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Applications of satellite remote sensing to agriculture involve two
main objectives, the identification and mapping of crops, includ-
ing estimation of acreages, and monitoring of plant growth or
production factors, aiming at estimation/prediction of vields.

Deterministic models of the interaction of electromagnetic rad-
fation and plant canopies are used to relate the measured reflected
or emitted radiation 1o crop type and agronomically relevant
parameters, The great natural variation of reflectance properties
of crops does, however, call for use of a statistical approach. The
high dimensionality of the data-sets involved, very often more than
ten, requires the use of mudtivariate technigues.

This paper will deal with the use of muftivariate siatistical tech-
niques for both crop identification and crop monitoring based on
high-resofution satellite remote sensing data, such as those pro-
duced by Landsat MSS and -TM and SPOT. Emphasis will be
Placed upon use of statistical methods in classification and on
removal of redundancy in multi-dimensional data-sets. The rela-
tive merits of deterministic and statistical methods will be dis-
cussed as will the possibilities of incorporating spatial information
into statistical methods.
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One of the driving forces behind the development of the
non-military use of the remote sensing technology has
been the need for timely and precise data on agricultural
production. Since 1972 multispectral scanners onboard
satellites have produced digital images from which a great
number of experiments and a few operational services
have drawn information of relevance for estimation of
agricultural production. The assessment of agricultural
production involves determination of two components,
the area planted and the yield. Both these components
may be assessed with the use of remote sensing, and in
both cases statistical techniques may play a part. A con-
siderable volume of litterature on the application of sta-
tistical techniques to agricultural remote sensing has been
published. Alternatively, deterministic models for ex-
tracting agricultural information from remotely sensed
data can be applied.
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As well-known to most readers the scanners onboard
remote sensing satellites produce "multispectral” images
containing information from a number of spectral bands
in the visible and infrared parts of the electromagnetic
spectrum (microwave sensors will not be considered
here). Thus the nature of remotely sensed data makes the
use of multivariate analysis necessary. If data from se-
veral dates, f.i. representing different stages of crop devel-
opment, are merged in a so-called multitemporal data-set,
the number of variables may become quite high, yet the
"intrinsic” dimensionality of such data-sets may be rela-
tively low because of high correlations between the spec-
tral bands.

Analysis of images may be considered as parallel to
analysis of any other set of data, since the individual
picture elements ("pixels™) can be perceived as observa-
tions independent of each other. By doing so any particu-
lar spatial arrangement of the pixels, such as the existence
of "fields” consisting of several spectrally similar pixels, is
disregarded. In contrast to this methods are available that
take “spatial context” into consideration. Some of these
methods are based on statistical theory, some are not.

This paper will exemplify and discuss the use of sta-
tistical methods, and in particular multivariate analysis,
for the extraction of agricultural information from multi-
spectral scanner data, their relative merits as compared to
deterministic methods and their ability to take spatial
context into consideration.

DETERMINISTIC AND STATISTICAL
MODELS

Basically two approaches to the extraction of agricultur-
ally relevant information from remotely sensed images
are possible, Either the grey level measured by the sensor
is explained on the basis of an elaborate deterministic
model of the interaction between the electromagnetic rad-
iation and the plant canopy, or it is seen as the outcome of
a stochastic process, which implies that a statistical
approach will be needed to sort out the relevant informa-
tion.

In the deterministic approach the measured grey levels
are considered as outcomes of physical measurements, for
which a proper model must be established. This implies
that sensor calibration effects and atmospheric influence
must be adequately accounted for. Such corrections will
make it possible to translate the raw grey levels into values
of the relevant physical parameter describing the reflect-
ance properties of the surface, i.e. the "bidirectional re-
flectance factor”, BRF(A, 6, @, 0 , ), where A is the
wavelength of the radiation, B and ¢ determine the angle
of illumination, 8’ and @’ the angle of viewing. By the use
of a model relating the physical characteristics of the plant
canopy, i.e. leaf area and spatial arrangement, leaf angle
distribution and leaf colour to BRF, the calculated BRF-
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Fig. 1. The variation over the year of the vegetation index for
certain crops/land-use classes. (From Niels-Christiansen & Ras-
mussen 1984)

values are then translated into values of parameters de-
scribing the plant canopy.

