Arktiske problemstillinger i relation til besejlingen.
Af N. Kingo Jacobson.

For de arktiske egne, som for alle andre underudviklede områder er transportproblemets løsning den primære forudsætning for en i overensstemmelse med et moderne livsvarde krav gældende udvikling, naturligvis afhængig af den betydning som områderne ved deres produktivitet og strategiske beliggenhed er i besiddelse af. Naturforholdene i de arktiske egne har altid lagt samfærdslen store hinder i vejen, såvel land-, sø- som lufttransporten, hvoraf søfarten hidtil har været langt den vigtigste. Udviklingen i de sidste 25 år har imidlertid været eksplosionsagtig, hjulpet af såvel en mildning i det arktiske klima, der ikke mindst for besejlingen har været af afgørende betydning, som af den fantastiske tekniske udvikling, der kan opregnes i bygningen af store moderne isbrydere, udviklingen af radio, gyrokompass, ekkolod og radar, samt udlægning af elektriske fyr, bygningen af vejstationer, havne m. m. Endvidere kan nævnes hele udviklingen af flyvevæsnet, der også på flere punkter har fået afgørende betydning for sejladsen.

En redegørelse for de naturgivne faktorer i det polare område, som har betydning for besejlingen såsom topografiske, hydrografiske og meteorologiske forhold, vil først blive givet i al almindelighed, inden en nærmere gennemgang af udviklingen indenfor de enkelte områder samt disse egnes særlige problemstillinger vil blive foresat.

I.

Ved arktiske egne forstås alle indenfor det polare område beliggende, afgrænset af 10° isotermer for varmeste måned, d.v.s. juli, eftersom kun det nordpolare område vil blive behandlet i det
folgende. Efter denne definition vil de arktiske farvande først og fremmest omfatte Polarkavet samt en del af det nordlige Atlanterhav og størstedelen af Bering Havet. Denne afgrænsning af polarzonen er baseret på undersøgelser i land og falder sammen med skovens nordgrænse, en naturlig skillelinie mellem den tempererede og den polare zone. For havenes vedkommende er denne afgrænsning imidlertid ikke tilfredsstillende, idet forholdene her kompliceres af de herskende havstrømme samt af vandmassers langt større træthed overfor landområder i forbindelse med opvarming og afkøling. I disse egne strækker tilfrysningsen sig gerne over 8—10 måneder, en klimatisk virkende faktor, der ikke kan opvejes af den korte sommerperiode. Arktiske farvande defineres derfor som områder med vandmasser udelukkende af arktisk oprindelse, d.v.s. stammende fra de øvre vandlag (0—200 m) i Polarkavet (jfr. fig. 1). Subarktiske farvande er områder med blandede vandmasser, medens tempererede farvande først træffes syd herfor, d.v.s. i områder uden tilblanding af arktiske vandmasser (M. J. Dunbar, p. 110).

 Arkitske problemsstillinger i relation til besejlingen

...der noldandede på 77° 45' n. br., 175° v. l. og Cerevienyj (1941) på 83° 40' n. br., 175° ø. l. Nu foretages flyvninger til Nordpolen regelmæssigt af amerikanske maskiner fra flyvepladser i Alaska, væsentlig af hensyn til meteorologiske målinger, også fra russisk side må man regne med tilsvarende undersøgelser. Endelig skal nævnes de muligheder, som undersøgelser foretaget fra u-både indebærer (Nautilus ekspeditionen, Wilkins 1931) samt nyere britiske og amerikanske forsøg.

Det var „Fram” ekspeditionen, der fastslog tilstedeværelsen af den nordpolare dybso, der må opfattes som et interkontinental bi-hav, langt det største af alle, der endvidere som arkisk type indtaget en særstilling. Morfologisk er det karakteriseret ved såvel på den amerikanske som på den sibiriske side at være begrænset af sønede bjerg- og højsletelandskaber, hvorved kysterne oploes i talrige øer og halvøer, særlig karakteristisk for det nordamerikanske arkipel. Den mediterrane type (middelhavene) er i modsetning hertil karakteriseret ved, at formen først og fremmest er bestemt af foldninger. (Kossmat p. 83).

De største dybder i Polahravet er målt af Wilkins (5.440 m) og „Sedov“ ekspeditionen (86° 27' n. br., 39° 25' ø. l.) med 5.180 m, hvor hunden ikke blev nået. På fig. 1 er forudcen 2. og 3.000 m dybekurven også 4.000 m dybekurven indlagt efter G. Wüst (p. 176), baseret på de tidligere 23 dybdelodninger over 4.000 m. Forskelligt tyder på, at der n. f. Nansenryggen findes 2 smalle, nærmest parallele depressioner med mere end 4.000 m og n. f. 86° n. br. et større sammenhængende dybsohækkken med mere end 4.000 m's dybde, størst målde dybde er her 5.180 m. Endvidere findes de 2 isolerede dybdemålinger af Storkerson 72° n. br., 147° v. l. (1918) på 4.684 m og Wilkins på 5.440 m.

Den centralarktiske basin med dybder over 2—3.000 m er på alle sider med en stejlskrænt omgivet af en kontinentalsokkel, der især på den sibiriske side er bred og ganske jævnt grundet. Nord
for Grønland er shelfen ca. 75 km bred, og i det canadiske område er hele det arktiske arkipel beliggende på den. Vest for Banks Island skærer dybsoen sig nær ind til land; der er således n. f. Alaska kun en smal kontinentalsøkel med en bredde på mindre end 75 km. Fra Bering Stredet til Kap Chelyuskin er shelfen derimod ca. 600 km bred med dybder på 20—40 m, hvorefter den hurtigt falder til 200 m for at stå med en stejlkant til dybsoen. De Nysibiriske Øer er således beliggende på kontinentalsøklen. Nord for Severnaja Zemlya er shelfen ganske smal og overfladen gennembrudt af submarine dale og fjorde, vest herfor (Kara Havet) er den atter jævn, bred og lavvandet. Fra dybsoen skyder der sig en over 400 m dyb depression ind ø. f. Franz Josefs Land, den strækker sig så langt mod syd som til Novaya Zemlya. Nord for Europa (Barentshavet) strækker shelfen sig fra Novaya Zemlyas kyster til Franz Josefs Land og Spitsbergen, der begge er beliggende herpå, nord for disse øgrupper har shelfen kun ringe udstrækning. I Barentshavet er den gennemsat af et system af submarine dale på mere end 400 m's dybde.

Oceanografiske undersøgelser foretaget af de førnævnte ekspeditioner har givet et foreløbigt billede af hovedvandbevægelsen inden for Polarbassinet, selv om der ifølge sagens natur på en række punkter kun kan være tale om en grøvere oversigt. For de kystnære farvandes vedkommende, der på grund af storslen er de eneste, der er besejlingsmæssigt tilgængelige, er der efter den 2. verdenskrigslutning fra flere nationers side gjort ret store anstrengelser for at følge disse problemer op gennem et detaillert undersøgelser- arbejde baseret på udsendelse af koordinerede ekspeditioner udstyret med alle hjælpemidler.

Som omtalt må Polarhavet betragtes som et til Atlanterhavet stødende bihav. Der er således en fundamental forskel mellem adgangen til Polarhavet fra det nordlige Atlanterhav og det nordlige Stillehav. Nord for Alaskahalvøen og Aleuterne strækker det lavvande (50—100 m dybe) Bering Hav sig, der ved det smalle Bering Strøde står i forbindelse med Polarhavet; på dette sted er shelfen endvidere som nævnt ca. 6—700 km bred. Det varme vand fra Kuro Shio, der løber mod nord langs Nordamerikas vestkyst bøjes mod vest af Alaskahalvøen og Aleuterne, således at det kun er meget svage nordgående strømme, der om sommeren når Bering Strødet; nogen vandudveksling de 2 have imellem kan man ikke tale om. For Atlanterhavets vedkommende er der derimod tale om en ret kraftig udveksling. Golfstrømmen sender foruden Irmingerstrømmen.

