Circuit depth relative to a random oracle

Peter Bro Miltersen
Aarhus University, Computer Science Department
Ny Munkegade, DK 8000 Aarhus C, Denmark.
bromille@daimi.aau.dk

August 1991

Keywords: Computational complexity, random oracles, circuit depth.

Introduction

The study of separation of complexity classes with respect to random oracles was initiated by Bennett and Gill [1] and continued by many authors.

Wilson [5, 6] defined relativized circuit depth and constructed various oracles A for which $P^A \neq NC^A$, $NC^A_k \neq NC^A_{k+\epsilon}$, $AC^A_k \neq AC^A_{k+\epsilon}$, $AC^A_k \not\subseteq NC^A_{k+1-\epsilon}$ and $NC^A_k \not\subseteq AC^A_{k-\epsilon}$ for all positive rational k and ϵ, thus separating those classes for which no trivial argument shows inclusion. In this note we show that as a consequence of a single lemma, these separations (or improvements of them) hold with respect to a random oracle A.

The results

Let $\Sigma = \{0, 1\}$ and let $\log n$ denote $\log_2 n$. Recall the following definitions by Wilson [4, 5, 6].

*This research was partially supported by the ESPRIT II Basic Research actions Program the EC under contract No. 3075 (project ALCOM).
Definition 1 A bounded fan-in oracle circuit C is a circuit containing negation gates of indegree 1, and and or gates of indegree 2 as well as of unspecified oracle gates of various indegrees, giving a single boolean output. Given an oracle A, i.e. a subset of Σ^*, C^A denotes the circuit, where each oracle gate of indegree m in C has been replaced by a gate computing $\chi_A : \Sigma^m \to \Sigma$, where $\chi_A(x)$ is 1 if $x \in A$ and 0 otherwise. The depth of an oracle gate with n inputs is $\lceil \log n \rceil$. The size of an oracle gate with n inputs is $n - 1$. The boolean gates have size and depth 1. The size of an oracle circuit is the sum of the sizes of its gates. The depth of a path in the circuit is the sum of the depths of the gates along the path. The depth of the circuit is the depth of its deepest path.

Definition 2 An unbounded fan-in oracle circuit C is defined as in the bounded fan-in case, except that and and or gates of arbitrary indegree are allowed, and each oracle gate is only charged a depth of 1. The depth of an unbounded fan-in circuit is thus simply the length of its longest path.

Definition 3 DEPTH$_{1,0}^A(d)$ is the class of functions f so that for infinitely many integers n a bounded fan-in oracle circuit C_n with n inputs of depth at most d exists, so that $C_n^A(x) = f(x)$ for all $x \in \Sigma^n$, where $C_n^A(x)$ denotes the output of C_n^A when x is given as input.

Let k be a positive rational number. NC$_k^A$ is the class of functions f for which a logspace-uniform family of polynomial size, $O(\log^k n)$-depth bounded fan-in circuits C_n with n inputs exists, so that $C_n^A(x) = f(x)$. AC$_k^A$ is the class of functions f for which a logspace-uniform family of polynomial size, $O(\log^k n)$-depth unbounded fan-in circuits C_n with n inputs exists, so that $C_n^A(x) = f(x)$.

Let A be an oracle. Let t_1^n, \ldots, t_n^n be the n lexicographically first strings of length $\lceil \log n \rceil$. Let $f_n^A : \{0,1\}^n \to \{0,1\}^n$ be the function $f_n^A(x) = \chi_A(xt_1^n)\chi_A(xt_2^n)\cdots\chi_A(xt_n^n)$.

Lemma 4 Let n and d be positive integers. Let C be a fixed oracle circuit with n boolean inputs and n boolean outputs containing at most $s = 2^{n+2-\log d}$ oracle gates of indegree exactly $n + \lceil \log n \rceil$ so that no path in C contains more than d oracle gates of indegree exactly $n + \lceil \log n \rceil$ (no restric-
tions is made on gates of other indegrees). Then, for a random oracle \(A \), the probability that \(C^A \) computes \((f^n_A)^{d+1}\), i.e. the composition of \(f^n_A \) with itself \(d + 1 \) times, is at most \(2^{-2^n} \).