In spite of the methodological attractions of the deter-
ministic approach it is not without problems. Firstly, the
calculation of BRF-values at ground level presumes, as
mentioned, a good model of sensor characteristics and
atmospheric influence, which is not always available. Sec-
onily, it is presumed that a model relating physical cha-
ri-teristics, of which quite a few are needed to give a good
description of the plant, to BRF for given illumination
and viewing angles and a given set of spectral bands can be
inverted so that the physical parameters can be deter-
mined uniquely from the remotely sensed data. An adeg-
uate description of the radiation/plant canopy interaction
may be so complex that the model can not be inverted,
because there are many more plant parameters to be de-
termined than spectral measurements to determine them
from. Thirdly, real crops vary a lot from place to place and
year to year, making them difficult to describe by such
deterministic models. Well-known examples of this
approach can be found in Suits (1972) and Bunnik (1978).

Simpler, but still largely deterministic, models relate
crop species and condition to certain “features” calcula-
ted from remotely sensed data, typically linear combina-
tions or ratios of spectral bands. F.i. Danish crops can
largely be identified on the basis of the variation through
the growing season of a so-called vegetation index, as
shown in fig.1. These "models” are generally based on
empirical evidence rather than genuine physical/biolo-

gical understanding of the processes involved.

The deterministic models are based on the assumption
that BRF-values for different crops are not overlapping in
the spectral bands available, However, in many cases they
are, among other things because of the spread of the
measured BRF-values caused by sensor-imperfections,
atmospheric influence and the natural variations of the
crop. In the case of overlap between "spectral signatures”,
as BRF-values for a crop are sometimes called, between
two crops, it is evident that statistical methods are neces-
sary to identify the optimal decision boundaries, It is
clear, therefore, that deterministic approaches must be
supplemented by the use of statistical techniques in order
to cope with real-life problems. It is therefore not surpris-
ing that many hybrids of deterministic and statistical
methods exist,

In a great many studies use of deterministic models has
not been attempted at all, On the basis of ground data a
statistical characterization of the spectral signature of the
crops or land use classes studied has been established, and
this is subsequently used as a basis for identification of
similar pixels or areas in the rest of the satellite image. In
the case of yield prediction empirical relationships be-
tween yield-indicators and spectral properties are establ-
ished, often using simple or multiple regression models.
The obvious attraction of this approach is that the sta-
tistical methods used are quite general, which means that
computer software is often readily available, and relati-
vely little knowledge of the physical/biological characte-
ristics of the plant will be needed.

PREPROCESSING OF MULTIDIMENSIONAL
DATA-SETS

Rationale

As mentioned previously remotely sensed images often
contain several spectral bands, and for many applications
multitemporal data-sets are required. Thus the dimensio-
nality of data-sets may become quite high, making it
difficult for the analysts to overview the information con-
tent of and interrelationships between the various bands.
Also the full information content can not be expressed in
a colour-representation, which is limited to displaying
only 3-band information, Since bands in multispectral
scanner images are often highly correlated - see sect.
"Principal components analysis (pca)” — there is a poten-
tial for "compressing” the information content. This may
be done using one of the available methods of orthogonal
transformation, the Karhunen-Loeve or Hotelling trans-
form or principal components analysis (pca), or by means
of some "intelligent™ method, which involves calculation
of "features™ expressing the relevant information in an
“economic” and easily interpretable form. Both the sta-
tistical and the "intelligent™ approach are widely used and
will be discussed in the following.
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Fig. 2. The mean maximum error probability for seven pairs of
(spectrally overlapping) crops as a function of the number of
principal components used as a basis for the calculation. It ap-
pears that the dimensionality of the data-set can be reduced from
the original 16 to 3 with only minor effects on the separability of
classes. {From Niels-Christiansen et al., 1983)

In both cases the transformations involved are purely
"spectral”, in the sense that the spatial arrangement of the
pixels does not have any influence on the outcome of the
operation. The actual existence of spatial entities, such as
fields, forests etc, does, however, call for methods capable
of enhancing them. Such methods are becoming available
but are beyond the scope of the present paper.