I polarbassinet som helhed findes således overst et 200—250 m dybt vandlag, relativ koldt (0° til −1°,8) og med en lav saltholdighed på grund af opblandingen af fersk vand fra floderne. Derunder findes fra ca. 250—750 m's dybe et relativ varmt (+0°,4 til +1°,8), saltholdigt (34,94—34,96‰) medlemag af atlantisk opfindelse, der på grund af jordrotationens afbøjende kraft især udbredes sig mod øst, hvorfor dets mængdighed i de centrale dele af Polarbassinet er ringere end i randområderne (samme meridian). Herefter findes et koldt bundlag, som på 2—3.000 m's dybe når sine laveste temperaturer på −0°,83 til −0°,87 (G. Wüst, p. 170). Mod dybsbassinets bund finder derefter en fornyet temperaturstigning sted. Nansen målte således i 1894 (81° 96' n. br., 128° ø. l.) i 3.800 m's dybe kun +0°,69. Papanin ekspeditionen (88° 07' n. br., 4° v. l.) i 4.395 m's dybe −0°,63, medens bundtemperaturer f. eks. i Grønlandshavets bassiner varierer fra −1°,1 til −1°,3. Grenlandshavet er således ved bunden ca. 0°,7 koldere end Polarbassinet, med hensyn til saltholdighed er de derimod praktisk taget ens. Der er således tale om en fornyelse af Polarbassinets bundvand gennem tilstrømning af bundvand fra Grønlandshavets over Nansenryggen (1750 m dyb) med potentielle temperaturer på +0°,93 til +1°,03, der under adiabatisk opvarmning synker til Polarbassinets største dybder. (G. Wüst, p. 178).

II.

Som omtalt varierer overfladevandets temperatur fra 0° til +1°,8, hvilket betyder, at størstedelen af Polarravets overflade er dækket af is; for de centrale delees vedkommende hele året igan nem, for de kystnære områder er isdækket af varierende udstrækning afhængig af åretiden samt af en række faktorer til dets bestemte i forbindelse med det pågældende områdes beliggendhed.

Som faktorer, der i særlig grad begunstiger isdannelsen, skal,

Man skelner normalt mellem følgende isstyper: kystis, pakis og storis, samt de 2 sørlige former palæocrystisk is og isbjerg. Endvidere kan man tale om nyis i modsætning til de flere år gamle isformer; disse 2 typer findes indenfor pakis og storis. Kystisen er
derimod kun enårig, og resterne af den går efter sommersmeltnin-
gen over i pakisen.

Kystens horisontal, ubevægelig nyis knyttet til kysten. Fra det
begyndende nyistidspunkt til slutningen af november eller begynd-
delsen af december vokser den i udstrækning fra kysten, i tykkelse
vokser den til maj. Består altid først og fremmest af nyis med inde-
frosne kystnære pakismasser (tidl. kystis). Kystisens årlige livs-
cyklus omfatter dannelse, udvikling, eksistens og forsvinden som
selvstændig istype i Polarkøvet, idet den opbrudt om sommeren dels
forsvinder og dels går over i pakisen som komponent (af hvilken
den også dels forsvinder og dels går over i de mange år gamle
former).

Nyis er udsat for gentagne opbrydninger o. lign. på grund af
bolgebevægelser, dog vil et hurtigt temperaturfald om efteråret
overvinde disse forstyrrelser i isdannelsen. Nyisen vil først dannes
langs kysten og derefter sprede sig ud over havet, hvor den mødes
med nyis, dannet omkring øer, grundede isfjelde eller skrueninger
og flydende flerårige pakismasser. Derefter er den udsat for gen-
tagne opbrydninger, men med yderligere temperaturfald i oktober—
november breder kystisen sig efterhånden samtidig med, at den
vokser i tykkelse, før allerede i december at nå sin maximale ud-
bredelse (før fig. 2 og 4), udenfor hvilken pakisonen findes.

større udstrekning shelfen har, des større er muligheden for kystsens udbredelse (bl. a. fordi lavt vand fremmer hurtig afshøling). 3. Tilstedeværelsen af strandede isophobninger (stamukhi). De spiller en vigtig rolle ved udviklingen af kystsåbets bredde, idet de virker som skær, hvorfra ubevægelig nis spredes sig og danner et bolværk mod opbrydning af kystsåsen, en proces, der i de ydre dele normalt forårsages af støjende fra pakisen. Kolchak anslår (p. 102) 24 m som gennemsnitsdybde for fri bevægelse af disse isophobninger, på mindre dybder støder de på grund (stamukhi). Kystsåsæsonen er således begrænset af kystsåslinien på den ene side og den række af stamukhi, som findes langs med den yderste 24 m's dybdekurve, på den anden side. Som omtalt har shelfen sin største udbredelse i Det Østsibiriske Hav, hvor kystsåsæsonen ligeledes når sin største bredde 450 km (jfr. fig. 2), det er endvidere anslået, at kystsåsen her (d. v. s. i området mellem Vrangel Øen og Severnaja Zemlya), hver vinter dækker et ca. 400.000 km² stort område. (H. O. Publ. No. 77, p. 54). Det næststørste kystsåsområde dækker det labyrinthagtige område af sund og stræder i det nordamerikanske arkipelag, bortset fra de smaleste „channels“ og „straits“, der på grund af stærk strøm selv om vinteren kan holdes åbne for længere eller kortere perioder. Til gengæld beforder det store antal øer en højere grad af ubevægelighed i kystsåsæsonen, hvilket bl. a. giver sig udslag i, at kystsåsen visse år bryder op overordentlig sent, eller måske slet ikke (jfr. fig. 5), til stor gavn for besejlingen.

Pakis omfatter brent defineret enhver form for havis, som er gået i drift, R. E. Priestly (Transehe, p. 94). Om sommeren omfatter det al flydende is mellem kysten og storisæsonen, der optager de centrale dele af Polarhavet. Langs storisens rand drives stykker herfra hele året, men iser om sommeren, ind i pakisen og bliver en del af den. Kystsåsens andel i og grænse mod pakisen er omtalt ovenfor.

Pakisens område har sin langt største udbredelse om sommeren, hvor kystsåsen er forsvundet, til gengæld er dens styrke stærkt forringet forårsaget dels af en formindsket tykkelse på grund af smeltning, dels af en opbrydning i mindre stykker og dels af en arealmæssig indskrænkning, hvad angår reelt isdækket område, forårsaget af stød o. lign. Dette fører dels til destruktion (f. eks. ved knusning) og dels til dannelse af isskrupper (der rent lokalt førger isens styrke). Endvidere bliver omfanget af åbent vand i de ydre dele af pakisæsonen større. Åbent vand anses om sommeren at optage 50% af arealaen i pakisæsonen, når man nærmere sig storisens,
aflager det noget, til 20—30 %, for i storiszonen at være ca. 10 % (Transche pp. 96, 105).

