

NEER ENGI

INVESTIGATING CONCURRENCY IN THE
CO-SIMULATION ORCHESTRATION
ENGINE FOR INTO-CPS

Electrical and Computer Engineering
Technical Report ECE-TR-26

DATA SHEET

Title: Investigating Concurrency in the Co-Simulation Orchestration
Engine for INTO-CPS
Subtitle: Electrical and Computer Engineering
Series title and no.: Technical report ECE-TR-26

Author: Casper Thule
Department of Engineering – Electrical and Computer Engineer-
ing, Aarhus University

Internet version: The report is available in electronic format (pdf)
at the Department of Engineering website http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2016 Pages: 111
Editing completed: May 2016

Abstract: There is a tendency to expect, that taking advantage of
multicore systems by using concurrency improves the performance
of an application. To investigate if this is true, a case study was
performed where different concurrency principles were applied to
an existing application called the Co-Simulation Orchestration En-
gine (COE), which did not utilize concurrency. This was explored in
the context of Co-Simulation using the Functional Mock-up Inter-
face, as applications executing Co-Simulations should be perfor-
mant to enable the use of increasingly complex models.
Co-Simulation can be useful in the development of Cyber-Physical
Systems, as it can be used to simulate coupled technical systems
or models and thereby examine the behavior of the systems.

The investigation was carried out by refactoring the COE to make
it suitable for implementing concurrency by limiting the spawning
of threads and synchronization between threads, along with max-
imizing the workload for each thread. Three different concurrency
features were used in three different implementations: Parallel
collections, futures, and actors, which were evaluated based on
selected quality attributes. These implementations were tested
against the non-refactored sequential COE and each other by
performing different simulations using different models.

The case study showed, that concurrency can be used to increase
the performance of the COE in some cases. Based on the analysis
carried out in this thesis project, a set of guidelines were created to
generalize the process of applying concurrency to an existing ap-
plication.

Keywords: concurrency, functional programming, scala, co-
simulation, cyber-physical systems, functional mock-up interface,
and into-cps

Supervisor: Peter Gorm Larsen

Please cite as: Casper Thule, 2016. Investigating Concurrency in
the Co-Simulation Orchestration Engine for INTO-CPS. Department
of Engineering, Aarhus University. Denmark. 111 pp. - Technical
report ECE-TR-26

Cover image: INTO-CPS

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly acknowl-
edged

http://www.eng.au.dk/

INVESTIGATING CONCURRENCY
IN THE CO-SIMULATION

ORCHESTRATION ENGINE FOR
INTO-CPS

Casper Thule

Aarhus University, Department of Engineering

Abstract

There is a tendency to expect, that taking advantage of multicore systems by using concurrency improves the
performance of an application. To investigate if this is true, a case study was performed where different concurrency
principles were applied to an existing application called the Co-Simulation Orchestration Engine (COE), which did
not utilize concurrency. This was explored in the context of Co-Simulation using the Functional Mock-up Interface, as
applications executing Co-Simulations should be performant to enable the use of increasingly complex models.

Co-Simulation can be useful in the development of Cyber-Physical Systems, as it can be used to simulate coupled
technical systems or models and thereby examine the behavior of the systems.

The investigation was carried out by refactoring the COE to make it suitable for implementing concurrency by
limiting the spawning of threads and synchronization between threads, along with maximizing the workload for
each thread. Three different concurrency features were used in three different implementations: Parallel collections,
futures, and actors, which were evaluated based on selected quality attributes. These implementations were tested
against the non-refactored sequential COE and each other by performing different simulations using different
models.

The case study showed, that concurrency can be used to increase the performance of the COE in some cases.
Based on the analysis carried out in this thesis project, a set of guidelines were created to generalize the process of
applying concurrency to an existing application.

Preface

As the finishing part of the Master’s degree in Computer Engineering at Aarhus University, this
Master’s thesis is the final project of the education. It was conducted from August 24th 2015 to
January 4th 2016 and accounts for 30 ECTS points.

This thesis project originates from the Integrated Tool Chain for Model-Based Design of CPSs
(INTO-CPS) project [Larsen, 2015]. More specifically, the thesis project contributes to a part of
the tool chain that concerns simulation and Co-Simulation.

I would like to thank my academic supervisor, Peter Gorm Larsen, for valuable advice and atten-
tion during this thesis project and for providing feedback on this thesis project report. In addition,
I would like to thank my co-supervisor, Miran Hasanagić, for development support and valuable
feedback on the content and structure of this thesis project report. Furthermore, I would like to
thank Kenneth Lausdahl for providing assistance with the implementations and contributing to
discussions along with Victor Bandur. I would also like to thank Peter Jørgensen for providing
sparring on parts of this thesis project and Cláudio Gomes for discussions on Co-Simulation. Fi-
nally, I would like to thank Sigrid Mathiasen for providing support, valuable feedback on the
structure of the thesis, and corrections.

iii

Table of Contents

Abstract i

Preface iii

Table of Contents v

List of Figures viii

List of Tables ix

Chapter 1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Hypothesis and Goals . 3
1.4 Scope . 3
1.5 Approach . 4
1.6 Reading Guide . 5
1.7 Structure . 7

Chapter 2 Background 11
2.1 Introduction . 11
2.2 Cyber-Physical Systems . 12
2.3 Co-Simulation . 14
2.4 The Functional Mock-up Interface . 15

2.4.1 Functional Mock-up Unit Package . 16
2.4.2 Functional Mock-up Unit Usage . 17

2.5 Functional Mock-up Interface Algorithms . 17
2.5.1 Preprocessing Algorithm: Order-Variables 18
2.5.2 Master Algorithm: Master-Step . 20
2.5.3 Master Algorithm: Predictable Step Sizes 20

2.6 INTO-CPS . 21
2.7 Challenges in Concurrency . 22

2.7.1 Definition . 22
2.7.2 Race Conditions and Critical Sections 23
2.7.3 Deadlock Issues . 24
2.7.4 Referential Transparency . 24

