ↓{m}, where m = b + c.

That Q is indeed a commutative quantale follows from the commutativity
of + and the fact that for p ∈ Q, and Q ⊆ Q:

p ⊗ ⋃
Q = ↓(p + ⋃

Q) = ↓(⋃{p + q | q ∈ Q})
= ⋃{↓(p + q) | q ∈ Q} = ⋃{p ⊗ q | q ∈ Q}

Defining p −↪↩ q = ⋃{r | r ⊗ p ⊆ q} we can simplify it to

p −↪↩ q = {m | ∀mp ∈ p. m + mp ∈ q}.

This is because

10

m ∈ p −↪↩ q
iff ∃r. m ∈ r, r ⊗ p ⊆ q

iff ↓(m) ⊗ p ⊆ q, as ↓(m) ∈ Q and
m ∈ r ⇒ ↓(m) ⊆ r

iff ∀m′ ∈ ↓(m),mp ∈ p. m′ + mp ∈ q, as q is downwards closed
iff ∀mp ∈ p. m + mp ∈ q

where the “if ” of the last equivalence follows from the downwards closure
of q and m′ ∈ ↓(m) ⇒ m′ → m ⇒ m′ + mp → m + mp ⇒ m′ + mp ∈
↓(m + mp).

6 Interpretation

In order to fix an interpretation of linear logic in a net we just need an
interpretation of the atomic propositions as elements of the associated
quantale. For simplicity we consider a linear logic language where the
atomic propositions correspond to the places of the net. I.e. formulas are
given by:

A ::= T | F | 1 constants
| a propositional letters where a is a place
| A ⊗ A | A −↪↩ A multiplicative connectives
| A & A | A ⊕ A additive connectives

We make the choice of interpreting an atomic proposition a as the down-
wards closure of the associated marking a. This choice is consistent with
the following intuitive understanding: the denotation of an assertion is
to be thought of as the set of requirements sufficient to establish it. This
reading will be discussed further shortly, after presenting the semantics.

With respect to a net N , linear logic formulas are interpreted as follows:

11

[[T]]N = M
[[F]]N = ∅
[[1]]N = {m | m → 0}
[[a]]N = {m | m → a}
[[A ⊗ B]]N = {m | ∃mA ∈ [[A]]N,mB ∈ [[B]]N. m → mA + mB}
[[A −↪↩ B]]N = {m | ∀mA ∈ [[A]]N. m + mA ∈ [[B]]N}
[[A & B]]N = [[A]]N ∩ [[B]]N
[[A ⊕ B]]N = [[A]]N ∪ [[B]]N

Because of the interpretation of 1 validity of an assertion A for the given
net, N , can be expressed by:

|=N A iff 0 ∈ [[A]]N

Semantic entailment between assertions A and B amounts to:

A |=N B iff [[A]]N ⊆ [[B]]N

Because of the interpretation of linear implication, this is equivalent to

|=N A −↪↩ B.

Usually we shall leave out the subscript of N when the net in considera-
tion is clear from the context.

So we see that with respect to a Petri net, an assertion A is denoted
by a set of markings [[A]]. As we have discussed, a marking of net can
be viewed as a distribution of resources. When m ∈ [[A]] we can think
of the marking m as a distribution of resources sufficient to establish A

according to the net; in this sense the marking m is one of the (in general
many) requirements sufficient to establish A. The meaning of an assertion
A is specified by saying what requirements are sufficient to establish it—
this is the content of the denotation [[A]]. Accordingly, a net satisfies an
assertion A when 0 ∈ [[A]], expressing that A can be established with no
resources.

This reading squares with the fact that assertions denote subsets of mark-
ings which are downwards closed with respect to the reachability relation
of the net; if m ∈ [[A]], so m is a requirement sufficient to establish A,
and m′ → m so we can obtain m for m′, then so also is m′ a sufficient
requirement of A. Casting an eye over the definition of the semantics of

12

assertions we can read, for example, the definition of [[a]], for an atom
a, as expressing that a sufficient requirement of a is any marking from
which the marking a can be reached according to the net. Similarly, the
sufficient requirements of A & B are precisely those which are sufficient
requirements of both A and of B. An element of [[A −↪↩ B]] can be seen
as what is required, in addition to any requirement of A, in order to es-
tablish B. There are similar restatements of the semantics for the other
connectives as well.

