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Exploiting Labels in Structural Operational Semantics∗

Peter D. Mosses

BRICS†& Department of Computer Science, University of Aarhus

IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

pdmosses@brics.dk

Abstract. Structural Operational Semantics (SOS) allows transitions to be labelled. This is fully ex-
ploited in SOS descriptions of concurrent systems, but usually not at all in conventional descriptions
of sequential programming languages.

This paper shows how the use of labels can provide significantly simpler and more modular descrip-
tions of programming languages. However, the full power of labels is obtained only when the set of
labels is made into a category, as in the recently-proposed MSOS variant of SOS.

Keywords: Structural operational semantics, SOS, modularity, MSOS, natural semantics

1. Introduction

Structural Operational Semantics (SOS) [24] is a well-known framework that can be used for specifying
the semantics of concurrent systems [1, 11] and programming languages [12]. It has been widely taught,
especially at the undergraduate level [6, 23, 24, 25, 27], and it is generally found to be significantly more
accessible to students than denotational semantics.

In general, labels on transitions in SOS represent interaction possibilities, such as communication
and/or synchronization between concurrent processes. In the usual interleaving SOS of CCS, for in-
stance, labels are (atomic) actions equipped with a complementation operation, together with a special
label τ that represents unobservable transitions [11]; for a non-interleaving SOS of CCS, labels can
record also the locations of actions.

∗Expanded version of a paper with the same title appearing in SAC’04, Proc. 2004 ACM Symposium on Applied Computing,
ACM, 2004. http://doi.acm.org/10.1145/967900.968195.
†Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foundation.
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When using SOS to define the semantics of sequential programming languages, however, labels are
typically not used at all: all auxiliary information (such as environments and stores) is incorporated in
the configurations of the transition system.

This paper shows how labels can be exploited in SOS descriptions of sequential languages to a much
greater extent. As a somewhat unexpected bonus, we shall see how labels allow us to give a big-step SOS
for constructs that involve interleaving – something that was commonly believed to be impossible. The
presented techniques for using labels were all developed in connection with a modular variant, MSOS
[16, 20, 21], of the conventional SOS framework. However, improved modularity is not the only benefit
of the techniques, which can also be exploited when modularity is of no concern.

Compared with SOS, MSOS goes to the opposite extreme regarding labels when describing sequen-
tial programming languages: they are exploited as much as possible. Configurations in MSOS are simply
abstract syntax trees (together with computed values), so the labels on transitions have to incorporateall
auxiliary entities.

Taking environments and stores out of configurations and putting them in labels gives a clear sepa-
ration between syntactic entities and those representing semantic information: configurations in MSOS
always represent what remains to be computed (as usual in the SOS of concurrent systems), and the label
on a transition represents all the “information processing” associated with it: the information available
for inspection, any updates to that information, and any new information produced by the transition itself.

The information processing of transitions in a computation is subject to the obvious constraint that
the part of it available for inspection remains stable, except when updated by the transitions themselves.
This constraint is represented in MSOS by taking the labels to be the arrows of a category, and requiring
labels on adjacent transitions to be composable. The objects of the label category correspond to states of
the processed information. Identity arrows are naturally used to label unobservable (silent) transitions.

It appears that this way of combining the familiar notions of labelled transition system and category
is novel, and has not previously been exploited in connection with operational semantics of programming
languages and concurrent systems.

The rest of the paper is organized as follows: Section 2 recalls the definition of MSOS from [16, 20],
pointing out the differences from the conventional SOS framework. Sections 3, 4, and 5 give simplified
examples of MSOS, illustrating how labels are used. Section 6 explains how these simple examples can
be combined, and how a high degree of modularity can be obtained. Section 7 shows how interleaving can
be described in a variant of so-called big-step SOS (Natural Semantics). Section 8 discusses bisimulation
equivalence in MSOS. Section 9 explains the relationship of the work presented here to previous work.