Fra slutningen af juni til midten af august er lufttemperaturen over hele Polarbassinet positiv, smeltningperioden strækker sig således gerne over 2—3 måneder, og som gennemsnit vil der smelte ca. 1 m af pak- og storisens overflade. Om vinteren foregår isdannelsen på undersiden af flagerne, men jo tykkere isen bliver, jo langsommere foregår denne proces. Isens gennemsnitlige tykkelse afhænger hovedsagelig af, med hvilken hastighed smeltningen foregår om sommeren og frysningen om vinteren, hvorfor den hovedsagelig er bestemt af klimatiske faktorer samt i nogen grad af isens alder. Den gennemsnitlige tykkelse er 2—3 m ved slutningen af vinteren (maj), 1½—2½ m ved slutningen af den første sommer. Ved den anden vinters slutning kan is, der om sommeren var reduceret til 2½ m's tykkelse, være blevet 3½—4 m tykk; for flere år i følge er 4—4½ m absolut maximum, eftersom is har en meget ringe varmeledningsevne. Det kan endvidere nævnes, at de fleste forfattere opgiver største tykkelse på enkelte islager til godt 3 m, hvilket stemmer overens med ovenstående opgivelse for indtil 2 år gammel is. Det er sikkert ikke større områder, der uforstyrret når at blive meget ældre. Disse tal gælder dels for pakisen, men måske i nok så høj grad for storisen (H. O. Publ. No. 77, p. 55).

Store plane pakisstrækninger er sjældne, træffes kun i beskyttede buger samtidig med sommeren, hvor isen ikke er udsat for at blive presset sammen af vind, da der ingen hindring findes for den fri bevægelse. Derimod er nærheden af land årsag til veldige skruninger, når vinden blæser den vej, oftest hjulpet af havstrømme samt opragende isskrumer, som stormen tager fat i, som i et skib med sejl. I sådanne tilfælde kan ispresset forplante sig hundreder af km fra kysten. De herved forårsagede skrumer kan maximalt blive 50—60 m. Størst er skrumerne i det område, hvor kystisen og pakisen steder op til hinanden, længere til havs overstiger de sjældent 10—15 m.

Storisen er især karakteriseret ved sin veldige styrke og soliditet samt størrelsen af de drivende enheder af tæt sammenpressede, flere år gamle isskrumer. Om sommeren og tidlig på efteråret, når åbent vand og renderne mellem storisfelterne har deres største udbredelse (5—10 % af det samlede areal), foregår opskrueningen under indflydelsen af vind, strøm og tidevand hjulpet af de drivende kraft. Om vinteren er der kun mindre render o. lign. med
åbent vand, der snart fryser til med nys, snart brydes op igen på grund af opståede isspændinger.

Storisens samlede område i de centrale dele af Polarbassinet har form som en ellipse med storakse fra Point Barrow til Franz Josephs Land og lilleakse fra De Nysibiriske Øer til Grants Land. De 2 akser skærer hinanden på 180° meridianen på ca. 84° n. br. Den ydre grænse kan betragtes som besejlingsens nordgrænse indenfor de forskellige områder af Polarhavet, hvorfor dens forløb ganske kort skal beskrives (tjfr. endvidere fig. 2, 3, 4 og 5, hvoraf storiszonens gennemsnitlige udstrækning sommer og vinter fremgår.

Nord for Alaska mødes storiszone på ca. 72° n. br., det samme gælder ved Vrangel Øen. Derimod har den ved De Nysibiriske Øer trukket sig tilbage til ca. 76° n. br., på 138° ø. l. til 78½° n. br., ud for Kap Chelyuskin til 79½° n. br., ved Franz Josephs Land til 81°—81½° n. br. og ved Spitsbergen til 82° n. br., som ligeledes stort set gælder for Grønland og Grants Land. Derefter falder den mod sydvest for ved Parry Islands at findes i 76° n. br. og som nævnt i Beaufort Havet på 72° n. br.

Beliggenheden af storisens randområde er imidlertid udsat for store svingninger afhængig af de fremherskende vindretninger og strømme i forbindelse med kystkonfigurationen. De ovenfor omtalt bræddedannelser er derfor at betragte som grænserne for storisens mindste område om sommeren, som den til tider eksperderer overordenligt stærkt. Blandt de særlig udsatte steder kan nævnes: Beaufort Havet (strækningen fra Point Barrow til Herschel Island), nordlige dele af Chukcher Havet, Det Østsibiriske Hav og Laptev Havet, der er åbne mod nord, ligesom den ofte kommer nær De Nysibiriske Øer og Kap Chelyuskin. De nordlige dele af Kara Havet er ligeledes ofte udsat, såvel som storisen gerne trænger langt mod syd (til Kap Zhelanie, Novaya Zemlya) øst for Franz Josephs Land, et område, der som omtalt p. 98 er karakteriseret af en mere end 400 m dyb submarin depression. Storisen presser endvidere på i området mellem Franz Josephs Land og Spitsbergen for til sidst at blive ført mod syd af den kraftige østgrønlandske strøm.

af Peary konstaterede åbne rende, der størstedelen af året befinder sig her på ca. 84° n. br. Isen fra dette område fører mod syd, hovedsagelig gennem Robeson Kanalen; det er således først og fremmest for besejlingen af Baffin Island og Labrador, at denne islype kræver omtale.

Af langt større betydning for besejlingen er isbjergerne, der overalt i de grønlandske farvande samt i Nordatlanten er en stor fare for sejladsen. Isbjerge er som bekendt gletscheris, landis, der ved kælvning i havniveau løsrives og driver omkring væsentlig under indflydelse af havstrømme. Vindpåvirkning spiller kun en mindre rolle for driften, da størsteparten af isfjeldets masse findes under havoverfladen; hvor stor en del afhænger af formen, som gennemsnit regnes med 9/10. Smeltningen foregår uhyre langsamt i arktiske farvande, hvorfor isfjeldene kan føres langt omkring gennem flere år for til sidst at smelte ved mødet med varmere vandmasser.

Isbjergerne rekrutteres først og fremmest fra den grønlandske
indlandsis (ca. 90 %) samt fra gletherne på Ellesmere Island og Baffin Island (hovedparten af de resterende 10 %). I eurasiske farvande kælver mindre bræer på Spitsbergen, Franz Josef’s Land og den nordlige del af Novaja Zemlya. Størst leverandør er sandsynligvis gletherne på Severnaja Zemlya, fra hvis østkyst isbjerge føres mod syd ind i Boris Vikitski Strædet samt langs Taimyrhalvøens østkyst.

På Grønlands østkyst ligger vandskellet for kystregionen noget højere end indlandsisen på hele strækningen fra Nordostgrunden til Angmagssalik hortset fra enkelte højtliggende pas, hvorfor produktionen af isfjelde på hele denne strækning bliver forholdsvis ringe (25—30 % af de fra indlandsisen stammende isfjelde) og indskrænker sig til nogle få produktive områder: 1. Storstrommen Gl., L. Bistrup Gl. og Soraner Gl; vest for Danmarks Havn leverer 25 % af Østgrønlands isfjelde. 2. De Geers Gl. og Jætte Gl. i de indre dele af Kejser Franz Josephs Fjord (15 %) samt 3. Daugaard Jensens Gl., indre Scoresby Sund (40 %) (Lauge Koch 1945, p. 116). De østgrønlandske isfjelde føres af den østgrønlandske strøm syd om Kap Farvel, hvor den største drift af isfjelde findes i april med
et andet mindre maximum i august. Herfra føres de af strømmen mod nord og vest; kun få når frem til Godthaab, hvorfra de, der ikke er grundstødt på bankerne, føres ud fra kysten.

