Bootstrapping the Primitive Recursive Functions by 47 Colors

Søren Riis
See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@daimi.aau.dk
Bootstrapping the Primitive Recursive Functions by 47 Colours

Søren Riis *
BRICS†
June 1994

Abstract

I construct a concrete colouring of the 3 element subsets of \(\mathbb{N} \). It has the property that each homogeneous set \(\{s_0, s_1, s_2, \ldots, s_r\}, r \geq s_0 - 1 \) has its elements spread so much apart that \(F_\omega(s_i) < s_{i+1} \) for \(i = 1, 2, \ldots, r - 1 \). It uses only 47 colours. This is more economical than the approximately 160000 colours used in [1].

1 Introduction and preliminaries

In the famous paper [2] L.Harrington and J.Paris showed that a certain finitary version \(\text{PH} \) of Ramseys Theorem is true, but unprovable in the celebrated system of Peanos Arithmetic. This is an example of Gödels incompleteness theorem. However, unlike Gödels consistency statement \(\text{PH} \) has generally been accepted to be a natural statement from Arithmetic. In

*This work was initiated at Oxford University England
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
Ketonen and Solovay gave a careful analysis of the underlying growth-rate of PH. As a first step in this analysis it was shown that for each increasing primitive recursive function \(f \) there exists \(n \) and a colouring of the 3 element subsets of \(\{ n, n+1, n+2, \ldots, f(n) \} \) such that there are no homogeneous sets \(\{ s_0, s_1, s_2, \ldots, s_r \} \) with \(r \geq s_0-1 \). The real point is that the number of colours can always be chosen to be less than a number fixed in advance. Ketonen and Solovay defined various algebras and took a series of products, in order to obtain the required colouring. An examination of their proof shows that they used approximately \(1 \times 10^5 \) colours. However they clearly did not try to be economical. Actually in the work of Ketonen and Solovay the important point is that the number is finite. In this paper I construct a concrete colouring which uses only 47 colours.

Recall that the first functions in the Wainer hierarchy [3] are defined by

\[
F_0(n) := n + 1, \quad F_k^{j}(n) := F_k(n), \quad F_k^{j+1}(x) := F_k^{j}(F_k(n)), \quad F_k^{j+1}(n) := F_k^{j}(n), \quad F_\omega(n) := F_n(n).
\]

The function \(F_\omega \) is the first function in this hierarchy which growth faster than each primitive recursive function.

Let \(S^{[k]} \) denote the collection of \(k \) element subsets of \(S \). We use the convention that the elements in displayed in sets \(S = \{ s_0, s_1, \ldots, s_r \} \subseteq \mathbb{N} \) are listed after size (i.e. \(s_0 < s_1 < \ldots s_r \)). Let \(g : \mathbb{N}^{[k]} \to C \). We say that \(S \subseteq \mathbb{N} \) is homogeneous (for \(g \)) if \(u \geq k+1 \) and \(g \) takes a constant value on \(S^{[k]} \). The elements in \(C \) are called colours. If \(g_1 : \mathbb{N}^{[k]} \to C_1, g_2 : \mathbb{N}^{[k]} \to C_2, \ldots, g_u : \mathbb{N}^{[k]} \to C_u \) we define the product colouring \(g := g_1 \times g_2 \times \ldots \times g_u \) as the product map \(g : \mathbb{N}^{[k]} \to C_1 \times C_2 \times \ldots \times C_u \). Notice that \(S \) is homogeneous for \(g \) if and only if \(S \) is homogeneous for all the maps \(g_1, \ldots, g_u \).

2 Definition of the colouring

Let \(j(x, y) \) be the smallest \(j \) such that \(y \leq F_j(x) \). Consider the following 7 open propositions:

\[
\psi_1(\{ x_0, x_1 \}) := x_1 \leq F_\omega(x_0)
\]
\[\psi_2(x_0, x_1) := j(x_0, x_1) > x_0 \]
\[\psi_3(x_0, x_1) := j(x_0, x_1) \geq \left\lfloor \frac{x_0}{2} \right\rfloor \]
\[\psi_4(x_0, x_1, x_2) := j(x_0, x_1) \neq j(x_0, x_2) \]
\[\psi_5(x_0, x_1) := x_1 < F^{x_0-1}_{j(x_0, x_1)}(x_0) \text{ where } j := j(x_0, x_1). \]
\[\psi_6(x_0, x_1, x_2) := j(x_0, x_1) > j(x_1, x_2) \]
\[\psi_7(x_0, x_1) := j(x_0, x_1) \geq 2. \]

Now we define 7 auxiliary colourings \(h_1, h_2, \ldots, h_7 \) as follows. The colouring \(h_i : \mathbb{N}^2 \rightarrow \{0, 1\}; \ i = 1, 2, 3, 5, 7 \) takes the value 1 exactly when \(\psi_i \) holds.