2. Modular SOS

The conventional SOS framework is based on labelled transition systems (LTS):

Definition 2.1. A labelled transition systemLTS is a quadruple〈Γ, A,−→, T 〉 consisting of a setΓ
of configurationsγ, a setA of labelsα, a ternary relation−→ ⊆ Γ × A × Γ of labelled transitions
(〈γ, α, γ′〉 ∈ −→ is writtenγ

α−→ γ′), and a setT ⊆ Γ of terminal configurations, such thatγ
α−→ γ′

impliesγ 6∈ T .
A computationin anLTS (from γ0) is a finite or infinite sequence of successive transitionsγi

αi−→
γi+1 (written γ0

α1−→ γ1
α2−→ · · ·), such that when the sequence terminates withγn we haveγn ∈ T .
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Thetraceof an infinite computationγ0
α1−→ γ1

α2−→ · · · is the sequenceα1α2 . . .; the trace of a finite
computationγ0

α1−→ · · · αn−→ γn is the sequenceα1 . . . αnγn.

There are no restrictions on the set of configurationsΓ of an LTS: the (abstract) syntax of programs and
their parts (expressions, declarations, commands, etc.) and the values that they compute are allowed as
components of configurationsγ ∈ Γ, but there may also be further components. The set of labelsA of an
LTS is entirely unconstrained. A computation of an LTS is either infinite, or terminates in a distinguished
setT ⊆ Γ of final configurations.

In the MSOS variant of SOS, configurations are constrained, the set of labels is given some structure,
and computations are required to respect that structure. The following kind of generalized transition
system was introduced in [16]:1

Definition 2.2. A generalized transition systemGTS is a quadruple〈Γ, A,−→, T 〉 whereA is a cate-
gory with morphismsA, such that〈Γ, A,−→, T 〉 is a labelled terminal transition system LTS.

A computationin aGTS is a computation in the underlyingLTS such that its trace is a path in the
categoryA: whenever a transition labelledα is followed immediately by a transition labelledα′, the
labelsα,α′ are required to be composable inA.

MSOS does not allow auxiliary information in configurations. Thus the initial configuration of a
computation is always just an abstract syntax tree, and the final configuration (if any) is just a com-
puted value. (As in SOS, intermediate configurations generally involve mixtures of abstract syntax and
computed values, where some nodes have been replaced by the values that they have already computed.)

In MSOS, the set of labelsα ∈ A of an LTS is made into the set ofarrows of a categoryA by
equipping it with a partial composition, writtenα1 ; α2, and by distinguishing a set ofidentity labels
I ⊆ A, satisfying the usual axioms: composition is associative (when defined) and identities are left and
right units. The elements ofI are taken as theobjectsof the categoryA. The set of arrows between two
objectsα1, α2 ∈ I consists of allα such that bothα1 ; α andα ; α2 are defined.

In MSOS, computations are restricted to those whose labels trace (possibly infinite) paths through
the label category: when a transition labelledα1 is followed immediately by a transition labelledα2, the
compositionα1 ; α2 must be defined.

In some other approaches to operational semantics, transitions between configurations, rather than
labels on transitions, are taken as the arrows of a category. This requires the transition relation to be
both transitive and reflexive, neither of which is appropriate for MSOS. (Transitivity would make it
problematic to describe constructs which rely on atomicity, such as test-and-set, and reflexivity would
imply that computations could always be continued with ‘stuttering’ transitions.)

Proposition 2.1. For each GTS〈Γ, A,−→, T 〉, an LTS〈Γ•, A•,−→•, T •〉 can be constructed such that
for each computation of the GTS, there is a computation of the LTS with the same trace, and vice versa.

This result is proved in [21]. The construction is straightforward: each configuration of the LTS is a pair
consisting of a configuration of the LTS and an object of the label category, and the transition relation is
defined accordingly.

1Generalized transition systems were called “arrow-labelled” in [16].
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3. Environments

The current bindings of identifiers during a computation are usually represented by environmentsρ ∈
Env , whereEnv is a set of finite maps.

In SOS, environments are usually taken as components of configurations, e.g.,Γ = · · · × Env , so
transitions might go from〈. . . , ρ〉 to 〈. . . , ρ′〉. In practice, transitions never change the environment, and
the notationρ ` 〈. . .〉 α−→ 〈. . .〉 is usually introduced to abbreviate〈. . . , ρ〉 α−→ 〈. . . , ρ〉.