2.8 Concurrency in Scala . 25
2.8.1 Futures . 26
2.8.2 Actors in Scala . 29

v

Table of Contents

2.8.3 Parallel Collections . 31

Chapter 3 Co-Simulation Orchestration Engine Implementation 33
3.1 Introduction . 33
3.2 Co-Simulation Orchestration Engine Baseline Implementation 34

3.2.1 Co-Simulation Orchestration Engine Server 34
3.2.2 Simulation Phase . 35

3.3 Co-Simulation Orchestration Engine Concurrency Implementation 37
3.3.1 Refactoring to Limit Synchronization 37
3.3.2 Implementation using Parallel Collections 39
3.3.3 Implementation using Futures . 39
3.3.4 Implementation using Actors . 40
3.3.5 Actor Implementation: Multiple Actor Invocations 41

Chapter 4 Evaluation of Implementations 45
4.1 Introduction . 45
4.2 Principles . 46
4.3 Test Framework . 46
4.4 Performance Tests . 48

4.4.1 Heating, Ventilation, and Air Conditioning Tests 48
4.4.2 Sine Integrate Wait Tests . 50
4.4.3 Modified FMU . 52

4.5 Reflection on Testing . 53
4.6 Additional Quality Attributes . 54
4.7 Results . 55

4.7.1 HVAC Tests . 56
4.7.2 Sine Integrate Wait Tests . 56
4.7.3 Evaluation of Quality Attributes . 58

4.8 Analysis of the Results . 59

Chapter 5 Guidelines 63
5.1 Introduction . 63
5.2 Motivation for Guidelines . 64
5.3 Preparing for Concurrency . 65
5.4 Process of Implementing Use of Concurrency 66
5.5 Evaluating an Implementation . 69

Chapter 6 Concluding Remarks and Future Work 71
6.1 Introduction . 71
6.2 Discussion . 71

6.2.1 Thesis Project Approach . 72
6.2.2 Transferable Skills . 72

6.3 Conclusion . 74
6.4 Evaluation on the Achievement of the Goals . 75

6.4.1 Revisting the goals . 75
6.4.2 Evaluation . 76

6.5 Future Work . 76
6.6 Final Remarks . 78

vi

Table of Contents

Bibliography 79

Appendices 85

A FMU State 87

B FMI formalization overview sheet 91

C Scala class hierarchy 93

D Actor Trait 95

E Test Framework 97

F Copy-script 105

G Evaluation of Quality Attributes 109

vii

List of Figures

1.1 The approach to investigating the hypothesis and fulfilling the goals. 5
1.2 The structure of this thesis. 8

2.1 An assurance framework for Cyber-Physical Systems. 13
2.2 A block representation of a simulator. 14
2.3 Example of simulated Cyber-Physical System with dependencies. 15
2.4 Schematic overview of an Functional Mock-up Unit. 16
2.5 Simple Co-Simulation flow chart for a Functional Mock-up Unit. 18
2.6 Co-Simulation Orchestration Engine overview. 19
2.7 Master-Step flow chart. 20
2.8 Master-Step with predictable step sizes flow chart. 21
2.9 Overall workflow and services offered by the INTO-CPS tool chain. 22
2.10 State of a future. 28

3.1 Server requests for performing a simulation and retrieving the results. 34
3.2 The overall process of a simulation step in the baseline 36
3.3 The simulation step process in the baseline implementation with synchronization. 38
3.4 The simulation step process in the concurrent implementation with synchronization. 38
3.5 Simulation step flow in the multiple actor invocations implementation 42

4.1 Class diagram of the test framework . 47
4.2 Example of two connected Functional Mock-up Units. 48
4.3 Example of four connected and chained Functional Mock-up Units. 48
4.4 Basic test flow of a simulation using baseline and concurrent implementations. . 49
4.5 Heating, ventilation, and air conditioning simulation. 50
4.6 Sine Functional Mock-up Unit (FMU) and integrate FMU simulation results. . . 51
4.7 Test flow of a simulation using baseline and concurrent implementations with

wait Functional Mock-up Units. 52
4.8 Evaluation of quality attributes. 58
4.9 Master algorithm simulating four FMUs using an additional step master algorithm. 60

5.1 Guidelines on implementing concurrency. 64
5.2 Reduction of separated concurrent invocations and synchronizations. 67
5.3 Reduction of separated concurrent invocations and synchronizations for the im-

age example. 68

6.1 Server requests for performing a simulation and retrieving the results. 72
6.2 Evaluation of the chosen quality attributes. 74

A.1 Co-Simulation state machine for a Functional Mock-up Unit. 87

viii

A.2 Co-Simulation state table for an FMU. 88

C.1 Scala class hierarchy. 93

List of Tables

4.1 Results in milliseconds from using usleep . 53
4.2 Rating of quality attributes. 55
4.3 Results in milliseconds from HVAC Test1 (1 Con, 4 FCU, 0.1 step). 56
4.4 Results in milliseconds from HVAC Test2 (1 Con, 4 FCU, 20 step). 56
4.5 Results in milliseconds from HVAC Test3 (1 Con, 4 FCU, 0.1 step, MultipleActorIn-

vocations). 56
4.6 Results in milliseconds from SI Test1 (1 Sine, 1 Integrate). 57
4.7 Results in milliseconds from SI Test2 (1 Sine, 5 Mod-Integrate). 58
4.8 Results in milliseconds from SI Test3 (1 Sine, 100 Integrate). 58
4.9 Results in milliseconds from SI Test4 (1 Sine, 100 Integrate, MultipleActorInvocations). 58

G.1 Rating of quality attributes. 109

ix

Chapter1
Introduction

This thesis project is part of the Integrated Tool Chain for Model-Based Design of CPSs (INTO-
CPS) project. One of the tools in the tool chain performs Co-Simulation, and the aim of this thesis
was to investigate, whether taking advantage of concurrency could improve the performance of
such a tool.