This understanding should be born in mind when considering the exam-
ples that follow, where we shall make use of the fact that ⊗, & and ⊕ are
associative and assume the precedence: −↪↩ < &, ⊕ < ⊗.

Examples
Consider the net:

N1 =

��

g g

g

g

g

�

J
JĴ

- -

-

-

?

d a

b

e

c

Here we have [[b]] = {d, a, b}, . . . , [[c]] = {a, c} and [[b ⊗ c]] = {d + a, d +
c, a + a, a + c, b + a, b + c}, so consequently

[[d ⊗ a]] ⊆ [[b ⊗ c]] or equivalently |= d ⊗ a −↪↩ b ⊗ c
|= a ⊗ a −↪↩ b ⊗ c
|= a −↪↩ b ⊕ c, |= d ⊕ a −↪↩ b, |= d −↪↩ b ⊕ c

|= b & c −↪↩ e, |= a −↪↩ b & c

The most difficult connective to comprehend is probably linear implica-
tion so we give a few more examples here. For the nets:

N2 = f

f

f

f

ZZ~��>
ZZ~

a

b

c

d and N3 = f

f

f

f

f

��>
ZZ~ -

��>
ZZ~ -

a

b

c

d

e

we have:

13

[[c −↪↩ d]]N2
= ∅ and |=N2

(c −↪↩ d) −↪↩ F

[[b −↪↩ d]]N2
= {a} and |=N2

(b −↪↩ d) −↪↩ a

[[a −↪↩ e]]N3
= {b + d}

A more peculiar example of linear implication is given by the following
net:

..........
..........

@
@....................@

@

..........
..........

�
�....................�

�

....................

�
�..................

..�
�

....................@
@
..........
.........

@
@

g

g

g

g

g@@I
���

@@I

��� @@R

@@R

��	

��	
��9

a
b

In this net [[a −↪↩ a]] = {nb | n ∈ IN}.

7 Expressing Properties of Nets

In the following we shall use the abbreviation an =
n︷ ︸︸ ︷

a ⊗ · · · ⊗ a, for n ≥ 0,
with the special case a0 = 1. Identifying a nonempty marking, m, with
the formula: ⊗

a∈P,m(a)6=0
am(a)

and the empty marking, 0, with the formula 1 we can express that one
marking, m′, is reachable from another m:

Proposition 7.1 For any markings m and m′:

m → m′ iff |= m −↪↩ m′

Proof Simply note: m → m′ iff ↓(m) ⊆ ↓(m′) iff [[m]] ⊆ [[m′]] iff |=
m −↪↩ m′. 2

Before reading the list of sample properties below observe: [[m ⊗ T]] =
↓{m′ | m′ ≥ m}.

14

Sample Properties

• From the initial marking, m0, it is possible to reach a marking where
a is marked: |= m0 −↪↩ a ⊗ T

• From the initial marking it is possible to reach a marking where a
place, a, of S ⊆ P is marked: |= m0 −↪↩ (⊕a∈Sa) ⊗ T

• Once a is marked it is possible to reach a marking where b is marked:
|= a ⊗ T −↪↩ b ⊗ T

• Once a is marked either b or c can become marked (but we do not
know which): |= a ⊗ T −↪↩ (b ⊕ c) ⊗ T

• Once a is marked both b and c can become marked (but not neces-
sarily simultaneously): |= a ⊗ T −↪↩ (b & c) ⊗ T

Example 7.2 Mutual exclusion
Consider the net:

?
�

�

� �

�

�

� �g

g

gg g g

?

-

�

?

-

�6

�

-

?