An alternative to taking environments as components of configurations in SOS is to incorporate them
in labels. Here is an example, illustrating how a (small-step) SOS for some simple expressions would
look when written this way:

Numbers n ∈ N = {0, 1, 2, . . .}
Truth-values t ∈ T = {tt,ff}
Identifiers x ∈ Id = {x0,x1,x2, . . .}
Binary Ops. bop ∈ Bop = {+,−, ∗, . . . , <,=}
Constants con ∈ Con ::= t | n
Expressions e ∈ Exp ::= con | e0 bop e1 |

x | letx = e0 in e1 | . . .
Computed Values T = N ∪ T

Bound Values BV = N ∪ T

Environments ρ ∈ Env = Id →fin BV
Labels A = Env

e0
ρ−→ e′0

e0 bop e1
ρ−→ e′0 bop e1

(1)

e1
ρ−→ e′1

e0 bop e1
ρ−→ e0 bop e′1

(2)

bop = +, n = n0 + n1

n0 bop n1
ρ−→ n

(3)

ρ(x) = con

x
ρ−→ con

(4)

e0
ρ−→ e′0

letx = e0 in e1
ρ−→ letx = e′0 in e1

(5)

e1
ρ[x=con0]−−−−−−−→ e′1

letx = con0 in e1
ρ−→ letx = con0 in e′1

(6)

letx = con0 in con1
ρ−→ con1 (7)
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Unfortunately, the above example doesnotgive the intended operational semantics in conventional SOS,
since the environments used as labels on successive transitions are unconstrained. In MSOS, however,
we can accurately reflect that the environment does not change from one transition to the next by taking
the label category for environments to bediscrete: all arrows of the category are identities, and the
compositionρ ; ρ′ is defined only whenρ = ρ′.

4. Stores

The values currently stored at memory locations during a computation are represented by abstract stores
σ ∈ S, whereS is a set of finite maps.

In SOS, stores are usually taken as components of configurations, e.g.,Γ = · · · × S, so a transition
goes from〈. . . , σ〉 to 〈. . . , σ′〉, where the difference betweenσ andσ′ corresponds to the (observable)
updates made by the transition. For constructs that can inspect but not update the stored information,
σ = σ′.

An alternative to taking stores as components of configurations is to incorporatepairsof stores(σ, σ′)
in labels. The storeσ represents information that can be inspected at the beginning of the transition, and
σ′ the possibly-updated information left at the end of the transition. Let us see how a small-step SOS for
some familiar commands would look when written this way. (For simplicity, we disregard environments
here, and for uniformity, we assume that expressions could have side-effects when evaluated.)

Locations l ∈ L = {l0, l1, l2, . . .}
Expressions e ∈ Exp ::= l | con
Commands c ∈ Com ::= nil | l := e | c0 ; c1 |

if e then c0 else c1 | . . .
Computed Values T = N ∪ T ∪ {nil}
Stored Values SV = N

Stores σ ∈ S = L →fin SV
Labels A = S × S

σ(l) = n

l
(σ,σ)−−−−→ n

(8)

e
(σ,σ′)−−−−→ e′

l := e
(σ,σ′)−−−−→ l := e′

(9)

l := n
(σ,σ[l=n])−−−−−−−→ nil (10)

c0
(σ,σ′)−−−−→ c′0

c0 ; c1
(σ,σ′)−−−−→ c′0 ; c1

(11)

nil ; c1
(σ,σ)−−−−→ c1 (12)
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e
(σ,σ′)−−−−→ e′

if e then c0 else c1
(σ,σ′)−−−−→ if e′ then c0 else c1

(13)

if tt then c0 else c1
(σ,σ)−−−−→ c0 (14)

if ff then c0 else c1
(σ,σ)−−−−→ c1 (15)

Obviously, the above example doesnot give the intended operational semantics in conventional SOS,
since the pairs of stores used as labels on successive transitions are unconstrained, whereas we should
require that theσ′ at the end of each transition in a computation is identical to theσ at the beginning of
the following transition – assuming that the stored information does not change spontaneously between
transitions.

In MSOS, we can accurately reflect the above requirement by makingS×S into apreordercategory
in the obvious way: the identities are of the form(σ, σ), corresponding to single stores, and composition
is defined by(σ, σ′) ; (σ′, σ′′) = (σ, σ′′), otherwise undefined.