This chapter introduces the subject of this thesis project and serves as a general introduction. As
this chapter serves as a general introduction, it is related to all other chapters and should be read
first.

1.1. Overview

Software is increasingly being used for multiple purposes today, and one of these purposes is
controlling physical processes. Such systems consisting of software and hardware are becoming a
vital part of society, where they constitute cars, trains, medical devices and so forth. This has given
rise to Cyber-Physical Systems (CPSs), which can be defined as: ”Cyber-Physical Systems are
integrations of computation with physical processes“ [Lee, 2008]. It is often a multidisciplinary
effort to develop a CPS, for example a combination of mechanical and software engineering. They
resemble embedded systems, but are considered to be more open to the outside environment. CPSs
are typically reactive systems, meaning they perform computations based on events and therefore
keeps running unlike transformation systems, that performs a computation and stops.

When developing CPSs it can be useful to create models of components, that are part of the system.
A model is an abstract description of a component, where the properties relevant to the goal is
kept and others are abstracted away. Models can only approximate real components, and fidelity
is a measure of, how close a model is to the real component. Models of hardware and software
components can used in simulations, which may be part of developing a CPS. A type of simulation
is Co-Simulation, which is simulation of technical systems or models created with different tools
and coupled together in a semantically sound fashion. A Co-Simulation typically consists of
exchanging data between the models that are part of the simulation, making them progress an
amount of time, called the step size, exchange data again and so forth. As mentioned, CPSs are
generally reactive systems and therefore it is necessary to set an end time of the simulation. Once
the end time is reached, it is an indication of the end of a simulation and the results are reported.

1

Chapter 1. Introduction

Co-Simulations can use variable step size, where the steps are decided by the components, or fixed
step size, where the same step size is used. If fixed step size is used, it can have a significant impact
in achieving ”correct“ results of a simulation, as the real world is continuous but the simulations
use discrete time.

This thesis project concerns the further development of an already existing Co-Simulation Or-
chestration Engine (COE), which is an application that performs Co-Simulation. In this case,
the Co-Simulation is performed by utilizing the Functional Mock-up Interface (FMI), which is a
tool independent standard for Co-Simulation. It defines an interface, which components, called
Functional Mock-up Units (FMUs), must implement. If Co-Simulation is used in the develop-
ment of a CPS, the tool performing the Co-Simulation should be fast, and this thesis focuses on
determining whether implementing the COE using concurrency1 gives any performance optimiza-
tions. It is also expected, that the COE exhibits determinism, meaning that given the same input
it will always produce the same output, in order to reuse the simulations for test regression. The
development effort in this thesis project consisted of two parts. The first part was to refactor the
existing implementation of the COE, and the second part was to implement concurrent alternatives
to the COE. The refactoring was performed to make it more suitable for running simulations con-
currently and therefore prepared the COE for implementing concurrency usage. Experimentation
was carried out with three different concurrent implementations: One using parallel collections,
one using futures, and one using actors.

First, section 1.2, contains the author’s motivation for choosing the topic of this thesis project.
Afterwards, section 1.3 describes the hypothesis, that will be tested in this thesis along with other
goals. Following the description of the hypothesis and goals, section 1.4 describes the scope of the
thesis project. Next, section 1.5 describes the approach to testing the hypothesis and achieving the
goals. Finally, section 1.6 and 1.7 presents a reading guide and the structure of this thesis report.

1.2. Motivation

The primary motivation for this thesis project was the increasing number of CPSs [Lee, 2010].
CPSs are becoming a vital part in many aspects of society and industry such as health care, trans-
portation, and agriculture; therefore it is critical, that they behave as expected. Besides behaving
as expected, it is of interest to minimize the development time of CPSs. A way to achieve both
is by creating better tools for the development of CPSs, and this thesis targets the development
of a tool called the COE. The COE should enable better simulation of multi-disciplinary systems
compared to the existing options, that often are tailored to specific systems, and therefore cannot
be applied in general [Bastian et al., 2011]. Another interesting part of the simulations is the pos-
sibility of gradually introducing real components as part of the simulation alongside models. This
is referred to as hardware-in-the-loop if the components are hardware or software-in-the-loop if
the components are software.

In order to minimize the development time of a CPSs using simulations it is desired to make the
COE as fast as possible. As hardware makers have turned to multicore processors in order to
properly utilize the new hardware possibilities [Geer, 2005; Creeger, 2005], software should take
advantage of the opportunities in using concurrency. However, concurrency introduces additional
complexity and challenges in the development of an application. Some of these challenges, that

1Concurrency and parallelism will be used interchangeably, as this thesis is not concerned with interleaving as
opposed to real parallelism.

2

Hypothesis and Goals

are inherent in the development of concurrent systems, can be addressed by using functional pro-
gramming. The implementation of the COE was performed in Scala, which is a programming
language supporting the functional paradigm, and therefore provides a solid foundation for devel-
oping with concurrency.

The author of this thesis believes, that tools must continue to improve in order for systems to
improve. Development of tools also require a thorough understanding of the subject they target,
and the possibility of combining tool development with CPSs is motivating. Furthermore, the
usage of concurrency will only increase and the possibility of doing research on this topic while
developing in a language supporting the functional paradigm is most interesting.

1.3. Hypothesis and Goals

Hypothesis: If two or more FMUs are used in a Co-Simulation performed by the COE, then the
performance of executing the Co-Simulation can be improved by taking advantage of concurrency
in the implementation of the COE.

The performance in this context is considered how fast a Co-Simulation is performed by the COE
application, and it is therefore measured in terms of time. The reason for the constraint of two
or more FMUs is, that splitting the simulation of a single FMU would not lead to performance
improvements, as the functions contained in an FMU must be invoked sequentially (this will be
described in more detail in chapter 2).

Besides investigating the hypothesis, other goals were set for this thesis project. These goals are
related to the subject of this thesis, but also to other areas such as programming languages and
personal skills. The goals were the following:

Goal 1: Understand the concepts of CPSs and Co-Simulation. Additionally, learn how Co-Simulation
can be performed using the FMI standard.