De i løbet af sommeren løsgjorte vestgrønlandske isfjelde overvinter ofte i Melville Bugten for så i løbet af de følgende 2—3 somre at gøre turen mod syd langs Baffin Island og New Foundland. Da isfjelde, der især optræder fra marts til juni og hyppigt i forbindelse med tågedannelser, forårsager af mødet mellem kolde og varme havstrømme, er en meget farlig hindring for den normale, stærkt trafikerede, nordatlantiske skibsrute, er der siden Titanic-katastrofen 1912 blevet udført regelmæssig ispatruljetjeneste (international) fra Newfoundland af American Coast Guard med støtte fra alle skibe, der besejler ruten. 1. februar påbegynder regelmæssige observationsflyvninger, der gerne fortsættes til omkring 1. september. Pr. radio dirigeres ispatruljetjenestens skibe til de største og farligste isfjelde, som de følger (for at advare nærværende skibe) til isfjeldet oploses: ofte forerances sprængninger for at fremskynde destruktionen. Ved en af tjenesten i 1949 foretaget opstilling af isfjelde i Baffin Bugten ved luftfotografering konstateredes ca. 40.000 isbøje. Størstedelen af disse strander imidlertid på banker o. lign., og man regner med, at kun ca. 5 % når ned på bredde med Newfoundland. Som gennemsnit for årene 1900—1947 opgives 431 pr. år, men tallet svinger naturligvis meget; således observeredes 1350 i 1929 mod så at sige ingen i 1940 og 1941. Det største observerede isfjeld ud for Newfoundland angives at have været 10 km langt og 6 km i bredden. I højsæsonen opgiver alle skibe i området hver 4. time position, kurs, hastighed, luft- samt overfladetemperatur foruden sigtbarhed, søgang og observerede ismængder. Ud fra dette materiale følger istjenesten hele tiden ved udarbejdede kort de områder, der besejlingsmæssigt er farefulde, og giver meldinger herom.

III.

Hovedcirkulationen af ismasserne i Polarhavet er bestemt af havstrømmenes retning, der igen er afhængig af 1. de herskende vindsystemer og 2. hovedvandbevægelsen i Polartassen omtalt p. 99.

Det vil heraf kunne forstås, at en meget vigtig faktor, i realiteten den centrale, er de meteorologiske forhold. Det er samtidig den dårligst kendte, eftersom man her ikke kan lade sig nøje med enkelte observationer fra tid til anden på forskellige steder spredt over det arktiske område. Ligeledes kræver en nærmere analyse af en række vigtige forhold undersøgelser, der strækker sig op i de øvrige lag af troposfæren, samt i stratosfæren, dels foretaget ved opsendelse af balloner med selvregistrerende apparatur og radio-sender (radiosonder) og dels ved jonsfærske undersøgelser af hensyn til højdevindsmåliger. Dette kræver oprettelsen af overordentlig veludstyrede vejstrationer spredt ud over hele det arktiske område; i arktisk Sovjet findes således i dag over 80 sådanne stationer, for Nordamerika ligeledes et ret stort antal og på Grønland opretholder den danske vejtræneste i alt ca. 20 stationer, hvoraf halvdelen får økonomisk støtte fra ICAO.

Fra ca. 250 vejstrationer spredt over den nordlige halvkugle opsendes 2—4 gange dagligt radiosonder til 10—20 km's højde, hvorved der fås oplysninger om temperatur, tryk, fugtighed og vinde, der bearbejdes synoptisk. Til trods for, at disse målinger i større omfang kun har stået på i få år, har resultaterne heraf allerede nu tvunget til ret kraftig revision af den hidtidige opfattelse ved-
rørende den almindelige cirkulation i atmosfæren, en ændring, der samtidig antyder løsningen af en række dunkle punkter indenfor klimatologien.

For det enkelte områdes problemstillings (meteorologisk set) vil forholdene ved jordoverfladen stadig have samme relevans som hidtil, men for en forståelse af hovedtrækkene i den herskende udbredelse af de forskellige klimatyper, giver de nyeste troposfærenundersøgelser ret meget nyt. Dette gælder ikke mindst det polare område, og da det samtidig sætter et og andet vedrørende isforholdene i de arktiske have i relief, anser jeg en kort redegørelse af de sidst indvundne resultater for ret væsentlig også i denne sammenhæng (H. Flohn 1950, 1951. M. Rodewald 1951).

Den klassiske lære, vertikalcirkulationsteorien, bygger på temperaturforholdene mellem ækvator og polerne i forbindelse med jordrotationens afbøjende virkning, hvorved skabes høj- og lavtryksområder anbragt bælteformigt omkring jorden og efter årstiderne forskudt nogle hreddegrader mod nord og syd.

Dette modsiges på følgende punkter af indvundne resultater af målinger i den frie atmosfære over ca. 1 km's højde gennem de sidste 10 år: 1. Vinden blæser altid parallelt med isobarerne. 2. Cirkulationen i den frie atmosfære foregår altid cellulært, som en horisontal udveksling, aldrig som en almen, bælteagtig udformet hovedstrømning. Dette betyder, at passaten er en østlig luftstrøm med stadig vekslende nordlige og sydlige tillægskomponenter, anti-passaten en vestlig luftstrøm ligeledes med vekslende meridionale komponenter. Ved jordoverfladen er det gnidningsmodstanden, der er årsag til den stadig mod ækvator rettede afbøjende komponent. 3. Der findes ikke noget egentlig subtropisk højtryksbælte, men kun enkelle perlelædteagtigt anbragte celler, ligesom jordrotationens afbøjende virkning ikke kan være den egentlige årsag til en opstunning af den mod polerne strømmende antipassat (jfr. punkt 2).

Meridianernes konvergens i retning mod polerne er dog for den roterende jordklode et væsentligt argument, men kan ikke være det eneste virksomme; en horisontalstrømning af luftmasser langs isobare flader må forudsættes medvirkende. 4. I kalmebæltet er der i 1—3 km's højde konstateret lavere temperaturer end i de omgivende passatbølger i samme højde, der er endvidere her konstateret en ækvatorial vestvindszone svarende til den i oceanerne forekommende ækvatoriale modstrøm. 5. Som nævnt er den atmosfæriske cirkulation ikke forårsaget af temperaturmodætningerne mellem ækvator og polerne, men med afgivelsen af varme fra jordoverfla-
den til atmosfæren som varmepol og udstrålingen fra overkanten af skydækket og troposfærens øvre dele som kuldepol.

Langs polarfronten koncentrerer temperaturfaldet meridionalt på smalle zoner, lokalt forstærket eller afsvækket. Årsagen her til er modsætningen mellem vertikale turbulensstrømme, der tilstræber oprettelse af termisk betinget ligevægt (stadig ligevægt) med adiabatisk lagdelte luftmasser, og de omtalte horisontale luftmassesudvekslinger, der griber forstyrrende ind heri. Polarfronten er kun stabil, når den foretager bølgebevægelser, der netop er en følge af luftcirkulationens cellulære struktur, og den er uafhængig af fordelingen af hav og land, hvilket tydeligt fremgår på den sydlige halvkugle.

En undersøgelse af f. eks. 500 mb-flådens beliggenhed (højde) året igennem har fremdraget den revolutionerende kendsgerning, at denne, der ifølge den barometriske højdeformel er afhængig af temperaturen af de underliggende lag samt af lufttrykfordelingen ved jordoverfladen, er en funktion af luftmassernes gnidningsmødstand mod jordoverfladen, d. v. s. mod bjergkædesystemerne (enkelthjørner kan ikke gøre sig videre gældende i denne sammenhæng) og da først og fremmest de nord-sydgående.