5. Abrupt Termination

Abrupt termination occurs when the execution of the program reaches a construct that requires the normal
flow of control to be abandoned. Such constructs include commands for breaking out of the (smallest)
enclosing loop, returning from a procedure activation, jumping to a label, raising an exception, or simply
stopping the program prematurely. Other constructs allow particular forms of abnormal termination to be
detected and handled, whereupon the normal flow of control may be continued. All remaining constructs
are said topropagateabrupt termination, terminating abruptly whenever one of their components does.

In SOS, abrupt termination of a part of the program is usually represented by its computation reach-
ing some abnormal final configuration. Rules for constructs that detect and handle abrupt termination
distinguish abnormal final configurations from those that can arise due to normal termination. A rule is
needed for each possibility of propagation of abrupt termination; unfortunately, such rules can be quite
numerous, and rather tedious to specify.

The following technique was discovered by B. Klin (BRICS, Univ. of Aarhus) in connection with
MSOS, but it is directly applicable also in conventional SOS.

An alternative to the conventional use of final configurations to distinguish between normal and
abrupt termination is to let thelabel on each transition indicate whether or not abrupt termination is
required. Such labels can be propagateduniformlyto the enclosing constructs, thus avoiding the need for
tedious extra rules.

To illustrate this novel technique, let us take a minimalistic example involving a stop-command
which, when executed, is supposed to stop the execution of the enclosing program immediately. We
introduce a construct ‘program c’ indicating the top of the entire program, and a corresponding final
configuration for program computations, ‘end’. (The description of breaks, returns, and exceptions
would be quite similar; that of jumps to labels is complicated only in respect of specifying the binding
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of labels to “local continuations”.) For simplicity, let us disregard environments and stores here.

Commands c ∈ Com ::= nil | c0 ; c1 | stop | . . .
Programs p ∈ Prog ::= program c | end

Computed Values T = {nil, end}
Labels α ∈ A = {stopped , ( )}

c0
α−−→ c′0

c0 ; c1
α−−→ c′0 ; c1

(16)

nil ; c1
( )−−→ c1 (17)

stop
stopped−−−−−→ c (18)

c
( )−−→ c′

program c
( )−−→ program c′

(19)

c
stopped−−−−−→ c′

program c
( )−−→ end

(20)

programnil
( )−−→ end (21)

The above example gives the intended semantics both in conventional SOS and in MSOS, since no con-
straint on the labels of successive transitions is needed. The semantics specified forstop is analogous
to that of a signalling action in a concurrent system; that forprogram c corresponds to a kind ofsyn-
chronizationbetween the entire program and the first executed occurrence ofstop in its body. Notice
that the label carries the abrupt termination signal upwards through the derivation of a single transition.

In MSOS, we represent the lack of constraints on adjacent labels by making the set of labels into
a monoid: considered as a category, a monoid has a single object, hence its composition is total. For
the above example, it is enough to take a two-element monoid with unit( ) and non-unitstopped . (The
MSOS of interactive input and output requires label categories to be free monoids; these could be used
here too, although sequences with more than one ‘stopped ’ would never arise in the specified computa-
tions.)

6. Combinations

The examples given in the preceding sections have illustrated the use of various techniques separately,
for simplicity. But what if we want to use all the proposed techniques at once, in the same description?
This requires labels that can incorporate several components.

For combining abstract syntax with environments and stores in SOS, Cartesian products are used.
One can do the same in SOS for combining separate components of labels, for instance takingA to be
Env × S × S × {( ), stopped }, and writing labels in rules as〈ρ, σ, σ′, α〉.
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Recall that in MSOS, we use different kinds of label category for environments, stores, and abrupt
termination. The obvious way of combining these separate label categories into a single category is to
form a product category, where composition is defined component-wise: the composition of the tuples is
defined if and only if the composition of each corresponding pair of components is defined.

It is possible to construct label categories incrementally (starting from the trivial category) using
label category transformers [16], which are loosely analogous to simple monad transformers [8, 13]. An
alternative is to specify the desired product category directly, given notation for the three basic ways of
constructing the component label categories from sets, e.g.:

A = Discrete(Env)×Pair(S)× {stopped}?