Display of multidimensional satellite images

Efficient analysis of satellite images requires that they are
displayed in a way ensuring that the full capacity of hu-
man vision is utilized. The colour perception of the eye is
an extremely complicated process, yet “tri-stimulus
theory” explains some of the characteristics of colour
vision satisfactorily. According to this, colour is per-
ceived through stimulation of three "sensor-types” in the
retina, and this has the consequense that any perceived
colour can be described as a mixture of three basic colours
that may be red, green and blue. This is of course the
rationale of the use of display devices such as RGB-moni-
tors. It should be noted that since a perceived colour can
be approximately described as a point in a three-dimen-
sional RGB-colour-space, an infinite number of alterna-
tive 3-dimensional colour-spaces can be constructed by
simple coordinate transformations. For instance, one
may choose a spherical coordinate representation in-
stead. The so-called "intensity-hue-saturation” (IHS) co-
lour-space is one such representation that has certain
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advantages. Since physical display units are almost al-
ways RGB-devices, any alternative representation, f.i. the
THS, must be transformed into the RGB-representation
before actual display.

If all perceivable colours can be considered as filling out,
approximately, a RGB-colour-cube, it is important that
the information content in a satellite image is mapped
into this cube in a way that ensures that large parts of this
cube are not left unused. If two highly correlated bands in
a satellite image are used in a straightforward linear way
to determine intensities in two of the three colour-compo-
nents, the displayed colours will lie close to a plane within
the colour cube. Likewise, if all three bands are highly
correlated, the displayed colours will lie along a line in
RGB-space. Thus only a small fraction of all possible
colours is used, and the resulting display will appear grey-
ish. This is a simple reflection of the fact that the two or
three components, used to display the correlated bands,
contain approximately the same information. To avoid
this "waste” or redundance, it must be ensured that the
bands or features used to determine the intensities in the
R-, G-and B-components, are not highly correlated, or, to
be more specific, that a sphere-like or cubus-like distribu-
tion of RGB-values is obtained.

Several methods have been suggested to obtain this, one
of them being "colour decorrelation”, described in Ni-
black (1985). This involves principal component trans-
formation of the RGB-data, "stretching™ of the principal
compenents to ensure that the entire colour-space is uti-
lized, and transformation back into RGB-space. The
latter step ensures that the interpretation of the "new”
display of the image is similar to that of the original.
Alternatively the principal components can be considered
as the I-, H- and S-components of an IHS-representation,
which can then be transformed back into RGB-space for
the actual display process. Since colour perception is very
subjective, there is no definitive answer to the question of
which method is preferable,

In addition to the capability of a display method to
enhance information content, in a statistical sense, the
ease of interpretation is likewise of great importance for
the practical applicability of the method. The above men-
tioned method, in which principal components are used
to determine I, H and S, has the advantage that the phy-
sical meaning of the first principal component, calculated
from any three satellite bands, will usually be a weighted
mean of reflectance in all bands, i.e. the approximate
albedo of the surface, and intuitively it makes sense to
display this as intensity in an IHS-representation. The
"physical” interpretation of the second principal compo-
nent will vary, depending of course on the bands used as a
basis for its calculation, but it will in many cases be logical
to let it determine hue, H, whereas the use of the third
principal component to determine colour-saturation, S,
seldom has meaning. Instead S may simply be set to a
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Table 1. Examples of correlation matrices and principal-compo-
nent eigenvalues based on data covering Danish agricultural
areas from 3 different satellites: SPOT, Landsat MSS and

certain fixed value (f.ex. maximum) or determined in
some other way. Such "logical” display methods, that may
not be statistically optimal but which ease interpretation,
are widely used together with spectral transformations,
replacing the original bands of a satellite image by “fea-
tures™ having physical/biological meaning.