Der findes således konstante lavtryk i den øvre atmosfære året igennem fra Baffin Island—Hudson Bugten til Florida (ca. langs 80° v. l.) og langs Østasiens kyst (ca. langs 130° ø. l.) samt et svagere udviklet højdelavtryk langs 40°—60° ø. l. Beliggenheden af disse er altså fremkaldt af de orografiske forhold og ikke termisk betingede. Fra disse lavtrykszoner bevirkte udstrålingen en kraftigere energitapning end f. eks. i højtrykszonerne og dermed fremkaldelse af kuldepoler (mindst 8° koldere end de omgivende luftmasser).

I den frie troposfære findes således 2 gennemgående kuldecentre, et canadisk over Baffin Island og et asiatisk over Jakutien, af hvilke sidstnævnte næsten helt forsvinder om sommeren. Disse i forhold til den geografiske nordpol excentrisk beliggende kuldepoler er samtidig centrer for vindcirkulationen i troposfæren, idet det er dem, og ikke lufttrykfordelingen ved jordoverfladen, der er bestemmende. Fra disse kuldepoler føres endvidere kold luft langt mod syd i lavtryksfurerne og bevirket en yderligere forstærkning af polarfronten. Langs meridianerne 0° og 150° v. l., altså langs fastlandsmassernes vestsider, finder højtrykszoner i den frie atmosfære, der resulterer i tilstedeværelsen af varme luftmasser langs disse meridianer.
Set for året som helhed findes centret for den over det nordpolare område herskende højdecyklon over Baffin Island, om vinteren med et sekundært maximum på ca. 120° ø. l. således, at der som gennemsnit for en længere periode kan siges at eksistere en zone med de laveste troposfæriske middeltemperaturer fra Hudson Bugten over den mod Alaska v dendende side af Polarbassinet til Lenaområdet. (H. Flohn 1951, p. 59, baseret på materiale fra fem årsperioden 1946—50), en hovedretning, der falder sammen med den magnetiske hovedmeridian.

Om vinteren findes som nævnt 2 troposfæriske kuldepoler, der begge lejlighedsvis kan forskydes så sydligt som til 50° n. br. Deres intensitet er om vinteren meget nær lige stor, visse år findes det koldeste troposfæreområde over Asien, visse år over Amerika, men kun sjældent (f. eks. i januar 1951) over det indre Polarbassin. Til de øvrige årstider, især om sommeren er det canadiske lavtryk entydigt herskende. Dette højdelavtryks konstans er ganske bemærkelsesværdig og uforklarlig. H. Flohn antyder dog en mulig forklaring i be lignenheden nær den magnetiske nordpol (1951 p. 62).

Meteorologiens nyeste arbejdsfelt er således blevet hele luftthavet, hvor man tidligere kun arbejdede med de langs jordoverfladen herskende forhold. Man søger stadig ved hjælp af elektriske og magnetiske undersøgelser at få kendskab til aktionscentrene i stratosfæren og deres bevægelser, idet man regner med herigennem at kunne få besked om, hvilke muligheder vejrudyklingen i grove trek har for et større område som f. eks. Europa, idet man i denne sammenhæng må se helt bort fra detailler.

Der er i denne omtale gjort ret meget ud af disse nyere undersøgelser, da resultaterne heraf sikkert vil kunne kaste lys over de fra år til år ret stærkt skiftende isforhold i de arktiske have. Svingningerne er velkendte fra Østgrønland såvel som fra kystfarvandene nord for Asien og Amerika, og de kan sikkert i sidste instans henføres til forskellige meteorologiske typer, f. eks. med hensyn til lufttryksfordelingen over Nordatlanten, der atter er afhængig af forholdene i de øvrre luftlag som ovenfor skildret. Som eksempel kan henvises til de af V. Y. Vize foretagne undersøgelser, ifølge hvilke tilstedeværelsen af større ismængder i Barents Havet i august falder sammen med beliggenheden af et højtryksområde nord for Island og langs Nordøstgrønlands kyst i juni—juli, medens et mindstemål af ismængder i Barents Havet konstateredes visse år i

IV.

er vinteren igennem, des tyndere er isen og des mindre er isdækket den følgende sommer (ibid. p. 469).

Som tidligere nævnt er flyvemaskinen et af de vigtigste hjælpe-
midler for besejlingen i de arktiske farvande, da den er skibenes „øjze“, hvorfor alle større isbrydere og ekspeditionsskibe medfører helikopter. Man kan fra flyvemaskinen få overblik over et stort område og endvidere ses herfra umiddelbart alle enkeltheder ved-
rørende udbredelsen af de enkelte isstyper, der på grund af forskel-
lig farve, gennemskinnelighed og tykkelse skiller sig klart ud fra hinanden. Rester, enkeltformer, skrninger o. lign. skiller sig lige-
ledes tydeligt ud. Luftfotografering muliggør derfor kortlægning af
isforholdene over et større område, eftersom man indenfor få timer
på grund af den store flyvehastighed kan dække et flere tusinde
km² stort område, således at et omtrentligt øjeblikksbilled af is-
situationen opnås. På grundlag af flyvemaskinernes virksomhed
udarbejdes iskort, der til stadighed fores å jour, over besejlingsom-
råderne i de nordsibiriske farvande. Disse kort er grundmateriale
for de udstationerede isbrydere, der er i stadig radiokontakt med de
over det pågældende område opererende flyvemaskiner samt med
de handelsskibe, der befinder sig i området eller venter på isbry-
derhjælp ved de forskellige stræder, hvor isforholdene gerne er
vanskelligst.

Isforholdene vinger betydeligt i de arktiske farvande fra sted
til sted og fra år til år blandt andet afhængig af de herskende
strøm- og vindforhold, hvorfor man hele tiden må være på vagt,
da det gælder om så tidlig som muligt at erkende tilstedevev-
elsen af drivende isfelter. Her er flyvemaskinen til stor hjælp, men
for almindelige skibe er denne hjælpelske kun lejlighedsvis til
rådighed. Imidlertid kan man på forskellig vis, omend langt fra på
så effektiv en måde, få oplysninger herom. Det bedste udblick ha-
ves fra istenden i masten, men de fleste ishavssfarere vil dog fore-
trække at lade ordrenes udgå fra broen, hvorfor isens slyrke og
tæthed bedst kan bedommes. Isblink, lysende striben i horizonten
over tilstedeværende ismasser, spiller en stor rolle som varsel og
kun i gunstige tilfælde ses 25—30 somit; giver endvidere et næsten
fuldstændigt billede af isfeltets helighed og udstrækning for det
øvede øje. Også isens art kan man til dels slutte sig til på denne
måde. Kystis giver det klarest isblink med et gult skær, pakisens
blink er rent hvid, medens is i bugter lyser mere gråt. Snedøkket
land giver en endnu gulere tone end kystisens blink (Polar-
forsøg 1947). Isblink er bedst udviklet på en letslyet himmel,
en situation, der året igennem er yderst almindelig over Polarbus
sinet forårsaget af inversionslag i 400—700 m's højde. På grund
af den stadige afkoling, om sommeren ved smeltnings, om vinteren
ved udstraling, vil de nedre luftlag i gennemsnit være 2°—3° kol-
dere end de ovenfor liggende, hvilket fremkalder en yderst stabil
situation. Herved betinges samtidig en meget høj relativ fugtig-
hedssgrad. Tågebanker forekommer hyppigt langs randen af et is-
felt, hvorfor tilstedeværelsen af sådanne i horisonten kan antyde
et isfelt, men nogen større sikkerhed kan ikke påregnes. For for-
udsigelse af møde med større isfelter kan hyppigt udførte målin-
ger af overflade- samt lufttemperaturer eventuelt give et tegn.
Endelig indebærer radaranlæg store muligheder for lettelse af sej-
ladsen i arktiske farvande, idet man foruden uhindret sejlads i
tåget vejr ad denne vej er i stand til endog under snedække på
større afstand at bestemme arten af de tilstedeværende ismasser.
På grund af de omtalte hyppigt optrædende tågedannelser, samt
nødvendigheden af stadige kursændringer af hensyn til omgåelse
af ufarbar is, i forbindelse med de eksisterende søkorts utilstræk-
kelige nøjagtighed, har yderligere 2 moderne opfindelser lettet den
arktiske besejring. Ved radiopejling bliver en nogenlunde nøjagtig
stedbestemmelse mulig og takket være ekkoloddet kan man tage
sig i vare for såvel ændringer i kystkonfigurationen som ikke kort-
lagte sandbanker o. lign.