It is clearly desirable to avoid the need for large-scale reformulation of rules when adding new,
unforeseen components to labels: e.g., when adding exceptions to a language, we would not want to
have to add explicit propagation of the corresponding label component to all the existing rules.

In fact, rules for constructs concerned only with normal flow of control (sequencing, conditionals,
iterations, etc.) are naturally formulated without concern for components of labels. Let the meta-variable
X range over arbitrary arrows inA, andU over the subsetI of identity arrows. Then the following rules
for sequential commands subsume those previously given in both Sects. 4 and 5:

c0
X−−→ c′0

c0 ; c1
X−−→ c′0 ; c1

(22)

nil ; c1
U−−→ c1 (23)

In (22) above, the use ofX both in the premise and in the conclusion ensures that the transitions forc0

and for ‘c0 ; c1’ have the same label, whatever components that label might have. The restriction of the
labelU to an identity arrow in (23) means that the transition for ‘nil ; c1’ must leave any store component
unchanged, and any component used for indicating abrupt termination must be void( ), as expected for
a transition that should be completely unobservable. If labels have an environment component, (22) also
requiresc0 have the same environment as ‘c0 ; c1’.

Some rules involve setting or inspecting particular components of labels. Given the definition of the
label categoryA, tuple patterns could be used for this, e.g.:

e1
〈ρ[x=con0],(σ,σ′),α〉−−−−−−−−−−−−−→ e′1

letx = con0 in e1
〈ρ,(σ,σ′),α〉−−−−−−−−→ letx = con0 in e′1

(24)

However, this notation is quite tedious when there are many components, but only one or two of them
are relevant the rule concerned. Moreover, adding a further component would require its insertion in all
rules that use the tuple patterns.

Another possibility is to defineset andget operations onA, with symbolic indices as arguments,
as in [16]. This corresponds closely to using anindexedproduct category, where the components are
unordered. The arrows of such a category correspond to records in programming languages. ML provides
a suggestive notation for record patterns, using ‘. . . ’ as a variable to stand for any number of indexed
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components; this allows (24) above to be written as follows:

e1
{ρ=ρ0[x=con0],...}−−−−−−−−−−−−→ e′1

letx = con0 in e1
{ρ=ρ0,...}−−−−−−−→ letx = con0 in e′1

(25)

Here, in contrast to in ML, different occurrences of ‘. . . ’ in the same rule stand for thesameset of record
components. Restrictions of (parts of) labels to identity arrows need to be stated as premises, e.g.:

ρ0(x) = con, U = {ρ=ρ0, . . .}
x

U−−→ con
(26)

σ0(l) = n, U = {σ=σ0, . . .}
l

U−−→ n
(27)

U = {σ=σ0, σ
′=σ0, . . .}

l := n
{σ=σ0,σ′=σ0[l=n],...}−−−−−−−−−−−−−−→ nil

(28)

U = {α′=( ), . . .}
stop

{α′=stopped ,...}−−−−−−−−−−−→ c
(29)

The remaining rules that need to refer to particular components of labels do not require any extra
premises:

c
{α′=( ),...}−−−−−−−→ c′

program c
{α′=( ),...}−−−−−−−→ program c′

(30)

c
{α′=stopped ,...}−−−−−−−−−−−→ c′

program c
{α′=( ),...}−−−−−−−→ end

(31)

Note the systematic use of primes on the indexes of the records: an index that occurs only unprimed
(such asρ above) refers to a component from a discrete category; one which occurs both unprimed and
primed (such asσ) refers to the first, resp. second, component of a pair coming from a preorder category;
and an index which occurs only primed (such asα) refers to a component from a monoid category. An
unprimed index thus always refers to information available at thebeginningof a transition, and a primed
index refers to information determined at theendof a transition.

In MSOS, the description of each programming construct can often be given definitively, once and for
all. The degree of modularity can be so high that the rules given for each construct shouldneverrequire
reformulation when other constructs are added to (or removed from) the described language. This comes
entirely from the use of label categories together with notation allowing particular components of labels
to be set or inspected independently of the presence of other components (such as that provided together
with label category transformers [16], or the record notation illustrated above, which was borrowed from
ML).