�

- 6

a

w1p1c1 p2 c2w2

b

where the marking of the place w1 indicates that the first process, p1, is
working outside its critical region, c1, and similarly for the other process,
p2. The resource corresponding to b is used to ensure mutual exclusion
of the critical regions and after a process has been in its critical region it
returns a resource, a, which then is prepared (transformed into b) for the
next turn. The initial marking, m0, will be m0 = b+w1+w2. We can now
express that e.g. p1 can enter its critical region (from the initial marking)
by: |= m0 −↪↩ c1 ⊗ T. However this does not ensure that no undesired
tokens are present, so it is better to express it: |= m0 −↪↩ c1 ⊗ w2. If the
system is in a “working state” then both processes have the possibility
of entering their critical section: |= w1 ⊗ (a⊕ b)⊗w2 −↪↩ c1 ⊗w2 & w1 ⊗ c2.
The property, that when p1 is in its critical section and p2 is working it is
possible that p2 can later come into its critical section with p1 working,

15

is expressed by: |= c1 ⊗w2 −↪↩ w1 ⊗ c2. Similar other “positive” properties
can be expressed. Shortly we shall see how to express the “negative”
property that both processes cannot be in their critical regions at the
same time.

8 The “Of Course” Operator

From the discussion in section 3 it immediately follows how to interpret
an “of course” formula:

Definition 8.1 Given a formula A, the interpretation of “of course” A,
is

[[!A]] =
⋃{q ∈ Q | q is a postfixed point of fA}

where fA : Q −→ Q is the function given by:

x 7→ 1 & [[A]] & (x ⊗ x)(8) 2

In order to gain a better understanding of the “of course” operator we
give the following characterisation of a postfixed point.

Proposition 8.2 q ∈ Q is a post fixed point of (8) iff
there exists an M ⊆ M such that

i) q = ↓(M)

ii) M ⊆ [[A]]

iii) ∀m ∈ M. m → 0

iv) ∀m ∈ M∃m′,m′′ ∈ M. m → m′ + m′′

Proof

if : ↓(M) = q a postfixed point of (8) means q ⊆ 1 ∩ [[A]] ∩ (q ⊗ q). From
iii) follows q = ↓(M) ⊆ 0 = 1 and from ii) q = ↓(M) ⊆ ↓[[A]] = [[A]] as
[[A]] is downwards closed. To see q ⊆ q ⊗ q assume m ∈ q. Then ∃m′′′ ∈
M. m → m′′′ and so by iv) ∃m′,m′′ ∈ M. m′′′ → m′ + m′′. Transitivity of
→ then gives m ∈ ↓(M + M) = M ⊗ M ⊆ ↓(M) ⊗ ↓(M) = q ⊗ q.

only if : Take M = q and we have ↓(M) = M . Properties i) – iii) follows
readily as does iv) by q ⊆ q ⊗ q and the downwards closure of M . 2

16

In the light of this proposition, we can see a requirement of !A as any
requirement of A which can both vanish and duplicate into any number
of additional requirements of !A.

Example 8.3 For the net

� �

��
� �

g

g

-
��>

ZZ~

?

66

b

a

we get: [[b]] = {b} ∪ {na | n > 0} which properly contains [[!b]] = {na |
n > 0}.

9 Linear Negation

We have discovered that in a net one useful interpretation of the extra
logical constant ⊥, for linear-absurdity, is:

[[⊥]] = {m | 0 6→ m}

That is ⊥ denotes exactly the set of markings which cannot be reached
from the empty marking. For [[⊥]] to be well-defined, we need that it is
downwards-closed: To see this, suppose m′ → m for m ∈ [[⊥]]. Assume
m′ 6∈ [[⊥]]. Then 0 → m′, whence from m′ → m and transitivity of → we
conclude 0 → m—contradicting m ∈ [[⊥]].

Since linear negation can be expressed in terms of ⊥ and −↪↩ (by A⊥ =
A −↪↩ ⊥), we get:

[[A⊥]] = {m | ∀mA ∈ [[A]]. 0 6→ mA + m}

The interesting consequence of this particular choice for ⊥ is, that what-
ever property we could state before in terms of validity of a formula A

can now be stated negatively as |= A⊥. Formally:

Proposition 9.1 |= A⊥ iff 6|= A

17

Proof Immediate from: 6|= A⊥ iff 6|= A −↪↩ ⊥ iff [[A]] 6⊆ [[⊥]] iff [[A]] 6⊆
{m | 0 6→ m} iff ∃mA ∈ [[A]]. 0 → mA iff 0 ∈ [[A]] iff |= A, where the
second last equivalence follows from the downwards closure of [[A]]. 2

Combining this proposition with proposition 7.1 we can express that a
marking m′ cannot be reached from another m:

Corollary 9.2 For markings m and m′: m 6→ m′ iff |= (m −↪↩
m′)⊥

We can now express that the processes, p1 and p2, of example 7.2, cannot
get into their critical regions at the same time. We might try |= (m0 −↪↩

c1⊗ c2)⊥. This is not quite right however, since |= (m0−↪↩ c1⊗ c2)⊥ merely
states that the two processes cannot be in their critical regions at the
same time when no other tokens are present; the correct statement is
|= (m0 −↪↩ c1 ⊗ c2 ⊗ T)⊥.