Proof Let us call the oracle gates of indegree \(n + \lceil \log n \rceil \) for interesting. We partition the gates of \(C \) into \(d \) levels 0, 1, \ldots, \(d - 1 \), such that no path exists from the output of any interesting gate at level \(i \) to the input of any interesting gate at level \(j \) if \(j \leq i \). The idea of the proof is to show that with high probability, \((f^n_A)^{i+1}(x)\) is not computed before level \(i \). Given an oracle \(A \) and a vector \(x \in \Sigma^n \), let \(I^A_x(i) \) denote the set of strings \(y \) for which some string \(t \) of length \(\lceil \log n \rceil \) exists, so that \(yt \) is given as input to some interesting gate at level \(i \), when \(C^A \) is given \(x \) as an input. For convenience, let \(I^A_x(d) = \{C^A(x)\} \).

Consider the following procedure for finding an \(x \) so that \(C^A(x) \neq (f^n_A)^{d+1}(x) \).

1. \(L := \emptyset \).
2. if \(\Sigma^n \subseteq L \) then abort, we were not successful.
3. select any \(x \in \Sigma^n \setminus L \).
4. \(x_0 := x \).
5. for \(i := 0 \) to \(d \) do
6. compute \(I^A_x(i) \) by simulating the necessary parts of the circuit.
7. \(L := L \cup I^A_x(i) \cup \{x_i\} \).
8. \(x_{i+1} := f^n_A(x_i) \).
9. if \(x_{i+1} \in L \) then goto 2.
10. od.
11. return \(x \).

Let us first observe that the protocol indeed returns an \(x \) with the desired property in case it does not abort. This is so, because \(x_{d+1} = (f^n_A)^{d+1}(x) \), and
the algorithm makes sure that \(x_{d+1} \notin L \) at a time when \(I^A_x(d) \subseteq L \) and by
definition \(C^A(x) \in I^A_x(d) \). Let us then estimate the probability of abortion.
We will first give an upper bound on the probability of leaving the for-loop
at line 9. For convenience, let us assume that the membership of a string in
\(A \) is not determined until the algorithm asks for it. It is easy to see that the
protocol makes sure that no bit of the value of \(f^A_n(x_i) \) has been determined
previous to line 8. Hence, all \(2^n \) values are equally likely. Of these values, \(|L| \)
causes the algorithm to leave the for-loop in the next line. Hence, each time
line 9 is encountered, the probability of leaving the loop is exactly \(\frac{|L|}{2^n} \).
If we assume that \(m \) values of \(x \) has been tried so far (including the current value),
an upper bound of this is \(\frac{m(s+d+1)}{2^n} \leq \frac{3dms}{2^n} \). Thus, each time the for-loop
is executed, an upper bound of the probability of leaving it prematurely is
\((d+1)\frac{3dms}{2^n} \leq \frac{6d^2ms}{2^n} \). Since the algorithm will try different values of \(x \) at least
until this upper bound is 1 and the above argument applies to all of them,
we have that for any positive integer \(k \):

\[
Pr(\text{abortion}) \leq \frac{6d^2ms}{2^n} \leq \frac{3dms}{2^n} k.
\]

Putting \(k = \lceil 2^n \rceil \), we get:

\[
Pr(\text{abortion}) \leq 2^{-2^\frac{n}{2}}.
\]

\[\square\]

Theorem 5 For \(\alpha < \frac{1}{2} \), \(P^A \not\subseteq \text{DEPTH}^A_{\text{i.o.}}(\alpha n) \) for a random oracle \(A \) with
probability 1.

Proof Let \(d_n = [\alpha n] \). The family of functions \(g^A_n = (f^A_n)^d_n+1 \) is clearly
in \(P^A \). Fix \(n \) and let \(C \) be a fixed bounded fan-in oracle circuit of depth
\(d_n \). It is easy to see that the size of \(C \) is at most \(2^{d_n} \), so by the lemma,
the probability that \(C^A \) computes \(g^A_n \) is at most \(2^{-2^\frac{n}{2}} \). There are at most
\(2^{2^d_n+o(d_n)} \) bounded fan-in oracle circuits of depth \(d_n \), so the probability that
some such circuit computes \(g^A_n \) with \(A \) as oracle is at most \(2^{2^d_n+o(d_n)} \cdot 2^{-2^\frac{n}{2}} \) which
is less than \(2^{-n} \) for sufficiently large \(n \). Thus, for fixed \(N \), the probability
that for some \(n \) greater than \(N \), \(g^A_n \) has \(A \)-circuits of depth at most \(\alpha n \), is
at most \(\sum_{n=N}^\infty 2^{-n} = 2^{-N+1} \). The probability that for all \(N \), an \(n \) greater
than \(N \) exists, so that \(g^A_n \) has circuits of depth at most \(\alpha n \), is thus at most
\[\inf_N 2^{-N+1} = 0. \]

