af tilskudssatsen kan herefter ske ved anvendelse af et licitations- eller auktionsprincip, som forhinder overkompensation af ledsejerne.

Summary
Due to deteriorating price relations in crop production it is anticipated that about 5 per cent of the arable area in Denmark will be retired out of production within the next decade. The EC "set-aside" and extensification programmes will probably not have much effect on the retirement of land in Denmark if they are implemented in accordance with the intentions by the Danish Government. It is pointed out that the set-aside programme should be directed towards pulling out of production environmentally-sensitive land. A bidding procedure may be used as a method for establishing an optimal subsidy level.

Litteratur

Jordbrugsmæssig anvendelse af tørre, sandede jorder

Lorens Hansen

A review over field experiments with plant production on coarse sandy soils in Denmark is given. Fertilization and irrigation are necessary to give high and stable yields in grain and fodder crops. Without fertilizer and irrigation the coarse sandy soils will be poor and unproductive grassland.

Keywords:
Sandjorder, planteproduktion, Danmark.

Gennem forsknings- og forsøgsarbejdet har det ofte været målet at ændre uopdike alealer til yderligere kultivarede. I arbejdet er der stræbt efter økonomisk optimal planteproduktion under hensyntagen til afgrödens anvendelse og afsetning – enten gennem husdyrene eller ved direkte salg.

TØRRE SANDJORDER
De grovsandede jorder er ofte store sammenhængende flade arealer. For landet som helhed udgør de 700-800.000 ha svarende til 25% af det dyrkede areal. 1
Tabel 1. 20 years experimenter with fertiliser on four sandy soils. Yields in crop units (a.e.) and relatively. Average of four crops each year. Ugedet = 9 fertiliser. Kunstdgadet = fertiliser. Staldgadet = farmyard manure.

<table>
<thead>
<tr>
<th>Årgang</th>
<th>Askov Sandmark 1923-48</th>
<th>Lundgård 1927-46</th>
<th>Lystrup 1927-46</th>
<th>Staldgård 1929-44</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ugedet</td>
<td>Kunstgadet</td>
<td>Staldgadet</td>
<td>Ugedet</td>
</tr>
<tr>
<td>1894-1968</td>
<td>10,8</td>
<td>39,5</td>
<td>36,5</td>
<td>27</td>
</tr>
<tr>
<td>1909-1968</td>
<td>13,9</td>
<td>33,0</td>
<td>32,9</td>
<td>42</td>
</tr>
<tr>
<td>1919-1968</td>
<td>22,1</td>
<td>42,4</td>
<td>46,6</td>
<td>52</td>
</tr>
<tr>
<td>1929-1968</td>
<td>11,2</td>
<td>36,6</td>
<td>28,6</td>
<td>37</td>
</tr>
</tbody>
</table>

Fig. 1. De langvarige gødningsexperimenter på Askov Sandmark 1894-1968. Gns. af sædskiftet i 4 års perioder, a.e./ha (Lindhard, 1971).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rug, hkg</td>
<td>14,2</td>
<td>18,1</td>
<td>26,8</td>
<td>27,5</td>
</tr>
<tr>
<td>Havre, hkg</td>
<td>9,5</td>
<td>12,4</td>
<td>17,9</td>
<td>18,5</td>
</tr>
<tr>
<td>Rodfrugt a.e.</td>
<td>20,5</td>
<td>62,7</td>
<td>54,9</td>
<td>68,4</td>
</tr>
<tr>
<td>Klævergræs a.e.</td>
<td>9,5</td>
<td>22,6</td>
<td>23,0</td>
<td>24,6</td>
</tr>
<tr>
<td>Sædskifte a.e.</td>
<td>14,7</td>
<td>31,0</td>
<td>33,2</td>
<td>37,5</td>
</tr>
</tbody>
</table>

Fig. 1. Yields in long term experiments with fertiliser 1894-1968 on sandy soil (see also table 1).

og K samt mikronøringstoffer efter erstatningsprincip- pet og tilpasset afgrede og sædskifte.

Der er gennemført fastliggende gødningsexperimenter på 4 sandjordsforsøgstationer. Der var 4 afgjørede hvert år, nemlig rug, rodfrugter, havre og klævergræs. De gennem-

tilskud til N som P
lavere end i dag. De udogede arealer gav kun 27-52 % af udbyttet ved kunstgødnings. Fig. 1 viser udbyttene fra de gamle meget langvarige gødningsforsøg på sandjord ved Askov.

Den udogede mark yder 10-15 hkg korn pr. ha. hvorimod de dogede marker yder ca. 3 gange mere. Udbyttet af udoged mark er påvirket i gunstig retning af, at der hvert 4. år dyrkes kærlitosamlede bælerplanter.