The colouring \(h_j : \mathbb{N}^3 \rightarrow \{0, 1\}; \ j = 4, 6 \) takes the value 1 exactly when \(\psi_j \) holds.

Lemma: Suppose that \(S = \{s_0, s_1, \ldots, s_r\} \subseteq \mathbb{N} \) contains at least \(s_0 \) elements, \(s_0 \geq 5 \) and \(S \) is homogeneous for the colourings \(h_1, h_2, \ldots, h_7 \). Then \(F_\omega(s_i) < s_{i+1} \) for \(i = 1, 2, \ldots, r - 1 \).

Proof:

1. If \(h_1 \equiv 0 \) on \(S^2 \) then \(F_\omega(s_i) < s_{i+1} \) for \(i = 0, 1, 2, \ldots, r - 1 \). This is what we want to show.
2. So assume that \(h_1 \equiv 1 \) on \(S^2 \). According to the definition \(F_\omega(x) := F_x(x) \). So \(s_{i+1} \leq F_\omega(s_i) = F_s(s_i), \ i = 0, 1, 2, \ldots, r - 1. \)
3. For \(i = 0 \) this gives \(s_1 \leq F_\omega(s_0) \).
4. According to the definition \(j(s_0, s_1) \leq s_0 \).
5. This shows that \(h_2 \equiv 0 \) on \(S^2 \).
6. In particular \(j(s_0, s_1), j(s_0, s_2), \ldots, j(s_0, s_r) \leq s_0. \)
7. Now \(h_3 \equiv 0 \) or \(h_3 \equiv 1 \) on \(S^2 \) by (5) we know that \(j(s_0, s_1), j(s_0, s_2), \ldots, j(s_0, s_r) \) takes at most \(\left\lfloor \frac{s_0}{2} \right\rfloor + 1 \) different values.
8. Now \(h_4 \equiv 0 \) on \(S^3 \), because otherwise \(j(s_0, s_1), j(s_0, s_2), \ldots, j(s_0, s_r) \) would all take different values. This is impossible because \(r \geq s_0 - 1 > \left\lfloor \frac{s_0}{2} \right\rfloor + 1 \) and \(s_0 \geq 5. \)
9. But if \(h_4 \equiv 0 \) on \(S^3 \), then \(j(s_0, s_1) = j(s_0, s_2) = \ldots = j(s_0, s_r) \). Let \(j_0 \) denote this value.
(9) The value \(j_0 \) cannot be 0, because then according to the definition of \(j(s_0, s_r) \) we would have \(s_0 + 4 \leq s_r \leq F_0(s_0) = s_0 + 1. \)

(10) According to (9) \(j_0 > 0 \). By the definition of \(j_0 \) we have \(F_{x_0 - 1}(s_0) < s_i \leq F_{j_0}(s_0) \) when \(i = 0, 1, \ldots, r. \)

(11) Now \(h_0 \) cannot take the value 1 on \(S^{[3]} \). To see this suppose that \(h_0 \equiv 1 \) on \(S^{[3]} \). Then \(s_0 \geq j(s_0, s_1) > j(s_1, s_2) > \ldots > j(s_{r-1}, s_r) \) and especially \(j(s_0, s_1) > 2. \) Then by the definition of \(h_7 \) this would have the consequence that \(j(s_{r-1}, s_r) > 2. \) But this is a contradiction because: \(j(s_0, s_1) \geq j(s_{r-1}, s_r) + r - 1, \) so \(j(s_0, s_1) \geq r + 1 > s_0 \geq j(s_0, s_1). \)