Sample Properties

• For any marking obtained from m the load on the place a cannot
exceed n ∈ IN , i.e. with m = m0 this means that a is n-safe:
|= (m −↪↩ an+1 ⊗ T)⊥

Suppose on the contrary ∃m′. m → m′ and m′(a) > n; that is m′ ≥
(n+1)a. Then m′ belongs to [[an+1⊗T]] which is downwards closed
and so m ∈ [[an+1 ⊗ T]] wherefore |= m −↪↩ an+1 ⊗ T—contradicting
|= (m −↪↩ an+1 ⊗ T)⊥.

• safeness, i.e. ∀m ∈ ↑(m0)∀a ∈ P. m(a) ≤ 1 (N is 1-safe):
|= (m0 −↪↩ (⊕a∈Pa ⊗ a) ⊗ T)⊥

Again suppose on the contrary ∃m′∃a. m0 → m′ and m′(a) > 1.
Then m′ ∈ [[(⊕a∈Pa ⊗ a) ⊗ T]] and so |= m0 −↪↩ (⊕a∈Pa ⊗ a) ⊗ T—a
contradiction.

It follows from the remarks of section 3 that by denoting a proposition
A by [[A]]⊥⊥ we obtain a Petri-net semantics of linear classical logic. In
general it is hard to get an impression of [[A]]⊥⊥, but by slightly narrowing
the class of nets we consider to those whose transitions always have a

18

nonempty preset, i.e. 0 6= .t for all transitions t, we get:

[[A]]⊥⊥ =

[[T]] if |= A
[[F]] otherwise

(9)

To see this notice first for each net we have [[⊥]] = {m | m 6= 0} = M\{0}
and so

q⊥ = {m | ∀mq ∈ q. m + mq 6= 0}
= M\ {m | ∃mq ∈ q. m + mq = 0}
=

M\ {0} if 0 ∈ q

M otherwise

from which (9) follows. It also follows that the image of the map (−)⊥⊥

forms a 2-element quantale where the logical operations act as the usual
operations of propositional logic, and ⊗ acts like &. In this quantale all
the propositional letters would have the same interpretation as F and ⊥.
Such a classical interpretation seems of limited interest.

10 Recursion and Quantification

Though we now have the possibility to use linear negation to express
properties of a net it is hard to express properties such as:

From the initial marking it is possible to reach a marking
where just a is marked (to arbitrary multiplicity)

One way to increase the power of the logic language is to extend it with
the possibility of writing recursive formulas using least (µ) and greatest
(ν) fixpoint operators on assertions.

With their aid we can define propositions a+ and a∗. Abbreviating µx. a⊕
(a ⊗ x) by a+ and a0 ⊕ a+ = 1⊕ a+ by a∗ we have:

m ∈ [[a+]] iff ∃n > 0. m → na

m ∈ [[a∗]] iff ∃n ≥ 0. m → na

Clearly the “of course” operator can be expressed as a maximum fixed
point: !A = νx.A & 1 & x ⊗ x.

19

Sample Properties

• From the initial marking it is possible to reach a marking where
just a is marked: |= m0 −↪↩ a+

• From the marking m it is possible to reach a marking with a marked
and b unmarked:
|= m −↪↩ a+ ⊗ (⊗c∈P\{a,b}c∗)

• The places of S ⊆ P can always be emptied of tokens: |= T −↪↩

⊗a∈P\Sa∗

Another possible extension is to add second order quantifiers with vari-
ables ranging over elements of the quantale, or quantifiers with variables
over markings, for example; they can be understood as special kinds of
meet and join operations. Unfortunately we don’t have ready examples
of their use.