The novel technique described in Sect. 5 avoids the need for a lot of extra rules when adding con-
structs that involve abrupt termination.
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The notational overhead of MSOS compared to conventional SOS is quite minor (in fact the MSOS
rules for many constructs aremoreconcise than the corresponding SOS rules) and is in any case com-
pletely outweighed by the possibility of reusing MSOS rules in the semantic descriptions of many dif-
ferent programming languages.

7. Modular Natural Semantics

All the illustrations of MSOS given above have been formulated in the so-calledsmall-stepstyle, where
a computation is a sequence of transitions from an initial configuration through intermediate config-
urations, leading either to a final configuration or to nontermination. For sequential programs, each
transition generally involves asingle construct, such as the application of an arithmetic operation or
an assignment command, where at least some of its components have already been replaced by their
computed values. Only for programs involving synchronization does a transition involve two (or more)
constructs in different parts of the program.

In fact MSOS can be used for the big-step style of SOS too. This style of SOS is also known as
Natural Semantics [7], and it was used for the definition of Standard ML [12].

Like the small-step style of SOS, Natural Semantics (NS) uses rules to specify computations, and
auxiliary entities such as environments and stores to represent the information processed by computa-
tions. However, it doesn’t involvesequencesof transitions at all: a computation goes straight from the
syntax of a construct to its computed value – depending on computations for some or all the compo-
nents of the construct. Nonterminating computations are ignored altogether, since they would require
infinitely-deep derivations.

The evaluation relation of an NS can be regarded as a degenerate transition relation where there are
no intermediate configurations. The same label categories that were used for environments and stores
in MSOS can be used to obtain a modular variant, say MNS, of NS. Now, however, the rule for the
evaluation of a construct often involves the evaluation of several components, and the labels used for
these sub-evaluations have to be composed. Here is an example:

c0
X0−−−→ nil, c1

X1−−−→ nil, X = X0 ; X1

c0 ; c1
X−−→ nil

(32)

Notice that the explicit composition ofX0 andX1 above makes it clear that the intended order of com-
putation ofc0 andc1 is from left to right – independently of the order in which the premises of the rule
are written. Similarly in the following rule for evaluation of addition expressions:

e0
X0−−−→ n0, e1

X1−−−→ n1, X = X0 ; X1

e0 + e1
X−−→ n0 + n1

(33)

Although one can easily specify that expression evaluation is a nondeterministic choice between left-
to-right and right-to-left (by adding a rule identical to (33) except for specifyingX = X1 ; X0), it is not
so straightforward to specify that arbitrary interleaving of sub-expression evaluations is allowed. The
difficulty of specifying interleaving in conventional NS is generally regarded as motivation for using the
small-step style of SOS when describing languages where any construct involves interleaving. In MNS,
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however, we may exploit an unorthodox label category where (in essence) we take the monoid category
(S×S)∗ (instead of the usualPair(S ×S)) as the component for stores. The computation of an atomic
construct always gives a single pair of stores, but sequencing of constructs gives rise to longer sequences
of pairs. The point of this is that now we can define also an operationinterleavings(X0,X1) on labels
that produces the set of labels with all possible interleavings of the sequences of pairs of stores inX0

andX1. A rule for interleaved expression evaluation is then specified as follows:

e0
X0−−−→ n0, e1

X1−−−→ n1, X ∈ interleavings(X0,X1)

e0 + e1
X−−→ n0 + n1

(34)

The lack of insistence on composability (in the usual sense) of the pairs of stores in these sequences
reflects that interleaving may cause a completely arbitrary update to the store between any two transitions.
When a construct (such as an entire program) is protected from external interleaving, all that is needed
is to select those labels with sequences that can be composed to give a single pair of stores.

Unfortunately, the discovery of how to specify interleaving in MNS remedies only one of several
drawbacks of the big-step style in relation to the small-step style of MSOS: apart from the lack of
reflection of nonterminating computations in MNS, the novel technique illustrated for abrupt termination
in Sect. 5 is not applicable in MNS. (To see this, considerprogram c wherec is stop ; c1 andc1 is any

nonterminating command. Since there is noX1 such thatc1
X1−−−→ nil, rule (32) cannot be used to derive

any transition at all forc. Thus no big-step rules forprogram c would be able to distinguish betweenc
andc1. This implies that thestop command does not stop the program.)