(12) So \(h_0 \equiv 0 \) on \(S^{[3]} \). In particular \(j_0 = j(s_0, s_1) \leq j(s_1, s_2) \leq \ldots \leq j(s_{r-1}, s_r). \)

(13) According to (12) \(F_{j_0 - 1}(s_i) \leq F_{j(s_i, s_{i+1})}(s_i) \). The definition of the function \(j \) shows that \(F_{j(s_i, s_{i+1}) - 1}(s_i) < s_i + 1. \) Combining this shows that \(F_{j_0 - 1}(s_i) < s_i + 1. \)

(14) According to (13) \(s_i > F_{x_0 - 1}(s_{r-1}) > F_{x_0 - 1}(F_{x_0 - 1}(s_{r-2})) > \ldots > F_{x_0 - 1}(s_0). \)

(15) Now \(r \geq s_0 - 1 \) so by (14) \(s_i > F_{x_0 - 1}(s_0) \) so \(h_5(\{s_0, s_r\}) = 0. \)

(16) So \(h_5 \equiv 0 \) on \(S^{[3]}, \) and then \(s_{i+1} > F_{j(s_i, s_{i+1})}(s_i), i = 0, 1, 2, \ldots, r - 1. \)

(17) Now \(s_{i-1} \geq s_0 + 1 \) so according to (12) \(j(s_i, s_{i+1}) \geq j_0, \) and thus \(F_{j(s_i, s_{i+1}) - 1}(s_i) \geq F_{j_0 - 1}(s_0). \)

(18) This shows that \(s_r > F_{x_0 - 1}(s_{r-1}) > \ldots > F_{x_0 - 1}(s_0) \).

(19) Now \(r \cdot (s_0 - 1) > s_0 + 1 (s_0 \geq 5) \) so \(s_r > F_{x_0 - 1}(s_0) = F_{x_0}(s_0). \) This shows that \(j(s_0, s_r) > j_0 \) which violates (8) \(j(s_0, s_r) = j_0. \)

(20) The contradiction in (19) shows that the assumption in (2) is impossible. Thus \(h_1 \equiv 0 \) and we are back to (1).

Lemma: There is a colouring \(U : \mathbb{N}^{[3]} \rightarrow \{1, 2, \ldots, 44\} \) using 44 different colours such that if \(S \) is homogeneous for \(h \) then \(S \) is simultaneously homogeneous for the maps \(h_1, h_2, \ldots, h_7 \)

Proof: Now \(1 + 5 \cdot 2 = 11 \) so by [1] there exists a colouring \(U_1 : \mathbb{N}^{[3]} \rightarrow \{1, 2, \ldots, 11\} \) such that if \(S \) is homogeneous for \(U_1 \) then \(S \) is simultaneously...
homogeneous for h_1, h_2, h_3, h_5 and h_7. Now let $U : \mathbb{N}^3 \to \{1, 2, \ldots, 11\} \times \{0, 1\} \times \{0, 1\}$ be the product of U_1, h_4 and h_6. It uses 44 colours. \hfill \Box

Theorem: There is a colouring $W : \mathbb{N}^3 \to \{1, 2, \ldots, 47\}$ such that if $S := \{s_0, \ldots, s_n\}$ is homogeneous for W then $F_\omega(s_i) < s_{i+1}$.

Proof: Define W as U except that $W(\{s_0, s_1, s_2\})$ gets colour 45 if $s_0 < 5$ and $s_1 \geq 5$ or $s_0, s_1, s_2 < 5$ and $s_2 = 4$, and colour 46 if $s_0, s_1 < 5$ and $s_2 \geq 5$, and colour 47 if $s_0, s_1, s_2 < 5$ and $s_2 \neq 4$. It is straightforward to show that any set $S := \{s_0, s_1, s_2, s_3\}$ which is homogeneous for W must have $s_0 \geq 5$.

3 Final remarks and open questions

There is no reason to believe that 47 is a natural constant. Actually by a slight change in the problem I can show that 12 colours suffice. This suggests that the following question might be critical:

Problem 1: Is it possible to use only 12 colours?

One can also ask for the asymptotic answer. Here I think the critical question could be whether:

Problem 2: Is it possible to use only 3 colours?

To my knowledge the 47 colours used in this paper provides the best known lower bound to both of these questions.

References

Recent Publications in the BRICS Report Series