Principal components analysis (pca)

Pca has already been mentioned several times as a method
of orthogonal transformation of multiband satellite data.
No treatment of the theory behind will be given here,
many excellent descriptions with or without reference to
image processing are available, As described in the pre-
ceeding section, pca may be used on 3D data-sets, such as
sets of RGB-values, but in general pca provides a means of
reducing the dimensionality of data-sets with minimum
information loss, and therefore its relevance increases
with the dimensionality of the original data-sets and with
increasing correlations between the original bands.

In table 1 some examples of correlation matrices be-
tween bands in Landsat MSS-, TM- and SPOT-images
from agricultural areas in Denmark are given, and the
results of pca on these data-sets are summarized as well.
The pca was based on the correlation (rather than the
alternative variance/covariance) matrices, It is obvious
from table 1| that the “intrinsic dimensionality” (see
Landgrebe, 1978) of MSS-and SPOT-data is not much
more than two, due to the high correlations between the
two visible, and in the case of MSS also the two near-
infrared, bands. In the case of TM and not taking the
thermal band into account the dimensionality 1s close to
three. Reduction from an original dimensionality of six to
three gives meaning, since the three first principal compo-

Landsat TM. The high correlations between spectral bands are
evident, and the effective dimensionality of the data is less than
the nominal in all cases.

nents, which represent 98 % of the variance, can be dis-
played, using either a RGB- or an IHS-representation,

When working on multitemporal data-sets pca may be
even more helpful, since the high dimensionality of such
data-sets make them very difficult to handle, both ment-
ally and computer-wise, and impossible to display in raw
form without a great loss of information, Nigls-Christian-
sen et al. (1983) investigate the use of pca to compress a
16-dimensional data-set, including MSS-data from four
dates during a growing season. It is concluded that the
separability (see below) of certain critical land use classes
is not seriously affected by reducing the dimensionality
from 16 to 3, as illustrated in fig. 2, which means that
practically all critical information (i.e. information nee-
ded for crop- and land use classification) can be displayed
ona RGB-device. The main problem remaining is that the
colours of the resulting displayed image may be quitc
difficult to interprete. It is also concluded that a pca must
be "tuned” in order to obtain the required result by care-
fully selecting the basis for calculation of the correlation
or covariance matrix, which serves as a basis for calcula-
tion of the principal components.

CROP IDENTIFICATION BASED ON
MULTISPECTRAL/MULTITEMPORAL
SATELLITE DATA
The use of statistical measures of separability
As mentioned above, the rationale of choosing a sta-
tistical approach to crop or land cover identification is
that the spectral signatures of naturally occuring classes
are overlapping in n-dimensional space,

In order to assess the "overlaps™ in multidimensional
feature space between spectral signatures of a set of class-
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es, measures of separability are needed. If the classes are
assumed to have n-dimensional Gaussian distributions,
the Jeffries-Matusita distance (or the more or less equiva-
lent "transformed divergence™) is applicable (Swain,
1978).

Once a statistical description, including mean-values,
variances and co-variances offbetween bands, of all
classes has been established through a "training” process
utilizing ground truth data, a "separability matrix”, con-
taining separability values of all combinations of classes,
can be calculated and used as a basis for evaluation of
whether the statistical descriptions of the classes are adeq-
uate. Very often the spectral bands are highly correlated,
meaning that exclusion of certain bands will have neglig-
ible effect on the separability of classes. This can be
checked by recalculating the separability matrix on the
basis of the reduced set of bands. In this way the dimen-
sionality of the data-set can typically be reduced with only
a small loss of classification accuracy. A similar use of the
J-M-distance was made in a study of principal compo-
nents analysis of a multitemporal data-set (Niels-
Christiansen et al., 1983).