11 Equivalences on Nets

Linear logic induces an equivalence relation between nets having the same
set of places. With respect to a set of places, we build up the propositions
of a linear logic with the places as atoms. If A is such a proposition whose
atoms are amongst the places of a net N we say N satisfies A, written
|=N A, iff A is valid with respect to the semantics of section 6. We say
two nets N0, N1 with the same places are equivalent if they make the
same propositions valid, i.e. we define

N0 ∼ N1 iff (|=N0 A iff |=N1 A, for all propositions A).

A less refined equivalence can be got by taking two nets to be equivalent
iff they give rise to the isomorphic quantales. The latter notion has the
advantage of not depending on the nets having the same set of places.
We shall concentrate on the former equivalence as it implies the latter
and suffices to point out some of the idiosyncracies of linear logic when
interpreted on nets. The equivalence has a direct bearing on the suitabil-
ity of linear logic as a specification language for Petri nets. If it is wished
to distinguish between two nets which are equivalent, there is no hope of
specifying one and not the other within pure linear logic.

20

Observe that because our semantics of linear logic is built on the relation
→, any two nets, over a common set of places, which induce the same
relation → are bound to be equivalent. This means that whenever m →
m′, for a net N , we can adjoin a new transition t with the pre places
m and post places m′, and still get a net equivalent to N . So, given
any net N , we can add “identity” transitions at any multiset of places,
“compositions” and “synchronizations” of transitions as new transitions
and obtain a net equivalent to N .

Examples
Adding “identity” transitions: e--e ∼ � � �

� �

�

� � ee --

- -

��

Adding “composition” transitions: e e e- - - - ∼
� �

e e e- - - -
6

-

Adding “synchronization” transitions:

e

e

e

e

-

--

-

∼
e

e

e

e

-

--

-
SSw

��7
��7

SSw

Also note that these two nets are equivalent:

..........
....

@@..............@@
..........

....

��..............��

..............

��..............�
�

..............@@
..........
....

@@
e

e

e

e
..........

..........
..

I
..........
..........
..

�

..........
..........

..

I

..........
..........
..

�
......................R

......................R
......................	

......................	

..........
....

��..............��
..........
....

@@..............@@

..............

@@..........
....@@

..............��
..........

....

��
e

e

e

e
..........
..........
..

�
..........

..........
..

I

..........
..........
..

�

..........
..........

..

I
......................	

......................	
......................R

......................R

where the direction of the loop has changed! (It’s easy to see both nets
have the same → relation.) However, we can distinguish between different
directions of looping if another place is present to act like a loop counter:

..........
....

@@..............@@
..........

....

��..............��

..............

��..............�
�

..............@@
..........
....

@@
e

e

e

e

e

..........
..........

..

I
..........
..........
..

�

..........
..........

..

I

..........
..........
..

�
......................R

......................R
......................	

......................	

........
........
.......

�
....

��..............��
..........
....

@@..............@@

..............

@@..........
....@@

..............��
..........

....

��
e

e

e

e
..........
..........
..

�
..........

..........
..

I

..........
..........
..

�

..........
..........

..

I
......................	

......................	
......................R

......................R

e9

These nets are not equivalent.

Notice that whether or not the equivalence induced on nets is reasonable,
if two nets are equivalent in our sense then so are they too with respect to
the satisfaction relation of [MOM89]. This is because their construction of
a linear category from a net factors through the construction of what they
call a Petri-category. The Petri-category made from a net has objects the
net’s markings and has a morphism f : m → m′ iff m → m′ in our sense.

21

A difference with the approach of [MOM89] can be seen by considering a
preorder induced by the logic rather than just equivalence. For nets with
the same set of places, define

N0 � N1 iff (|=N0
A implies |=N1

A, for all propositions A).

The preorder induced by our definition of satisfaction will differ from
theirs. In [MOM89], if a net N satisfies a formula A, in their sense,
then any net obtained from N by adding an arbitrary number of new
transitions will also satisfy A. This is not the case for our definition of
satisfaction, as can be seen by adding transitions to the nets N1 and N2

in section 6: Take

N ′
1 =

��

��

g g

g

g

g

�

J
JĴ

- -

-

-

?