Thus the recommendation is to use small-step (M)SOS for constructs whenever their operational
semantics involves (or might later be extended to involve) either nontermination or abrupt termination.
For constructs thatinherently involve only normal termination (e.g., decimal notation for unbounded
integers, and type expressions), the order of evaluation of component constructs is often irrelevant, and
MNS may then be preferable to MSOS.

8. Equivalence in MSOS

The development of MSOS has so far been focussed on establishing appropriate foundations for modular
specifications of programming languages, and on developing an appropriate meta-notation for writing
such specifications. The study of equivalences based on MSOS is still at an early stage. Although
the standard definitions carry straight over from SOS to MSOS, and allow proofs of general algebraic
properties, it is questionable whether the resulting equivalences are large enough to allow reasoning
about the MSOS of specific programs.

8.1. Strong Bisimulation

An MSOS defines a generalized transition systemGTS = 〈Γ, A,−→, T 〉 with an underlying labelled
transition systemLTS = 〈Γ, A,−→, T 〉, whereA is the set of morphisms of the label categoryA.
Adjacent labels in computations are required to be composable inA. Let us first recall the usual notion
of strong bisimulation for ordinary labelled transition systems [10], adjusted to take account of terminal
configurations:
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Definition 8.1. Let LTS = 〈Γ, A,−→, T 〉 be a labelled transition system.R ⊆ Γ × Γ is a strong
bisimulationiff 〈γ1, γ2〉 ∈ R implies, for allα ∈ A,

• wheneverγ1
α−→ γ′

1 then for someγ′
2, γ2

α−→ γ′
2 and〈γ′

1, γ
′
2〉 ∈ R;

• wheneverγ2
α−→ γ′

2 then for someγ′
1, γ1

α−→ γ′
1 and〈γ′

1, γ
′
2〉 ∈ R; and

• wheneverγ1 ∈ T or γ2 ∈ T thenγ1 = γ2.

γ1, γ2 arestrongly bisimilar, writtenγ1 ∼ γ2, iff 〈γ1, γ2〉 ∈ R for some strong bisimulationR.

The above definition of strong bisimulation carries over unchanged from LTS to GTS, and the usual
proof techniques are available. Since the configurationsγ of the GTS defined by an MSOS are purely
syntax and computed values, we obtain bisimulation and bisimilarity relations on programs (and parts
of programs) without the need to quantify explicitly over auxiliary entities such as environments and
stores. In fact an MSOS for a programming language resembles an SOS for a process algebra, the main
difference being in the nature of the labels.

This straightforward definition of strong bisimulation for GTS is insensitive to whether adjacent
labels in computations are composable or not, since for each pair of configurations, we consider all
possible labels on their next transitions, without regard to the labels on the transitions that led to those
configurations. For general algebraic properties (e.g. commutativity, associativity) such insensitivity
clearly does not matter: one has to prove that syntactically-distinct programs do in fact have the same
possibilities for the flow of control between their unknown parts, regardless of the information which is
processed by those parts.

Suppose, however, that we are to prove equivalence of programs involving specific bindings of iden-
tifiers to values, or specific assignments of values to variables, where the combination of the syntactic
configuration and the auxiliary information carried by the labels can determine the future flow of control.
In this case, the relevant point is that the labels on transitions revealall components of the information
being processed: two programs can only be in a bisimulation when they start from the same environment,
and make exactly matching changes to the store at each transition. The fact that stores are included in
labels ensures that bisimilar programs always have the same store at each transition.

The original definition of strong bisimulation for MSOS [16] was based on the reduction from GTS
to LTS, and involved binary relations between pairs consisting of GTS configurations and objects of the
label category. It now appears that it was unnecessarily complicated.

A full treatment should take account of the fact that environments in practice often have syntactic
components, for instance closures representing functions with static scopes for bindings. Since environ-
ments occur as components of labels in MSOS, it’s too restrictive to insist on labels beingidentical in
connection with bisimulation: their syntactic components should be allowed be in the bisimulation re-
lation themselves. The same goes for the computed values, which may also have syntactic components.
Thus ahigher-orderbisimulation is needed, similar to that defined for use with higher-order process alge-
bra where processes can be passed as values. (There has as yet been no experience of using higher-order
bisimulation to prove properties of languages specified in MSOS, so we omit the definition here.)