Maximum likelihood classification

When a clear-cut boundary in multidimensional feature-
space between any two crops does not exist, the aim of the
classification process must be to minimize the "error” or
"loss”, resulting from the unavoidable misclassifications.

The classical statistical solution to this problem is the
maximum likelihood classification technique, probably
one of the most widely used image processing procedures.
No detailed treatment of this well-known method will be
given here, the reader is referred to standard texts on the
issue, f.ex. Swain (1978) and Niblack (1985).

In the standard version, available in most comprehen-
sive image processing software packages, it is assumed
that all classes have Gaussian n-dimensional distribu-
tions of grey levels. Furthermore it is assumed that all
misclassifications are equally "bad”, resulting in a simple
loss-function (Niblack, 19835), yet for certain purposes,
where identification of some seldomly occuring class is
more important than overall classification accuracy,
more complicated loss-functions may be relevant, As fora
priori probabilities of the involved classes, some simple
versions assume that all classes have similar values, whe-
reas the more comprehensive variants allow user-speci-
fied values for each class. The maximum likelihood algo-
rithm can also be used in an iterative way, allowing the
first iteration to determine a priori probabilities in the
second a.s.0. In the more advanced versions the a priori
probabilities of each class are made location dependent,
thereby moving the method away from the limitations of
"per-pixel” image processing procedures.

One particularly interesting way of making a priori
probabilities location dependent is to let a priori values
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depend on the classification of the neighbouring pixels.
This will, of course, require that the algorithm isruninan
iterative mode, so that a priori values for a pixel is depen-
dent on classification results from the preceeding itera-
tion, One variant of this context-dependent maximum
likelihood classifier is described by Niblack (1983).

Thus still more flexible maximum likelihood classifiers
are being developed, some even taking spatial context
into censideration. The practical limit to the utilization of
these developments has hitherto been presented by the
excessive processing requirements involved, but this may
be overcome with the development of "smart” versions of
such algorithms, making it possible to utilize dedicated
hardware based on parallel processing and ultra-fast data-
busses. Practical experience with use of maximum likeli-
hood classification algorithms tends to show that the
main problem is not whether one or another variant of
maximum likelihood classification is best suited, nor is it
a matter of adjustment of a priori probabilities, it is rather
that proper performance presumes that
1. all classes have Gaussian distributions, and
2. every class is adequately described statistically.

The latter presumption may be very difficult to fulfill, if
the number of classes and bands is high. The number of
statistical parameters to be determined is given as

P=Nx(bx(b+1}/2+b)

where N is the number of classes and b the number of
bands. In a practical experiment (Rasmussen & Niels-
Christiansen, 1985) a four-temporal MSS dataset was
used as a basis for crop identification, and in this case N
was approximately 30 and b= 16, which means that 4560
statistical parameters had to be determined from training
data, Itisevident that it is extremely difficult to make sure
that all these parameters have reasonable values, and the
classification result may be quite sensitive to any error in
these values.

Multitemporal data-sets represent other problems as
well. If some bands are totally irrelevant for the discrimi-
nation of two crops, f.i. because the bands contain infor-
mation from dates when the crops are not visible at all, the
inclusion of these bands in the data-set, which may be
necessary for discriminating between other crops, will
create problems. Classes will tend to split up into irrele-
vant sub-classes, f.ex. representing different soil types,
increasing problems of getting adequate statistics even
further, and reducing the obtained classification accu-
racy. Thus, multitemporal data-sets call for methods that
utilize specific subsets of the bands for separation of any
pair of classes. This means that standard maximum like-
lihood algorithms can not be utilized in a straightforward
fashion, and the methods to be applied will depend upon
the data-set in question.
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Fig. 3. Diagram of the structure of a "decision tree” classification
algorithm using simple "deterministic” decision rules in the up-
per branches, and progressively more complicated statistical