6

d a

b

e

c

and N ′
2 =

ZZ~��>

ZZ~

��>ZZ~

��>

g

g

g

ga

b

c

d

For these nets we have 6|=N ′
1

b & c −↪↩ e and 6|=N ′
2

(b −↪↩ d) −↪↩ a whereas
|=N1

b & c −↪↩ e and |=N2
(b −↪↩ d) −↪↩ a.

12 Conclusion

From the examples we have given, we conclude that Girard’s linear in-
tuitionistic logic is expressive enough to be considered seriously as a
specification logic for parallel processes. This is most compelling when
linear-absurdity is present in the language of assertions to facilitate the
expression of negative properties, and perhaps further extensions to the
language, like recursion and quantification, are used. On the other hand,
it must be confessed that linear logic is not an easy language to under-
stand and express properties in.

Of course, our judgements are very much bound up with our choice of
how to interpret the logic on Petri nets, and indeed with the implicit
assumption that Petri nets are a good general model of parallel processes.
To justify the latter we can cite the wealth of literature using Petri nets

22

in the formal and informal analysis of parallel computation. As for our
particular way of interpreting the logic on nets, it’s harder to be definitive.
Certainly some alternatives like [MOM89] suffer much greater problems
from the point of view of saying interesting things about nets in the terms
of linear logic. But there other ways of understanding linear logic in terms
of nets, closely related to ours; for example, in [Bro89b] Carolyn Brown
proposes using the upwards-closed sets with respect to reachability as the
elements of the quantale (our reading of the elements of a denotation as
“sufficient requirements” has then to be replaced by something else). In
her thesis work she is following up the consequences of this twist and
other relationships between nets and linear logic.

At present we lack a completeness theorem for linear logic interpreted in
Petri nets; certainly additional rules, like the distributivity of & and ⊕,
will be necessary. This problem and that of obtaining a compositional
proof system for linear logic on Petri nets (with suitable combinators)
are the subject of present study.

References

[Asp87] Andrea Asperti. A Logic for Concurrency. manuscript, Novem-
ber 1987.

[AV88] Samson Abramsky and Steve Vickers. Linear Process Logic.
Notes by Steve Vickers, 1988.

[Bro89a] Carolyn Brown. Relating Petri Nets to Formulae of Linear
Logic. Technical Report ECS LFCS 89-87, University of Ed-
inburgh, 1989.

[Bro89b] Carolyn Brown. Petri Nets as Quantales. Technical Report
ECS LFCS 89-96, University of Edinburgh, 1989.

[GG89] Carl Gunter and Vijay Gehlot. A Proof-Theoretic Operational
Semantics for True Concurrency. Preliminary Report, 1989.

[Gir87] Jean-Yves Girard. Linear Logic. Theoretical Computer Sci-
ence, 50(1):1–102, 1987.

23

[GL87] Jean-Yves Girard and Yves Lafont. Linear Logic and Lazy
Computation. In Proc. TAPSOFT 87 (Pisa), vol. 2, pages
52–66. Springer-Verlag (LNCS 250), 1987.

[Laf88] Yves Lafont. The Linear Abstract Machine. Theoretical Com-
puter Science, 59:157–180, 1988.

[MOM89] Narciso Mart́ı-Oliet and José Meseguer. From Petri Nets to
Linear Logic. In Category Theory and Computer Science,
Manchester, UK. Springer-Verlag (LNCS 389), 1989.

[Rei85] Wolfgang Reisig. Petri Nets, An Introduction, volume 4
of EATCS Monogaphs on Theoretical Computer Science.
Springer-Verlag, 1985.

[Ros] Kimmo I. Rosenthal. A Note on Girard Quantales. To appaear
in: Cah. de Top. et G. D.

[Sam] G. Sambin. Manuscript reported to us by Per Martin-Löf.

[Yet] D. Yetter. Quantales and Non-Commutative Linear Logic.
(preprint).

24

	Introduction
	Linear Intuitionistic Logic
	Proof Rules for Linear Intuitionistic Logic

	Quantales
	Petri Nets
	Quantales from Nets
	Interpretation
	Expressing Properties of Nets
	The "Of Course" Operator
	Linear Negation
	Recursion and Quanti cation
	Equivalences on Nets
	Conclusion
	References