Goal 2: Learn the basics of the challenges that implementing the usage of concurrency presents,
and how the functional paradigm addresses these.

Goal 3: Learn and use the programming language Scala for the development of the COE appli-
cation with different concurrency features. A part of this goal is to be able to generalize on
implementing functionality that uses concurrency in an application.

Goal 4: Improve personal skills in general for conducting research by identifying transferable
skills that may be usable in the future.

1.4. Scope

The scope of this thesis project was to understand the fundamental concept of a CPS and how
Co-Simulation is performed and contribute to the development of such a system. Additionally,
it was necessary to understand the FMI standard to the extent, that it could be utilized in the
implementation of a COE. The COE is being implemented in the programming language Scala,
and it was within the scope of this thesis project to use this language for further development of

3

Chapter 1. Introduction

the COE. It was also within the scope of the thesis project to understand the basics of concurrency
challenges, and how concurrency can be used in Scala and in the implementation of the COE.

An application can be evaluated based on many different quality attributes such as fault-tolerance,
safety, and maintainability. The implementation of the COE focuses on determinism, correct-
ness, and performance in terms of execution time. Furthermore, the concurrency features will
be evaluated based on composability, simplicity, configurability, scalability, documentation, and
performance. The rating of these quality attributes are described in chapter 4.

The COE application was lacking features at the start of this thesis project, and it was out of
scope to implement additional features. Therefore, it was considered out of scope to implement
the possibility of performing simulations, where the dependencies between models are cyclic,
where the stability of simulators are validated, and where the simulators perform the so-called
zeno effect. Neither were extrapolation or interpolation of results in case of different step sizes to
be supported. This thesis project only used models for simulations, and it was also not part of the
scope to compare results of simulations using models to results using the realized systems. The
use of concurrency features was also constrained to the default threading strategies. Furthermore,
as the COE was written in Scala at the start of this thesis project, the programming in this thesis
was also performed in Scala.

The reader of this thesis is expected to have a background in information and communications
technology in order to understand the concepts, that are used. Additionally, it is expected that
the reader has basic knowledge of functional programming and thereby knowledge of common
functions such as map and filter.

1.5. Approach

The approach to investigating the hypothesis defined in the previous section is presented in fig-
ure 1.1 and was used to confirm or refute the hypothesis. Furthermore, the approach helped to
fulfill the goals set for this thesis. The steps are explained in detail below.

Litterature Study: To understand the subjects CPSs, Co-Simulation, and FMI it was necessary
to read relevant literature. To gain a thorough understanding of concurrency, it was neces-
sary to understand the challenges inherent in implementing concurrency usage by reading
literature on this as well.

Baseline Establishing: The implementation of the COE at the start of this thesis project was an
unstable prototype, and it was therefore necessary to fix various bugs as the first step in
order to make it stable. Once this was done the baseline in figure 1.1 was established.

Concurrency Implementations: Once a baseline had been established, a new implementation
was made, that was separated from the baseline as shown in figure 1.1. This implementation
was a refactored version of the baseline, and the purpose of the refactoring was to prepare the
implementation for concurrency. Afterwards, functionality that uses concurrency was added
to the refactored baseline. This resulted in three different concurrency implementations:
One using parallel collections, one using futures and one using actors.

Comparison and Evaluation: It was necessary to compare the effect of the concurrency imple-
mentations versus the baseline, to see whether any performance improvements were present.

4

Reading Guide

Figure 1.1: The approach to investigating the hypothesis and fulfilling the goals.

Therefore several tests were implemented to understand and show different cases where the
performance was increased, decreased or stayed the same with concurrency as opposed to
without. The tests were also used to verify, that the concurrency implementations were
semantically equivalent and thus provided the same results as the baseline.

To decide whether concurrency is the right direction for the COE it was necessary to evalu-
ate and discuss the results. This helped to outline the future work of the COE.

Generalization: To use the analysis carried out in this thesis project in a broader context, the
process of applying concurrency to an existing application was generalized to a set of guide-
lines.

1.6. Reading Guide

References
References are referred to by author and year, which corresponds to an entry in the bibliography
in this thesis. As an example, [Lee, 2008] refers to a reference entry in the bibliography with the
same tag.

Emphasis
Emphasized words are written in italic, such as emphasized.

Quotations
A quotation from literature is written in italic and placed in double quotation marks, such as “This

5

Chapter 1. Introduction

is a quote”.

Numbering of figures, listings, and tables
Figures, listings, and tables are presented using using the convention figure/listing/table <C>.<N>,
in which C refers to the chapter number, and N is the order of the figure/listing/table in chapter C.

Code elements
Elements that are part of code, e.g. Scala or Java, are written in a typewriter font. This is
also used to separate a concept from a specific implementation of the concept in a programming
language, as the concept will be written regularly as: actor, whereas when referring to the specific
type that is used in a programming language it will be written as Actor.

Listings
Different listings are used throughout this thesis and they have different layouts. The layout in the
appendices have the programming language clearly stated in the caption as shown in listing 1.1.
The layouts in the report will have the programming language stated in the top left. Listing 1.2
shows the Java layout, listing 1.3 the Scala layout, listing 1.4 the XML layout, listing 1.5 the
JSON layout, and listing 1.6 shows the pseudocode layout. Two threads might be illustrated
in one listing to emphasize interleaving and order of events. This will be expressed as shown
in listing 1.7. Thread 1 performs an event first, then Thread 2 performs an event, and then both
threads perform an event without order. However both events on line 3 would be performed before
any event on line 4+. In this example and in general, if there are no line numbers on a given line,
then it is only inserted for explanatory purposes and not part of the code. Line wrapping is an
exception to this rule and it is illustrated with a red arrow as shown in listing 1.3.

