Computing Refined Buneman Trees in Cubic Time

Gerth Stølting Brodal, Rolf Fagerberg, Anna Östlin, Christian N. S. Pedersen, S. Srinivasa Rao


Reconstructing the evolutionary tree for a set of n  species based on pairwise distances between the species is a fundamental problem in bioinformatics. Neighbour joining is a popular distance based tree reconstruction method. It always proposes fully resolved binary trees despite missing evidence in the underlying distance data. Distance based methods based on the theory of Buneman trees and refined Buneman trees avoid this problem by only proposing evolutionary trees whose edges satisfy a number of constraints. These trees might not be fully resolved but there is strong combinatorial evidence for each proposed edge. The currently best algorithm for computing the refined Buneman tree from a given distance measure has a running time of O(n^5) and a space consumption of O(n^4). In this paper, we present an algorithm with running time  O(n^3) and space consumption  O(n^2).

Full Text:


This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN: 0909-0878 

Hosted by the Royal Danish Library and Aarhus University Library