V.
Nordestpassagen, ruten nord for Asien, blev første gang gennemsejlet af A. E. Nordenskjöld 1878—79 med „Vega“. Der var
gjort mange forsøg tidligere på at finde ruten, men alle forgæves,
væsentlig på grund af manglende kendskab til den specielle pro-
blemsstilling i disse egne. Nordenskjöld var imidlertid klar over
den betydning, som de sibiriske floder måtte have for kystisens
opbrud, hvorfor han havde regnet ud, at tidligst i slutningen af
juli samt i august og september ville disse farvande være tilgengelige. Først 1932 lykkedes det isbryderen „Sibiriakov“ at fore-
tage hele turen fra Murmansk til Vladivostok i en sæson. Siden
er er der udfoldet store besættelser for at udbygge den nordlige
srute, herunder udlæg af navigationsmærker, bygning af isbry-
dere og anlæg af havne, således at man i dag, til trods for mang-
lende statistiske oplysninger, kan anse ruten for en maritim han-
delsvej af stor betydning for udviklingen af Sovjets arktiske om-
råde. Følgende tal kan til dels belyse udviklingen: 1933 fremsend-
tes 136,000 t varer ad savej til det polare område. 1936 var tallet steget til 271,000 t’ (Taracouzio, p. 145). Til forsyning af den Jakutiske Autonome Republik sejlede de første 3 skibe til Lenas munding i 1938, her er nu haven Tiksi beliggende, der i 1945 blev anløbet af 45 dampere, bortset fra flod- og kysttrafiik (Polar Record, 1946). I 1940 besjlede over 100 skibe Nordøstpassagen (Polar Record, 1941). I. Papanin har meddelt, at tonnage for frugt skibsfarten steg med 180 % fra 1940 til 1945, udregnet pr. somil med 270 % (Polarforselgung, 1946). Endelig opgiver William Mandel (p. 60), at 3 konvojer og 15 skibe i 1946 besjlede den nordlige sorute til trods for svære isforhold det år. Ishydersen Mikoyan, der var stationeret i Chukcher Havet, sejlede 6.500 km i konvoytjeneste i løbet af denne sæson og bragte desuden forsyninger til polarstationer uden for hovedruten.

Baggrunden for interessen omkring Nordøstpassagen var oprindeligt at finde en kortere vej til Østen. Fra Murmansk til Vladivostok er afstanden via Suezkanalen ca. 24.000 km, via Panama kanalen ca. 25.000 km, men via Nordøstpassagen kun ca. 11.000 km (Polarforselgung, 1946). Dette er naturligvis af stor betydning, men ikke i sig selv tilstrækkkelig begrundelse for den bekostelige aktivitet, der står bag anstrengelserne for at gøre Nordøstpassagen besjelig i de godt 2 måneder, det for ruten i gunstigste tilfælde er muligt. Bag dette står den nordlige sorutes enorme betydning for løsningen af Sibirien’s transportproblem set i en moderne udviklings lys, idet anlæggelse af tilstrækkelige landtransportmidler (jernbaner og veje) vil være en umulig opgave indenfor en overskuelig tid. At de nordsibiriske floder alle løber ud i Polarhavet er kun et yderligere argument herfor, idet de danner fortrinlige, naturlige transportveje fra kysthavene, der næsten alle er beliggende ved flodmundinger, til det vældige bagland, om sommeren ved flodskifsert, om vinteren som slædevej. Fra Luftmistralen, der følger den transsibiriske jernbane, udgår lokale luftrouter, der ligeledes følger floderne, hvor der året igennem er de bedst tænkelige landingsmuligheder for hydroplaner, der om vinteren erstatter pontonerne med ski. Enkelte større havne og polarstationer har specielt anlagt luftbhavne.

Foruden den betydning, som den nordlige sorute har for de sydlige egne, er den primæør forudsætning for en udnyttelse af de muligheder, først og fremmest med hensyn til mineralproduktionen, som findes indenfor det polare område, idet der her er tale om transporter af stort omfang såvel vægt- som rumfangsmæssigt.

Barents Havet er hydrologisk en del af Allanterhavet, domineret af den nord og øst om Norge højende gren af Golfstrømmen, takket være hvilken Murmansk-kysten er isfri hele året. Murmansk er eneste Sovjethaven, med fri forbindelse til Verdenshavene, der er isfri. Archangelsk ved Det Hvide Hav er således blokeret af is fra slutningen af september til maj, medens Vladivostok, den sydligst beliggende haven i Den Fjernøstlige Provinz, er blokeret af is 110 dage om året. En af Golfstrømmens grene når Novaja Zemlya's

så der kun bliver ringe besæling det år. I den sydlige del af Kara Havet ud for Ob’s og Jenissei’s munder kan besæling foregå sommeren igennem uden vanskeligheder.

Laptev Havet er mod vest begravet af Taimyr Halvøen, mod øst af De Nysibiriske Øer. Besejlingsmæssigt udgør det den vanskeligste del af den nordlige sorute, da adgangen både fra vest og øst på grund af de herskende isforhold i Vilkitski Strædet og De Long Strædet er ret vanskelig, og som regel kræver isbryderhjælp selv i den bedste sæson. Stræderne syd for De Nysibiriske Øer byder især på vanskeligheder på grund af deres ringe dybde. Laptev Havet er endvidere et meget grundet farvand, hvorfor sejlladsen specielt i den vestlige del må foregå langt fra land, dels er det som de øvrige østsibiriske randhave åbent mod nord. Isforholdene afviger således betydeligt fra Kara Havets, da der træffes store mængder pakis fort mod syd af de om sommeren herskende nordlige vinde. De østsibiriske randhaves ringe dybde og shelfens store ud-
strækning i forbindelse med de store mængder af varmt flodvand gør dog disse farvande besejelige i august og september. Vigtigste havne ved Laptev Havet er Nordvik og Tiksi.