The segmentation-classification approach
In the preceeding section an example of how spatial con-
text can be included in a maximum likelihood classifica-
tion was outlined. In this method, where the neighbours of
the pixel to be classified are allowed to influence the a
priori probabilities in that pixel, does not fully utilize the
fact that most pixels are organized in spatially homogen-
eous units, fields. In contrast to this, the human vision-
/brain system is very efficient in the identification of such
spatial entities. Much emphasis within the field of image
processing and "computer vision” is presently devoted to
finding ways of making computers equally efficient.
Numerous attempts have been made to perform secg-
mentation of remotely sensed images as a preprocessing
step before classification. Generally two approaches have
been tried, one involving edge detection, followed by
linking of the found edges to form closed polygons, one
based on merging of similar pixels to create regions, the
so-called "region-growing” method. Probably some com-
bination of the two approaches will be the most satisfac-
tory. Having created the segments, they can be classified
using methods similar to those applied to classification of
single pixels. Within-field texture may, however, be inclu-
ded in addition to the spectral bands, which may be of
interest in some cases, even though fields are not generally
characterized by texture to any great extent.
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rules in the lower branches, which contain only a small fraction of
the total amount of data.

Hierarchical algorithms, expert systems

The use of relatively complex multivariate classification
methods, such as the maximum likelihcod method, on all
pixels (or segments) of an image may in many cases be a
considerable "over-kill”, since many objects, such as
water and forests can be easily classified using much sim-
pler methods. Water is f.ex. characterized by an extremely
low reflectance in the near-infrared part of the spectrum
and can therefore be classified using a simple "density-
slicing™ method in a near-infrared band. In general it is
advantageous to reduce the dimensionality of the feature
space in which the classification methods operate to a
minimum in order to make it possible for the analyst to
overwiev what he is doing.

Often overlap in n-dimensional feature-space of spectral
signatures, requiring the use of maximum likelihood
classification to minimize the misclassification fre-
quency, can be removed by clever feature enhancement
techniques, by including extra spectral bands, fex. the
middle-infrared bands of Landsat TM, or by extra data
acquisitions from properly chosen dates. The latter is
exemplified in fig. 3, which illustrates how the temporal
development of spectral signatures of crops/land use
classes can be used to characterize them unambiguously.
In this way the need for statistically based methods is
diminished, and simpler, deterministic algorithms can
replace them. In particular in the case of multitemporal
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data-sets such simpler methods are easier to handle and
tend to improve classification results. There is, neverthe-
less, considerable scope in combining the simple determi-
nistic and the statistical methods in hierarchical algo-
rithms, as sketched in fig. 4.

Fig. 4 indicates that the more demanding methods, bath
in terms of processing load and, not the least, of "training”
requirements, are only used on a small minority of the
pixels. The majority of the pixels can be classified using
only one- or two-dimensional "look-up-table” classifiers,
which run very fast even on microcomputers.

This type of approach to crop identification/mapping is
flexible enough to facilitate the use of decision rules in-
volving non-spectral data. This leads in the direction of
so-called "expert systems”, in which all the various com-
mon-sense or expert decision rules, utilized more or less
consciously by a trained photo-interpreter, are modelled
or mimicked. It is believed that the long-term trend in the
evolution of crop identification methods will be towards
such hierarchical systems, integrating deterministic, sta-
tistical and "logical” elements.

YIELD PREDICTION

As known to most readers, agricultural yields are often
predicted on the basis of either relatively simple regres-
sion-type agrometeorological models or more complica-
ted simulation-type models that aim at "mimicking” act-
ual biological processes to some extent.

With the advent of satellite remote sensing it has been
suggested by many that remotely sensed data should serve
as an input to modified versions of models of the two
above mentioned types. Very substantial research effort
has been invested in such exercises, f.i. within the LACIE
and AGRISTARS programmes. Generally the results are
not too encouraging, so while remotely sensed images are
used in an operational manner to estimate areas sown
with certain crops in certain parts of the world, there is
little or no operational use for yield forecasting at present.
Discussions on whether and how remote sensing can con-
tribute to improved vield forecasting are continuing, how-
ever, f.i. in an EEC context.