1 // A Java comment
2 public static void main(String args[]) {
3 System.out.println("Hello, World!"); }

Listing 1.1: Java, Example of Java block in appendices

Java

1 // A Java comment
2 public static void main(String args[]) {
3 System.out.println("Hello, World!"); }

Listing 1.2: Example of a Java code block

Scala

1 // A Scala comment
2 def main(args: Array[String]) {
3 println("Hello, World! A long line to illustrate line

↪→ wrapping.") }

Listing 1.3: Example of a Scala code block

6

Structure

XML

1 <!-- This is an XML comment -->
2 <message type="test"> Hello, World! </message>

Listing 1.4: Example of an XML block

JSON

1 { "message": "Hello, World!" }

Listing 1.5: Example of a JSON block

Pseudocode

1 print "Hello, World!"

Listing 1.6: Example of a Pseudocode block

Pseudocode

//Thread 1 //Thread 2
1 Print Thread 1
2 Print Thread 2
3 Set x to 2 Set x to 5

Listing 1.7: Example of a threaded Pseudocode block

1.7. Structure

The structure of this thesis is presented in figure 1.2. Every chapter is a solid box, and the arrows
between them indicate their dependencies. As it can be seen in the figure, the background chapter
is relevant to most of the chapters in this thesis. The text in the left hand side of the figure indicate
the main theme of the chapters in the swim lane, which is marked by horizontal lines.

Chapter 2: This chapter presents the background of the concepts leading up to this thesis and the
concepts underlying the implementation. Because it presents background on these different
concepts, it is relevant to chapters 3 to 5.

Chapter 3: This chapter describes the baseline implementation, the refactoring of the baseline,
and the implementations using concurrency. Thereby, chapter 3 establishes the basis of the
implementations that are evaluated in chapter 4.

Chapter 4: This chapter tests and evaluates the implementations in chapter 3 and provides a
foundation for the guidelines in chapter 5.

Chapter 5: This chapter contains generalized guidelines on applying concurrency to an existing
application. This can be useful in the development of other applications that seek to use
concurrency, as it contains steps and advice on this topic learned during the work that was
carried out in this thesis project. The chapter contains references to other chapters, but is
roughly self-contained.

7

Chapter 1. Introduction

Figure 1.2: The structure of this thesis.

Chapter 6: The chapter concludes the work conducted in this thesis project along with evaluating
the hypothesis and goals presented in section 1.3. Furthermore, ideas on future work are
discussed.

Appendix A: This appendix shows the state machine used for Co-simulation with FMI and is
used in the presentation of the FMI interface in section 2.4.

Appendix B: This appendix contains an overview of the formalization presented in an article on
algorithms for FMI used in section 2.5.

Appendix C: This appendix contains the Scala class hierarchy and is used to introduce Scala in
section 2.8.

8

Structure

Appendix D: This appendix contains the implementation of an Actor trait, that is used in the
concurrent implementation using actors in section 3.3.4.

Appendix E: This appendix contains the implementation of the test framework, that is described
in section 4.3.

Appendix F: This appendix contains a shell script used for generating test scenarios. This is used
in chapter 4.

Appendix G: This appendix contains the evaluation of the quality attributes, that is described in
section 4.7.

The Master’s thesis report is also attached within the CD, if the reader wishes to have it as a pdf
file. Furthermore, the CD contains the source code and FMUs used in this thesis project along
with the test results.

9

Chapter2
Background

This chapter introduces the concepts Cyber-Physical Systems (CPSs) and Co-Simulation using the
Functional Mock-up Interface (FMI) that this thesis builds upon. These concepts were investigated
in a literature study, that focused on understanding the respective concepts. This knowledge is
useful in order to understand the tasks, that the tool performing Co-Simulation must accomplish
and how the FMI can be used for this. Additionally, literature on developing software that uses
concurrency was studied and is presented in this chapter. This also contains challenges inherent
in developing software that uses concurrency and how these challenges can be addressed.

The knowledge achieved within these concepts forms the basis of the existing implementation
of the Co-Simulation Orchestration Engine (COE) and the implementation using concurrency
described in chapter 3 and evaluated in chapter 4. Furthermore, this knowledge was used to create
guidelines on introducing the usage of concurrency in an existing application in chapter 5. Lastly,
this chapter helps to fulfill the following goals defined in chapter 1: Goal 1 on understanding CPSs
and Co-Simulation using FMI; goal 2 on learning the basics of challenges posed by concurrency
and finally, goal 3 on learning the programming language Scala.

2.1. Introduction

Cyber-Physical Systems (CPSs) combines computation and physical processes and are used in
many areas today such as automotive, aerospace, and energy. These systems are often networked
and consists of multiple components, and therefore timing presents a challenge along with de-
pendability, which covers several attributes such as reliability, availability etc. These challenges
can lead to nondeterminism, which makes the systems difficult to reason about and use.

A way of addressing these challenges is simulating the components that make up the system or
models of these along with the interactions between them. This is called Co-Simulation, as several
coupled systems are simulated. This can help to detect instability in the system or discover un-
desired behavior. However, different simulation tools perform different simulation tasks [Bastian
et al., 2011], and this leads to system specific solutions, that are difficult to reuse in the simulation
of other systems. To make simulations more applicable in general, a standard called the Func-
tional Mock-up Interface (FMI) was created [FMI development group, 2014a]. This standardizes
how components must be packaged and interfaces they must implement in order to use them for

11

Chapter 2. Background

Co-Simulation using FMI without requiring specific tools. When performing Co-Simulation, de-
terminism is important, so the simulations are reusable. Therefore, several algorithms specific
to the FMI standard have been designed for orchestrating Co-Simulations to secure determin-
istic behavior of the Co-Simulation Orchestration Engine (COE) responsible for executing the
Co-Simulations.

As simulating is expected to be a reoccurring task in the development of CPSs, it is desirable that
these are executed fast. Because processors today have multiple cores [Geer, 2005; Creeger, 2005]
it may be possible to increase the performance of executing simulations by using concurrency.
However, concurrency is inherently nondeterministic and therefore presents additional challenges
in achieving determinism. To solve or simplify these challenges, Scala adheres to the functional
paradigm and provides concurrency features that can be taken advantage of.