Nordøstpåssagen blev som nævnt først gennemsejet så sent som 1878—79 og op til 1932 kun lejlighedsvis besejlet i den vestlige del til Jenissei. Den store succes, som Sovjets anstrengelser siden da har haft ved på mindre end 10 år at skabe en maritim handelsvej ad denne rute, er bemærkelsesværdig og kun muliggjort ved et sammenspil af flere kræfter, samt ved en uhyre kraftanstrengelse fra det sovjetiske statssamfunds side. Klimaændringen i de arktiske områder samt bygningen af store moderne isbrydere er de 2 kræfter, der først falder i øjnene. De har givet spillet en rolle, men deres betydning kan i denne forbindelse sikkert let overvurderes. Klimaændringen har som bekendt først og fremmest bety-
det en forhøjet vintertemperatur, der dog ingen indflydelse har på isdannelsen i Polarmassenet med randhave. Der er her som tidligere nævnt tale om op til 200 m tykke, forholdvis ferske, vandmasser med temperaturer fra 0° til +1°.8. Det, der i denne sammenhæng har betydning, er sikkert en forskyndning nordpå af de subarktiske farvande (jfr. fig. 1), altså en forskyndning af grænseværdier, der besejlingsmæssigt og set for Nordøstpasset som helhed, kun har ringe indflydelse (for de centrale dele fra Novaja Zemlya til Vrangel Øen sikkert slet ingen) samt en ændring, eventuelt en forøgelse, af cirkulationsforholdene i atmosfæren, d. v. s. af vindforholdene. Dette sidste forhold vil vinteren igennem give en forøget drift i de øvrre vandlag, hvorved forhindres dannel-

sen af store sammenhængende isflader, der ellers i vinterens løb, indtil maj, kan nå betydelig tykkelse. At besejling også kan kla-

res uden isbryderhjælp, viser „Vega”s færd. Nordenskjöld kunne sikkert have klaret hele turen i en sæson, idet han d. 27. sept. 1878 var meget nær Bering Strædet, og kun på grund af fortsatte undersøgelser blev fanget af isen og tvunget til overvintring. Isbryderhjælp er imidlertid nødvendig for at sikre rutens ujevilbar-
lighed, gøre sejladsen lettere og forhindreulykker. Af afgørende betydning har derimod det store udforskingsarbejde med hensyn til kortlægning og opmåling af hele området, hydrografiske og meteorologiske undersøgelser samt isrekognosceringen været. særlig stor betydning har flyvemaskinen her haft, idet man ved de ad denne vej indhentede oplysninger om den herskende issituation i forbindelse med anvendelsen af isbryderhjælp på de vigtigste steder er blevet i stand til på rette måde at udnytte de besejlingsmuligheder, som sikkert hele tiden har været og også fremover vil være til stede. Opretelsen af den nordlige særoute er af stor militær betydning for Sovjet, og det er dette, der som tidligere nævnt har været den primære årsag til den store indsats. Ad denne vej er der imidlertid skabt betingelser for en udvidet indsats også på land, der med årene sikkert vil skabe en økonomisk baggrund for ruten, hvilket i det lange løb er af afgørende betydning.

VI.

Nordvestpassagen er af flere grunde langt vanskeligere at besejle end Nordøstplassen. Det var da også først i 1903—06, at det lykke-
dedes Amundsen at gennemsejle den fra øst til vest, 1940—42 blev den første gang af R.C.M.P. skonnerten „St. Roch”, ført af Inspector Larsen, besejlet fra vest til øst for endelig i 1944, ligeledes af

Afstrømningen fra Polarbassinet sker foruden gennem hovedpassagen mellem Grønland og Spitsbergen også gennem stræderne i det nordamerikanske arkipel til Baffin Bugt, dels fra nord via Robeson Kanalen og Smith Sund og dels fra vest via McClure

Hudson Strædet, indsejlingen til Hudson Bugt området, er vigtigste besejlingsrute i det canadiske polarområde. Indsejlingen er vinteren igennem blokeret af Labradorstrømmens ismæsser, der endvidere forefindes i den østlige del af strædet til Lake Harbour. Isen føres af østlige vinde langs nordsiden af Hudson Strædet, til den af udstrømmende ismæsser fra Foxe Basin tvinges over i den sydlige del, for her med den udgående strøm atter at blive fort tilbage til Labradorstrømmen. Disse ismæsser er de sværeste, der forekommer i Hudson Strædet, og de blokerer besejlingen fra midten af november til ind i juli. Ismæsserne fra Foxe Basin er for størstedelen lokalt dannede og derfor ikke så formidable som Labradorstrømmens. De færes langs østkysten af Southampton Island og derpå langs sydsiden af Hudson Strædet, i hvis østlige del de begynder at optræde i større mængder fra slutningen af oktober. Endelig dannes der langs kysterne af Hudson Strædet lokale ismæsser, de centrale dele af strædet fryser derimod normalt ikke til på grund af de ret stærke tidevandsstrømme, der fører ismæsserne frem og tilbage og som nævnt de 8—9 måneder af året gør strædet uhæsejleligt. Fra begyndelsen af august til midten af oktober skulle besejling, hvad angår isforholdene være sikker, og den canadiske regering har foruden oprettelse af navigationsmærker og

sydkysten af Baffin Island. I den vestlige ende af Hudson Strædet har den canadiske regering på Nottingham Island anlagt den centrale radiostation for Hudson Bugt området.

Hudson Bugt området omfatter fra syd til nord James Bay, Hudson Bay og Foxe Basin, der ved det smalle skær- og isfyldte Fury and Heela Strait atter står i forbindelse med det canadiske arkipelag vest herfor. Hudson Bugt området må dog betragtes som et afsluttet besejlingssystem, eftersom passage gennem Fury and Heela Strait må anses som værende næsten umulig på grund af svære ismasser tilført fra Gulf of Boothia samt den stadige isdrift fra vest til øst med stærke tidevandsstrømme og fra nord til syd med skiftende vindretninger. Besejling af strædet er således kun foretaget een gang, 1948, af isbryderen „Eastwind“ (6.000 t, udstyret med 2 helikoptere).

Forbindelsen fra syd og vest til Hudson Bugten foregår pr. jernbane dels til Moosonee i den sydlige del af James Bay og dels til Churchill i den sydværg i del af Hudson Bugten. Moosonee er H. B. C. forsyningsbase for de langs kysten af James Bay beliggende handelsstationer. Churchill (59° n. br., 94° v. l.) er udstyret med moderne havn og korsole mod kapacitet på 5 mill. bushels, men oprettelsen af ruten har hidtil vist sig at være en fiasko. 1937—38 transporteredes fra de canadiske præriestater ialt 111 mil-
lioner bushels korn via ruten over de store søer, 11 millioner bushels via Stillchavskysten, men kun 600.000 bushels via Churchill, der 1937 kun blev anløbet af 2 skibe, som hver lastede ca. 300.000 bushels. (J. Russell Smith og M. Ogden Philips, p. 444). Forholdene efter krigen svarer fuldt hertil.

Besejlingen af Baffin Islands østkyst er vanskelig på grund af de herskende isforhold omtalt p. 106. Besejlings sæsonen i det østlige canadiske polarområde strækker sig fra 3 måneder i de sydlige områder til praktisk taget 0 umiddelbart nord for Lancaster Sound. For Baffin Islands østkyst er september samt begyndelsen af oktober bedst egnede tidspunkt for sejlads.

indvandrede eskimofamilier fra det sydlige Baffin Island; møde-
sted for besejling fra øst og vest. Den 19. september nåedes Lan-
caster Sound, hvor svære ismasser mødtes, d. 20. september be-
fandt „Nascopie“ sig i Prince Regent Inlet, ca. 200 km fra Fort
Ross, men isforholdene var så vanskelige, at besejling af Fort Ross
det år blev opgivet. Kursen blev derefter sat mod Arctic Bay, Baffin
Island (73° n. br., 85° v. l.), der nåedes d. 22. september. Pond
Inlet (73° n. br., 77° v. l.) blev anløbet d. 26. september, Clyde
River (70° n. br., 68° v. l.) d. 28. september og Pangnirtung (66°
n. br., 65° v. l.) d. 3. oktober, hvorefter kursen blev sat hjemover
via de vestgrønlandske farvande. Cartwright blev anløbet d. 9.—16.
november for dårligt vejr, St. Lawrence nåedes allerede d. 10. Af
stationer langs Baffin Islands østkyst skal endvidere nævnes Fro-
bisher Bay (64° n. br., 63° v. l.). R. C. M. P. station samt vejesta-
tion og flyveplads. Det følgende år (1943) lykkedes det heller ikke
„Nascopie“ at nå frem til Fort Ross. Den 17. september befandt
den sig kun 10—15 km nordøst for stationen, men frøs fast i isen
og kom først fri d. 22. september, hvorefter yderligere forståg
måtte ophæves. Efter „Nascopie“s forlis 1947 er Hudson Stræde—
Hudson Bugt området blevet besejlet af det nybyggede „Ruperts-
land“, tilhørende H. B. C., medens forsyningerne til øerne i det øst-
lige canadiske polarområde foretages af det statsejede skib „C. D.
Howe“, sæsat 1940.