8.2. Weak Bisimulation

An MSOS for a programming language involves many unobservable transitions, for instance arising due
to applying arithmetic operations to the values of sub-expressions. Sometimes, one can avoid unobserv-
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able transitions by taking account of the case when a component construct is making a transition to a
final state, as in the SOS rules for command sequencing in Plotkin’s notes [24], but it is not clear that
the extra bother of doing that is worthwhile. For a general notion of equivalence, it is desirable to allow
(finite sequences of) unobservable transitions to be ignored.

In studies of process algebra, many variations on the theme of weak bisimulation have been defined,
based on the assumption that unobservable transitions are always being labelled with a special silent
action, conventionally writtenτ . In MSOS, we generally have a large set of labels for unobservable
transitions: all the identity morphisms of the label categoryA, so we do not need to addτ to our labels.
Moreover, definitions of weak bisimulation don’t depend onτ being a constant (we could regard it
formally as a meta-variable ranging over the set of identity morphisms).

Thus the standard definition of weak bisimulation [10] is formulated for MSOS as follows (branching
and other varieties of bisimulation would be defined analogously):

Definition 8.2. Let 〈Γ, A,−→, T 〉 be a generalized transition system, andA the set of morphisms of the
categoryA. R ⊆ Γ× Γ is aweak bisimulationiff 〈γ1, γ2〉 ∈ R implies, for allα ∈ A,

• wheneverγ1
α=⇒ γ′

1 then for someγ′
2, γ2

α̂=⇒ γ′
2 and〈γ′

1, γ
′
2〉 ∈ R;

• wheneverγ2
α=⇒ γ′

2 then for someγ′
1, γ1

α̂=⇒ γ′
1 and〈γ′

1, γ
′
2〉 ∈ R; and

• wheneverγ1 ∈ T or γ2 ∈ T thenγ1 = γ2.

where:

• α=⇒ is defined as the composition−→∗ α−→−→∗,

• α̂=⇒ is defined as−→∗ whenα is an identity morphism, otherwise as
α=⇒,

• −→ is the union of
α′−→ for all identity morphismsα′, and

• −→∗ is the reflexive transitive closure of−→.

9. Related Work

The present paper shows how MSOS arises as a natural consequence of greater exploitation of labels in
SOS descriptions of programming languages. The original presentation of MSOS [15, 16] focusses on
foundational aspects, such as the generalization of labelled transition systems and bisimulation to cate-
gories of labels; it also demonstrates that MSOS rules for some pure functional programming language
constructs do not require any reformulation when expressions are enriched so as to allow side-effects
and/or concurrency. A full case study [19] on the use of MSOS to describe the core of Concurrent ML
provides a basis for comparison between an MSOS and a reduction semantics for the same language. A
recent presentation of MSOS [20] addresses pragmatic aspects: it introduces a more perspicuous nota-
tion for labels (the notation used in the present paper incorporates further refinements, notably the use
of ML’s record patterns), it explains how MSOS descriptions can be transcribed into (equally-modular)
interpreters in Prolog, and it gives a wide range of illustrative examples of MSOS rules, including those
for ML-style exceptions.
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The development of MSOS was stimulated by the need for a modular definition of the action notation
used in action semantics [14, 22, 26] (see [5] for a more recent presentation). The original definition of
action notation was given using SOS [14]; the redefinition in MSOS is reported in [17]. Braga [2] investi-
gates the possibility of prototyping languages according to their action semantics via an implementation
of MSOS in Maude; see also [3, 4]. Braga and Meseguer [9] propose an alternative modular form of
SOS, and explain its relationship to MSOS.

10. Conclusion

The novel techniques presented here show how labels can be exploited to a much greater extent than
usual in the operational semantics of programming languages. The incorporation of environments and
stores in labels requires the use of the label categories provided by MSOS, but the novel treatment of
abrupt termination is applicable also in conventional SOS.

Despite the somewhat surprising possibility of giving a big-step MSOS for interleaving constructs,
the small-step style is still recommended for all constructs whose semantics might involve abrupt termi-
nation or nontermination.
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