Forsøgene, der er refereret til i tabel 1 og 2, er af ældre dato. I dag anvendes bedre sorter og bedre dyrkningsteknik bl.a. via sygdomsbekæmpelse, og gødningsen er ca. dobbelt så høj som i de gamle forsøg. Et tilsvarende sadskifte ville yde mere i dag. Med moderne teknik og plantebeskæftigelse – men uden vandning – kan regnes med følgende udbyttet:

<table>
<thead>
<tr>
<th>Gennemsnit</th>
<th>1920-45</th>
<th>3.700 f.e.</th>
<th>100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Svag gødnings</td>
<td>1985</td>
<td>5.100 f.e.</td>
<td>137 %</td>
</tr>
<tr>
<td>Stærk gødnings</td>
<td>1985</td>
<td>6.100 f.e.</td>
<td>164 %</td>
</tr>
</tbody>
</table>

**Markvandring er en nødvendig forudsætning for stor og stabil planteproduktion på de sandende jorder med ringe vandholdende evne. Vandingen i Danmark omfattar ca. 400.000 ha eller 14 % af landbrugsareal. I Syd- og Vestjylland kan 30-50 % vandes. Det aktuelle vandingsbehov viser store årsvariations bestemt af nedbøren i sommerperioden. På grøvkornerne sandjorder er det gennemsnittlige vandingsbehov 80 mm til byg og 130 mm til græs. I f fugtige år vil behovet være væsentligt lavere eller vanding helt overløselig.

Siden 1945 er gennemført et stort antal vandingsforsøg. På grundlag af disse er der opstillet typetab for vandingens betydning for forskellige afgrøder (tabel 3).

De fleste salgsafgrøder giver store merudbytt for vanding. For grønoderproduktionen er udslagene mindre, men vanding er en absolut forudsætning for stabil foderproduktion til husdyrene. De anførte typetab danner grundlag for økonomiske vurderinger af vandingens betydning for dansk landbrug.

Der er et betydeligt samspil mellem vandning og gødnings. Fig. 2 viser typetab for salgsforsøg mellem vandning og kvaltoff byg. Der er en betydelig vekselvirkning. Det betyder også, at vanding giver en større kvaltoffoptaget og en bedre udnyttelse af tilført gødnings. Korrekt vanding nedsetter kærlitosudvaskningen.

Alternative afgrøder eller dyrkningssystemer

For de tørre sandjorder skal man neppe regne med, at der findes alternative afgrøder, som kan erstatte de traditio-

| Udbyttet af landbrugsafgrøder (Jacobsen og Abildskov, 1987). |

<table>
<thead>
<tr>
<th>Uvandet</th>
<th>Vandet (Irrigated)</th>
<th>Merudbytte i %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hvede</td>
<td>37</td>
<td>60</td>
</tr>
<tr>
<td>Winterbyg</td>
<td>38</td>
<td>55</td>
</tr>
<tr>
<td>Rug</td>
<td>43</td>
<td>51</td>
</tr>
<tr>
<td>Vårbyp</td>
<td>35</td>
<td>48</td>
</tr>
<tr>
<td>Winterrap</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>Vårrap</td>
<td>26</td>
<td>24</td>
</tr>
<tr>
<td>Rører</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>Kartofler</td>
<td>360</td>
<td>468</td>
</tr>
<tr>
<td>Roer Sugarbeet</td>
<td>a.e.</td>
<td>106</td>
</tr>
<tr>
<td>Rent græs</td>
<td>86</td>
<td>99</td>
</tr>
<tr>
<td>Klovergræs</td>
<td>74</td>
<td>90</td>
</tr>
</tbody>
</table>

De tørre sandjorder vil næppe være særlig velegnede til kornproduktion i fremtiden. Men der må være en mulighed for at dyrke græs og grøvfoeder til en rational kvægproduktion. Specielt skulle der være muligheder, hvor der samtidig er adgang til engjord.

For plantearvsforsøgene er det et målsætning at udvikle økonomisk, ressourcebesparende og miljøvenlige planteproduktion. Fra foråret 1989 anlægges langvarige forsøg med ressourcebesparende grøvfoedersystemer på tørre

<table>
<thead>
<tr>
<th></th>
<th>Vandet</th>
<th>Uvandet</th>
<th>Relativ Vandet</th>
<th>Relativ Uvandet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fuldg.</td>
<td>-N</td>
<td>fuldg.</td>
<td>-N</td>
</tr>
<tr>
<td>Havre Oats</td>
<td>44,5</td>
<td>31,2</td>
<td>27,4</td>
<td>20,9</td>
</tr>
<tr>
<td>Byg Barley</td>
<td>42,0</td>
<td>26,8</td>
<td>26,7</td>
<td>19,1</td>
</tr>
<tr>
<td>Rug Rye</td>
<td>46,0</td>
<td>25,5</td>
<td>34,8</td>
<td>22,5</td>
</tr>
<tr>
<td>Klovergræs</td>
<td>76,1</td>
<td>62,0</td>
<td>35,0</td>
<td>31,5</td>
</tr>
<tr>
<td>Bedereør Beet</td>
<td>136,2</td>
<td>112,9</td>
<td>168,2</td>
<td>95,7</td>
</tr>
<tr>
<td>Kartofler Potatoes</td>
<td>63,4</td>
<td>67,5</td>
<td>51,7</td>
<td>52,6</td>
</tr>
<tr>
<td>Sødskiftet Crop rotation</td>
<td>63,7</td>
<td>52,0</td>
<td>44,7</td>
<td>39,5</td>
</tr>
</tbody>
</table>

Table 4. The influence of irrigation and fertilizer on crop yield and relatively in a crop rotation on sandy soils 1950-60 (see also tables 1 and 2).