The following section introduces CPSs, and Co-Simulation using FMI is described in section 2.3
and 2.4. Next, section 2.5 describes algorithms on how to perform such a simulation determin-
istically. As this thesis project emanates from the project INTO-CPS, it is introduced in sec-
tion 2.6. To be able to take advantage of concurrency, it is necessary to understand the challenges
it presents, and some of these are presented in section 2.7. Lastly, section 2.8 introduces the Scala
programming language and different concurrency features available in Scala.

2.2. Cyber-Physical Systems

This is a broad subject, as many systems today are CPSs e.g. cars, trains, robots, and medical
devices. It is not a new concept as such, and many will think of it as embedded systems. However,
CPSs is a broader term and it also includes the Internet of Things. Whereas embedded systems
are considered closed for the outside environment, CPSs can be networked and closely linked
to physical elements. In the article ”CPS Foundations“ Lee states: ”... Cyber-Physical Systems
arguably have the potential to dwarf the 20th century IT revolution.“ [Lee, 2010]. The use of
CPSs will also grow as computers become cheaper and integrated into more products. One of the
challenges in CPSs is the cross-disciplinary nature and this requires engineers from different fields
to come together and design the systems.

A significant challenge for CPSs is dependability, which can be defined as: ”... the ability to
deliver service that can justifiably be trusted“ [Avizienis et al., 2004]. Trusted can then be de-
fined as: ”the ability to avoid service failures that are more frequent and more severe than is
acceptable“ [Avizienis et al., 2004]. Dependability covers several attributes of a system such as
availability, reliability, safety etc. Lee adds predictability to the challenges for CPSs and links
it closely to reliability, which is one of the attributes covered by dependability. This is because
systems are based on predictions in a controlled environment, and therefore can be made reliable.
For example, a smart TV exists in a controlled environment, and can therefore be made reliable.
However, the physical world is in general not predictable, and therefore reliability becomes much
more difficult as unexpected conditions can happen, and some systems such as planes or medical
devices may not be allowed to behave undesirably. Lee sets up a simple principle [Lee, 2008]:

Components at any level of abstraction should be made predictable and reliable if
this is technologically feasible. If it is not technologically feasible, then the next level
of abstraction above these components must compensate with robustness.

12

Cyber-Physical Systems

An example is, that it is difficult to create reliable and predictable wireless links and therefore
several protocols exists to compensate accordingly. As no component is perfectly dependable,
combining components in CPSs can lead to undesired results, and it can therefore be necessary to
define an appropriate balance.

Lee also mentions abstractions with relation to timing as a significant issue. Our computers be-
come faster, but that is not necessarily what is needed for CPSs, instead it is essential that physical
actions takes place at the right time [Lee, 2010]. As software abstractions are made, complex
details are chosen to be abstracted away. An example of this is C, the popular programming lan-
guage for embedded development. It does not contain any notion of timing semantics, meaning
it can execute in the right fashion but perform wrongly. This means the logic is correct, but the
operations are carried out at the wrong points in time and therefore it does not perform as de-
sired. As more abstractions are made and the complexity of the applications grows, e.g. by adding
inter-process communication, it becomes increasingly difficult to control timing. In general, most
programming languages do not contain timing requirements, and therefore the abstractions have
failed, because they lack features to solve these challenges. This is acceptable in many cases, but
in critical CPSs it is not. Therefore Real-Time Operation Systems (RTOS) deal with worst case
execution time, which introduces a significant overhead.

Lee argues, that part of the solution is better concurrency handling than using threads. Concur-
rency cannot be avoided because many things in the physical world are interleaved, yet threads are
a bad abstraction as they are difficult to comprehend for people even though the physical world is
well-understood. By using other programming languages that support concurrency better some of
these challenges could be overcome. A bottom-up approach is suggested, where timing is thought
of from the beginning. However, this could mean re-thinking progress in many years of software
evolution because timing has been left out. A top-down solution is generating software from mod-
els, that contain the required system behaviors. The CPS assurance framework in figure 2.1 uses
a model in the ”Conceptualization Facet“. This is used to capture the behavior of the system,
and therefore it is important, that this model approximates the real system to a degree, where it
becomes usable. This is called model fidelity, and it is a measure of the realism of a model [SISO,
1999]. The ”Realization Facet“ is the realization of the model, and finally the ”Assurance Facet“
is where it is proven, that the realized system actually works as it should, and how the model stated
it should. However, an adage goes: ”All models are wrong, some are useful“ [Box and Draper,
1987; Newcombe et al., 2014].

Figure 2.1: An assurance framework for CPSs [NIST, 2015].

13

Chapter 2. Background

2.3. Co-Simulation

Co-Simulation is well suited for usage in CPSs, as Co-Simulation is simulation of coupled tech-
nical systems or constituent models created with different tools. Each constituent model handles
an element of the full system, which makes it possible to make virtual products. For example,
a system consisting of many virtual components that together make up a virtual car. According
to Bastian et al. many complex multi-disciplinary systems cannot be modeled naturally in one
simulation tool alone, but require several specialized simulation tools that each do their part. This
is because some components are most naturally described using differential equations whereas
others are more naturally modeled as discrete event or discrete time systems [Bastian et al., 2011].
This means it has been necessary to create solutions tailored for a specific purpose instead of
having a general solution, and this can be expensive.

It is possible to use a master-slave relationship for Co-Simulation, where the slaves are responsi-
ble for simulating the individual components and the master is responsible for orchestrating the
simulation and transferring data between the slaves. Orchestrating the simulation means to sim-
ulate the components in the correct order, map outputs from one slave as input to another slave
correctly, and transfer the data at restricted discrete communication points. In order to engage in
such a Co-Simulation, a slave/simulator S must be able to exchange data during the simulation at
specific communication points in time, as shown in figure 2.2, where u is input and y is output.

Figure 2.2: A block representation of a simulator [Bastian et al., 2011].