In certain parts of the world, among other places in
drought-striken areas in Africa, the non remote sensing
based estimates of yields are poor due to great local varia-
tions and few agrometeorological observations. Early
warning of crop failures would be of importance in such
areas, and recently FAO has included a remote sensing
component in their national centers, which are presently
being established for purposes of early warning of food
shortages.

Use of high resolution satellite images is precluded for
financial reasons in such ¢crop monitoring exercises, and
the long time-intervals between observations and the slow
distribution of data makes them even less atttractive.
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Fig. 4. The variation through the growing season of spectral
signatures of 4 crops/land-use classes. The spectral signatures are
illustrated by the 1-standard deviation covariance ellipses. The
time path for each class can be used as basis for classifications.
(From Rasmussen, 1986)

Only low resolution meteorological satellite data are of
relevance, and in particular NOAA AVHRR-data are im-
portant, because of the choice of spectral bands, in parti-
cular the existence of a near-infrared band.

Two main approaches to yield forecasting based on sa-
tellite data can be pointed at. Either the satellite data are
used alone, for example by comparing the crop develop-
ment, observed from satellite, with the expected "stand-
ard” development and interpreting deviations in terms of
stress induced reductions of predicted yields. Or the satel-
lite data are used as one input among many to a regres-
sion- or simulation-type model. In spite of the theoretical
advantages of the latter approach few well-developed
examples of its application are known. Perhaps the most
widely used method is based on variants of the vegetation
index. No comprehensive treatment of this extremely
active area of study can be given here, the reader is re-
ferred to classical papers on the issue, f.i. Rouse et al.
(1973), Richardson & Wiegand (1977), Jackson (1983).
Many variants of the vegetation index have been pro-
posed, the common purpose being to construct a measure
of crop/vegetation greenness (preferably related to green
biomass or leaf area index), which is independent of the
soil background. This is, in most cases, done by contrast-
ing near-infrared and red reflectance. The most widely
used variant, the "normalized difference vegetation in-
dex” (NDVI) is thus given as



NDVI = (NIR-RED)/(NIR+RED)

where NIR is the reflectance in the near-infrared and
RED in the red part of the spectrum of the surface in
question. By monitoring this parameter during critical
phases of crop development crop yield may be predicted,
often using a simple regression model. This method is
presently being tested for use in the Sahel. In Denmark a
similar technique has been suggested for assessing frost
damage on winter-crops (Olesen et al., 1986).

Whether this technique will prove useful and competi-
tive, in comparison to standard methods using only
ground-based agrometeorological measurements as in-
put, is difficult to say, yet in many African countries the
cost of alternative methods of data acquisitions are very
high due to poorly developed infrastructure and the great
local variations in crop condition,

DISCUSSION

The extremely widespread use of mathematical/statistical
methods in remote sensing applied to agriculture is
caused partly by the fact that there are stochastic clements
in remaote sensing data and partly by the generality of the
methods in question. Better modelling of the physical
processes involved and addition of more measurements
(new spectral bands, multiple data acquisitions) will gra-
dually move the balance towards a deterministic
approach, however. The need for integrating statistical,
deterministic and "logical” elements in crop identifica-
tion is obvious, and in particular methods, that take into
account the existence of spatial entities such as fields, will
become ever more necessary as the spatial resolution of
satellite images is improved. Whether contextual classifi-
cation methods, segmentation techniques or some other
geostatistical method will prove to be the most efficient
way of treating spatial context is difficult to say, since
none of these techniques have been developed to their full
potential. The practical use of yield prediction based on
satellite data is usually assumed to be less realistic than
estimation of areas. High resolution data can at the most
be used in a sampling framework, both because of the
cost, the long intervals between data acquisitions and
because of cloud cover. Low resolution data, such as
NOAA AVHRR images can not be used on a per-field
basis, yet they provide the most relevant input into pre-
dictive models. The best results must be expected to be
obtainable from models integrating satellite data into
"traditional” models using also in-situ measurements.
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