The theorem is an improvement of Wilson’s result [5] that oracles \(A \) exists, so that \(P^A \neq NC^A \). Since every function has unrelativized depth at most \(n + o(n) \), the result is optimal, up to a multiplicative constant of \(2 + \epsilon \).

Similar results about circuit size were obtained by Lutz and Schmidt [3] who showed that for small \(\alpha \) and a random oracle \(A \), \(NP^A \not\subseteq SIZE_{i.o.}^A(2^{\alpha n}) \) and by Kurtz, Mosey and Royer [2], who proved \(NP^A \not\subseteq co-NSIZE_{i.o.}^A(2^{\alpha n}) \).

Theorem 6 For rational \(k \geq 0 \) and \(\epsilon > 0 \), \(AC^A_k \not\subseteq NC^A_{k+1-\epsilon} \) for random \(A \) with probability 1.

Proof Let \(d_n = \lfloor \log^k n \rfloor \) and \(g_n^A = (f_n^A)^{d_n+1} \). \(g_n^A \) is in \(AC^A_k \). It is sufficient to prove that with probability 1, \(g_n^A \) is not computed by a family of bounded fan-in circuits \(C_n \) of depth \(O(\log^{k+1-\epsilon} n) \). Fix an \(n \) and a circuit \(C_n \) within this bound. Observe that \(C_n \) can not contain a path with more than \(O(\log^{k-\epsilon} n) \) oracle gates of indegree \(n + \lceil \log n \rceil \) and that \(C_n \) satisfies the size bound of the lemma. Thus, the probability that \(C_n \) computes \(g_n^A \) is at most \(2^{-2^{\frac{n}{2}}} \). Now proceed as in the previous proof.

It is easy to see from the proof that we actually get the stronger result that there are functions in \(AC^A_n \) which can not be computed in depth \(o(\log^{k+1} n) \) by bounded fan-in \(A \)-circuits.

Theorem 7 For rational \(k > 0 \) and \(\epsilon > 0 \), \(NC^A_k \not\subseteq AC^A_{k-\epsilon} \) for random \(A \) with probability 1.

Proof The proof is bred upon the idea behind the corresponding oracle construction by Wilson [6]. Let \(d_n = \lfloor \log^k n \rfloor \), \(m_n = \lfloor \log^2 n \rfloor \) and let \(g_n^A(x_1x_2\ldots x_n) = (f_{mn}^A)^{d_n+1}(x_1x_2\ldots x_{m_n}) \). \(g_n^A \) is in \(NC^A_k \), since we are only charged depth \(O(\log \log n) \) for computing \(f_{mn}^A \). The probability that \(g_n^A \) is computed by a specific circuit of size \(O(n^l) \), depth \(O(\log^{k-\epsilon} n) \), even with unbounded fan-in, is, by the lemma, at most \(2^{-2\frac{mn}{2}} \leq 2^{-n - \frac{\log n}{2}} \). Now proceed as in the previous proofs.

The proof actually gives us functions in \(NC^A_k \) which require superpolynomial size to be computed in depth \(o(\log^k n/\log \log n) \) with unbounded fan-in \(A \)-
circuits. This is optimal, since standard techniques provide a simulation of NC_k^A by polynomial size, depth $O(\log^k n/\log \log n)$, unbounded fan-in A-circuits.

Corollary 8 For rational $k \geq 0$ and $\epsilon > 0$, $NC_k^A \neq NC_{k+\epsilon}^A$ and $AC_k^A \neq AC_{k+\epsilon}^A$ for random A with probability 1.

References