Besejling af det vestlige canadiske polarområde er som nævnt
baseret på tilførsel af forsyninger ad Mackenzieflodsystemet med
omladning i Tuktoyaktuk. Isen bryder op langs kysten i begyndel-
sen af juli, men sejlads er først mulig i begyndelsen af august,
afhængig af vindforholdene. Omkring 1. august påbegynder 3 større
skonnerter deres sommerrejse til alle vigtige handelsstationer. Det
drejer sig om H. B. C skonnerten (150 t), R. C. M. P. skonnerten
(80 t) samt den romersk-katolske missionsbåd (40 t). Endvidere
findes en del små skonnerter (ca. 25 t), der ejes af eskimoer eller
uafhængige handelsfolk. Ingen af de 3 større skibe når normalt
længere mod øst end Cambridge Bay, Victoria Island (69° n. br.,
105° v. l.). Den videre besejling østpå syd om King William Island
til Fort Ross foretages af små skonnerter. Til forsyning af han-
delsstationerne i det vestlige område var i 1948 et større skib med
lasteveje på 400 t under bygning (Arctic vol. 1 nr. 2, p. 120). Skro-
get vil blive særlig forstærket, da skibet til stadighed skal statione-
res i området, hvilket betyder en årlig indefrysning på 9—10 må
neder. Større skibe vil ikke kunne besejle området, da farvan-
dene langs kysten er yderst grundede og besejling af hensyn til
isforholdene ofte er bedst egnet netop her. Endvidere er flere af
stræderne temmelig lavvandede: østlige del af Dolphin and Union
Strait, Simpson-, Rae- og James Ross Strait. Dette problem blev i
1948 løst på en ny måde ved forsyningen af det canadiske luft-
våbens station ved Cambridge Bay, idet tilførsel af forsyninger ad
luftvejen var blevet for kostbar. „Snowbird II“, en amerikansk
landgangsbåd fra krigen på 1158 t med et dybgtående på kun 3 m,
blev ombygget til dette formål, og forsøget lykkedes fuldt ud (Ariet
tie, vol. 2 nr. 2, p. 97). Den 27. juli påbegyndtes sejldansen fra Van-
couver (last 850 t) med Cambridge Bay som mål. Point Barrow
blev passeret d. 12. august, hvorefter isvanskelighederne begyndte
langs Alaskas nordkyst. Tuktoyaktuk blev anløbet d. 16. og Cam-
bidge Bay d. 20. august; løsningen foregik nemt, takket være ski-
bets bygning som landgangsbåd. Der blev derefter gjort forsøg på
at bringe endnu en ladning til Cambridge Bay i samme sæson, den-
nen gang fra Tuktoyaktuk. „Snowbird II“ forlod Cambridge Bay
d. 28. august og svære ismasser blev mødt d. 30. nær Clifton Point.
Her kom „Snowbird“s ringe dybgtående til hjælp, idet der rap-
porteredes en besejlingsrende langs kysten, takket være hvilken
gennemsejlingen lykkedes såvel på frem- som på tilbagehælen, hvor
september nødtes Cambridge Bay atter, hvor overvintring blev nød-
vendig. Vigtigste handels- og missionscentrum i det vestlige arkti-
ske område er Akalvik, Mackenziedeltaet (68° n. br., 135° v. l.).
Såvel engelsk som romersk- katolsk missionsstation. H. B. C.
handelsstation. R.C.M.P. station. Vejrstation samt flyvebase så-
væl for aero- som hydroplaner. Tuktoyaktuk (69½° n. br., 133°
v. l.) beliggende ved mundingen af Eastern Channel øst for Rich-
ards Island. Denne arm af Mackenziefloden er sejlbare for flod-
dampere med et dybgtående på 1,5—2 m. R. C. M. P. station samt
flyveplads, der kun er anvendelig om vinteren. Fra disse 2 havne
samt en mindre handelsstation på Herschel Island nær Demarea
tion Point (grænsen til Alaska) foregår handelsskævmet og
den kulturelle påvirkning af områdets ca. 700 eskimoer, der er de
rigeste og mest europeiserede i det canadiske polarområde takket
være den nære kontakt, som betinges af transportmulighederne på
Mackenzieflodsystemet. Adskill herfra ved en ca. 300 km ubehøet
kyststrækning fra Pearce Point til Stapyton Bay lever størstedelen
af det vestlige områdes eskimoer, vigtigste havne her er Copper-
mine og Cambridge Bay. Coppermine (68° n. br., 115° v. l.). Han-

Som det vil fremgå af det ovenfor anførte, eksisterer en for besejling af større skibe tilgængelig Nordvestpassage ikke umiddelbart nord for det nordamerikanske fastland, idet de tilstøvende farvande og stræder som helhed er for lavvandede, og samtidig er både strom- og isforhold yderst vanskelige. Dette er beklageligt, da det er denne sydligste del af det arktiske område, der er beboet, hvorfor det ligeledes er her, man i første omgang må søge en økonomisk baggrund for opretholdelse af en sådan besejlingsrute. Endvidere er routens vestlige del, Beaufort Havet, et kritisk område, da shelsen her kun er ca. 75 km bred, uden beskyttende ørække, hvorfor stor- og pakisen ofte med nordlige vindretninger blokør gennemsejling. Lignende forhold findes langs vestkysten af Banks Island. Inspector Larsen fra „St. Roch“ har opregnelt 5 mulige ruter for Nordvestpassagen og anført deres eventuelle anvendelighed bedømt ud fra strom-, dybde- og isforhold. (H. O. Publ. 77).

Der er i det foregående gjort forsøg på at gøre rede for de faktorer af forskellig art, der spiller en rolle for besejlingen af arktiske farvande, og en gennemgang af Nordøst- og Nordvestpassagen er foretaget til belysning af de helt forskellige forhold, der har indflydelse på transportproblemernes løsning i de 2 områder. En mere detaillert gennemgang heraf samt af besejlingsforholdene i de øvrige arktiske og subarktiske farvande, herunder de grønlandske farvande, må kræve en særlig behandling.

LITTERATUR

Alexander, S. E.: The Voyage of the “Snowbird II”. Arctic, vol. 2 no. 2. 1949, pp. 91—97.

Der er i det foregående gjort forsøg på at gøre rede for de faktorer af forskellig art, der spiller en rolle for besejlingen af arktiske farvande, og en gennemgang af Nordøst- og Nordvestpassagen er foretaget til belysning af de helt forskellige forhold, der har indflydelse på transportproblemernes løsning i de 2 områder. En mere detaillert gennemgang heraf samt af besejlingsforholdene i de øvrige arktiske og subarktiske farvande, under de grønland- ske farvande, må kræve en særlig behandling.

LITTERATUR

Alexander, S. E.: The Voyage of the “Snowbird II”. Arctic, vol. 2 no. 2. 1949. pp. 91—97.

The Canadian Arctic. Ottawa 1951.
Canada Year Book. 1945.
Sailing Directions for Northern Canada. H. O. Publ. no. 77. U.S. Navy
Dep. Hydrographic Office. 1946.
Dep. Hydrographic Office. 1946.