Simulators/slaves can have different capabilities such as variable step sizes1, rollback mecha-
nisms2, asynchronous/synchronous, discrete events or/and differential equations etc. This puts
different requirements on the simulation algorithm used by the master, called the Master Algo-
rithm (MA), which van Acker et al. presents a solution to [van Acker et al., 2015]. The idea is to
generate an optimized orchestration algorithm based on analysis of the model that is to be simu-
lated. For example if slave2 depends on the output from slave1 but they have different step size,
then the optimized algorithm will interpolate or extrapolate the simulation values from slave1
before passing them to slave2. The overall flow of a simulation usually consists of three phases:

Initialization: The master gets the properties of the slaves, chooses an algorithm, prepares the
slaves and establishes the communication channels. As part of this state it is also necessary
to either pass a port dependency graph to the master or letting the master construct its own
graph based on configuration files. Figure 2.3 presents an example of connections between
the slaves via their input/output ports.

1A step size is an amount of time, and when a simulator does a step it goes an amount of time forward.
2A rollback is when a simulator rolls back to a previous defined state, meaning all relevant information is reverted

to its value at that state.

14

The Functional Mock-up Interface

Simulation phase: The master sets input values on the slaves and invokes them to run a simula-
tion with a specific time step. The slaves must respond with a status whether the step was
accepted or not. In this phase, it can be necessary to perform a rollback (if possible) for the
relevant simulator and run the simulation again with a different step size. The master gets
the output values from the slaves after a simulation.

Tear down: The master ends the simulation and shuts down the simulators, releases memory, and
reports the results along with potentially performing other tear down tasks.

Figure 2.3: Example of a simulated CPS with dependencies between simulators (the gray boxes)
via their respective ports (the black ellipses) [Broman et al., 2013].

2.4. The Functional Mock-up Interface

As mentioned above, it is a challenge to combine different simulation tools and keep the effort
of developing custom simulations down. The FMI was created to solve these challenges, as it
is a tool independent standard for the exchange of models and Co-Simulation. It is the result of
the ITEA2 European project called MODELISAR with the purpose of improving the design of
systems and embedded software in vehicles [ITEA Office Association, 2015]. The project was
started in July 2008 and finished in December 2011 and the core development partners are now
part of the ”Functional Mock-up Interface“ project under the Modelica Association. This project
has the purpose of developing, standardizing and promoting the FMI in the context of using models
of dynamic systems with Software/Model/Hardware-in-the-Loop simulations for CPSs in general.
FMI 1.0 was released in 2010 and is supported by 66 tools; FMI 2.0 was released in July 2014
and is supported by 19 tools [FMI development group, 2014b]. Version 1.0 was split into a Model
Exchange part and a Co-Simulation part. Version 2.0 merged these into one standard with two
parts, which enables sharing of functions relevant to both. FMI for Model Exchange and for Co-
Simulation is described below, and afterwards the remainder of this thesis will focus on FMI for
Co-Simulation.

FMI for Model Exchange: A modelling environment can generate C code of a dynamic system
in the shape of an input/output block that can be used by other modelling and simulation
tools. These models do not necessarily contain their own solvers.

15

Chapter 2. Background

FMI for Co-Simulation: The concept here is to couple two or more models that each have their
own solvers and data exchange is restricted to discrete communication points. An MA
controls the data exchange and synchronization between individual models.

The standard provides and describes C interfaces, that can be implemented based on requirements;
some functions are necessary to implement and others are optional. A component implementing
FMI is called a Functional Mock-up Unit (FMU), and an example can be seen in figure 2.4. An
FMU must also provide an FMU configuration file, which is defined in the FMI standard. Some
existing solutions have implemented FMUs with success:

• A Modelica-based FMU has been integrated into three other modeling and simulation envi-
ronments tools: GridLAB-D, TRNSYS and High Level Architecture (HLA) with promising
results [Elsheikh et al., 2013].

• The integration of an in-house tool with FMU exports from a Modelica model reached a
clear improvement of the productivity. However challenges still exists, e.g. the FMU acts
like a black box and it is difficult to identify errors in the model [Sun et al., 2011].

Figure 2.4: Schematic overview of an FMU. The blue arrows are information provided by the
FMU and the red arrows are information provided to the FMU [FMI development group, 2014a].

2.4.1 Functional Mock-up Unit Package

An FMU is packaged in a zip-file with the extension .fmu, which contains all necessary infor-
mation required to utilize the FMU. The files included in such a package are:

An FMU configuration file: The FMU configuration file contains a unique identifier for the
FMU, variable definitions such as inputs, outputs, start values and so forth. A schematic
overview can be seen in figure 2.4 and an example of the variables in a FMU configuration
file can be seen in listing 2.1. The FMU containing the configuration file shown in listing 2.1
is a model of a water tank that fills up with water when the valve is closed and drains when
it is open. It contains two variables: an output variable describing the water level, see line
five to nine, with an initial value of one, see line eight, and an input variable with the state
of the valve, see line 10-14, with an initial value of zero, see line 13.

FMU implementation: The realized FMU implementation is either a library or the source files
necessary to build the FMU. It is possible to package libraries for different platforms.

16

Functional Mock-up Unit Usage

Miscellaneous: This can be documentation, additional libraries or anything considered important
for the usage of the FMU.

XML

1 <fmiModelDescription fmiVersion="2.0" modelName="tank"
2 guid="{8c4e810f-3df3-4a00-8276-176fa3c9f001}"
3 numberOfEventIndicators="0">
4 <ModelVariables>
5 <ScalarVariable name="level" valueReference="0"
6 description="the tank level" causality="output"
7 variability="continuous" initial="approx">
8 <Real start="1" />
9 </ScalarVariable>

10 <ScalarVariable name="valve" valueReference="1"
11 description="the tank valve state" causality="input"
12 variability="discrete" >
13 <Boolean start="0" />
14 </ScalarVariable>
15 </ModelVariables>
16 </fmiModelDescription>

Listing 2.1: Example of variables in an FMU configuration file.