Summary

A review over field experiments with plant production on coarse sandy soils is given. Coarse sandy soils in Denmark cover 700-800,000 hectares or 25 per cent of the arable farm land. In West Denmark 40-60 per cent are coarse sandy soil. Fertilization and irrigation are necessary to give high and stable yields in grain and foddercrops.

Amount of fertilizer or farmyard manure depends on crop and crop rotation. Without fertilizer the yields are as low as 1,000-1,500 kg grain per hectare. By fertilizer the yields are increased 100-200 per cent.

Irrigation is practised on 400,000 hectares corresponding with 30-50 per cent of the arable coarse sandy soils. Need of irrigation depends on precipitation in the summer period and on crop. On an average over a period of years irrigation gives a yield increase of 20-45 per cent, and the crop production is stabilized.

There is a significant interaction between fertilizer and irrigation. By irrigation take up of nitrogen is higher and nitrogen leaching lower. Without fertilizer and irrigation the coarse sandy soils will be poor and unproductive grass land. In new field experiments a low resource input fodder cropping system will be investigated.

Litteratur

<table>
<thead>
<tr>
<th>Høvre</th>
<th>Oats</th>
<th>44,5</th>
<th>31,2</th>
<th>27,4</th>
<th>20,9</th>
<th>100</th>
<th>70</th>
<th>61</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byg</td>
<td>Barley</td>
<td>42,0</td>
<td>26,8</td>
<td>26,7</td>
<td>19,1</td>
<td>100</td>
<td>64</td>
<td>64</td>
<td>45</td>
</tr>
<tr>
<td>Rug</td>
<td>Rye</td>
<td>46,0</td>
<td>25,5</td>
<td>34,8</td>
<td>22,5</td>
<td>100</td>
<td>55</td>
<td>76</td>
<td>49</td>
</tr>
<tr>
<td>Kløvergras</td>
<td>Clovergrass</td>
<td>76,1</td>
<td>62,8</td>
<td>35,0</td>
<td>31,5</td>
<td>100</td>
<td>83</td>
<td>46</td>
<td>42</td>
</tr>
<tr>
<td>Bederøer</td>
<td>Beet</td>
<td>136,2</td>
<td>112,9</td>
<td>188,2</td>
<td>95,7</td>
<td>100</td>
<td>83</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>Kartofler</td>
<td>Potatoes</td>
<td>63,4</td>
<td>67,5</td>
<td>51,7</td>
<td>52,6</td>
<td>100</td>
<td>86</td>
<td>82</td>
<td>83</td>
</tr>
</tbody>
</table>

| Sædskiftet | Crop rotation | 63,7 | 52,0 | 44,7 | 39,5 | 100 | 82 | 70 | 61 |

<table>
<thead>
<tr>
<th>Vandet</th>
<th>Fuldg.</th>
<th>-N</th>
<th>Vandet</th>
<th>Fuldg.</th>
<th>-N</th>
<th>Relativ</th>
<th>Vandet</th>
<th>Fuldg.</th>
<th>-N</th>
<th>Vandet</th>
<th>Fuldg.</th>
<th>-N</th>
</tr>
</thead>
</table>

Table 4. The influence of irrigation and fertilizer on crop yield and relatively in a crop rotation on sandy soils 1950-60 (see also tables 1 and 2).

Fig. 2. Typetkurve. Vandning og kvælstof til byg.

Fig. 2. Interaction of irrigation and nitrogen fertilizer on grain yield in barley.

Summary

A review over field experiments with plant production on coarse sandy soils is given. Coarse sandy soils in Denmark cover 700,000 hectares or 25 per cent of the arable farm land. In West Denmark 40-60 per cent are coarse sandy soil. Fertilization and irrigation are necessary to give high and stable yields in grain and fodder crops.

Amount of fertilizer or farmyard manure depends on crop and crop rotation. Without fertilizer the yields are as low as 1,000-1,500 kg grain per hectare. By fertilizer the yields are increased 100-200 per cent.

Irrigation is practised on 400,000 hectares corresponding with 30-50 per cent of the arable coarse sandy soils. Need of irrigation depends on precipitation in the summer period and on crop. On an average over a period of years irrigation gives a yield increase of 20-45 per cent, and the crop production is stabilized.

There is a significant interaction between fertilizer and irrigation. By irrigation take up of nitrogen is higher and nitrogen leaching lower. Without fertilizer and irrigation the coarse sandy soils will be poor and unproductive grass land. In new field experiments a low resource input fodder cropping system will be investigated.

Literatur