2.4.2 Functional Mock-up Unit Usage

There are certain steps involved in using an FMU, which are shown in a simplified version in
figure 2.5; a more detailed state machine and table describing allowed state changes and func-
tion calls can be seen in appendix A. The doStep function is invoked on the FMU with a
step size (milliseconds) > 0.0 and it is a request to the FMU to go from current time
to current time + step size, which becomes the new current time once the step is com-
pleted. The simulation is finished once the configured end time for the simulation is reached:
current time + step size > configured end time. In version 2 of the FMI standard it was
made possible and optional whether to include functions to get and set state. As it is possible to
request how much of a step an FMU was able to complete, tcomplete, the possibility of setting and
getting states makes it possible to perform a roll back to the previous state and use tcomplete as the
new step size. It can also be useful for storing the final state to be used later on to begin a new
simulation, which is mentioned as a challenge in a case study using version 1 of the FMI standard
[Sun et al., 2011].

2.5. Functional Mock-up Interface Algorithms

The previous section described a single FMU and how to use it, but to use FMI for Co-Simulation
in a broader context it is necessary with a master (see section 2.3) capable of handling multiple
FMUs. As this thesis focuses on FMI for Co-Simulation, the term Co-Simulation Orchestration

17

Chapter 2. Background

Figure 2.5: Simple Co-Simulation flow chart for a FMU.

Engine (COE) will be used instead of master below. COE is also the name of the application,
which this thesis project extended upon, and it is implemented using the algorithms described in
this section. The diagram in figure 2.6 presents an overview of a COE.

To achieve deterministic execution of FMUs Broman et al. describes algorithms for processing
FMU configuration files, COE configuration files and for the design of MAs [Broman et al., 2013].
A COE configuration file contains the configuration of a COE and information on which FMUs
to use and how they are connected, like in figure 2.3. This section will present these algorithms,
and an overview sheet to help understand the algorithms can be seen in appendix B. The MAs
presented below controls the flow in the ”Master Algorithm“ frame in figure 2.5 and requires the
FMUs to satisfy the following constraint: If an FMU can complete a step with time size h, then it
can also complete a time step with size h′, where 0.0 < h′ ≤ h. If the FMUs do not comply with
this constraint it will be difficult to find a step size that all FMUs can perform, because it will end
up as trial-and-error attempts to find a step size accepted by all FMUs.

2.5.1 Preprocessing Algorithm: Order-Variables

The Order-Variables algorithm is a preprocessing algorithm that takes place in ”Initialization“ in
figure 2.6. The algorithm is described using the formalization in appendix B, and it is useful
because it can take dependencies as inputs and generate an ordered list of variables to access by
the MA. In smaller models it is easy to generate a list of variables in the correct order, but when
models become large it is necessary to run an automated algorithm that lists the dependencies in a
format that the MA can understand. The correct order describes the order to access the variables,
such that the inputs are set before the outputs are retrieved.

18

Preprocessing Algorithm: Order-Variables

Figure 2.6: COE overview.

The algorithm requires the following inputs:

Port mapping P : U→ Y: This describes a total function (P) between the inputs (U) and their
corresponding outputs (Y) of the FMUs in a model.

Global dependency relation D = ∪c∈CDc: This is the set of all internal dependencies of all
the FMUs in the model, but not the dependencies between FMUs. C is the set of all FMU
instances in a model, and Dc above is the dependencies for a particular FMU c, where
c ∈ C. Dc ⊆ Uc ×Yc, where Uc is the set of input variables for a given FMU instance, and
Yc is the set of output variables for a given FMU c, where c ∈ C. For example to describe
component B in figure 2.3 the dependency relation would be Dc=B = {(b1, b4), (b3, b2)}.

Global set of variables XXX = U ∪Y : The set of all input and output variables in the model.

The Order-Variables algorithm is based on graph theory and represents vertices by port variables
X and an edge by e ∈ X × X, which is a variable dependency. All edges E are constructed by
E = D ∪ {(y, u)|u ∈ U ∧ P (u) = Y }. This means the dependencies in each FMU unioned with
the dependencies between FMUs determined by the port mapping function. The second and last
step is to perform a topological sort, which will result in an error if the graph is cyclic. If the graph
is cyclic the correct evaluation order cannot be derived. Bastian et al. presents an idea on how to
handle cycles by creating super simulators [Bastian et al., 2011].

19

Chapter 2. Background

2.5.2 Master Algorithm: Master-Step

The Master-Step algorithm for doing a step with rollback is conceptually simple, and a flow chart
is presented in figure 2.7. It is a prerequisite for this algorithm, that the dependency graph men-
tioned in section 2.5.1 is acyclic. The algorithm consists of two parts, the first is based on the
preprocessing algorithm ”Order-Variables“ where each input is set. The second part deals with
performing a doStep for every FMU. If all FMUs do not support the initial step size, then the
FMU that performs the shortest step will eventually decide the step size, and the other FMUs will
roll back and perform a doStep with this step size, referred to as the minimum step size. The
state is stored in step 4 in figure 2.7 instead of in step 1 because otherwise step 1 to 3 would have
to be run again in case of a rollback. It is possible to run this algorithm with a maximum of one
FMU not supporting rollback, but it comes with the following constraint: The FMU not supporting
rollback must either have the minimum step size or be equal to the minimum step size, otherwise
another FMU will decide a lower step size, and the FMU not supporting rollback cannot roll back
and therefore cannot continue.

Figure 2.7: Master-Step flow chart described in section 2.5.2.

2.5.3 Master Algorithm: Predictable Step Sizes

The Predictable Step Sizes algorithm is shown in figure 2.8 and it is a prerequisite for this algo-
rithm, that the dependency graph mentioned in section 2.5.1 is acyclic. This algorithm contains a
suggested extension to the FMI standard, namely a new function called fmi2GetMaxStepSize.
This function returns an upper bound on the step size a given FMU accepts for the next simula-
tion step. However, it cannot be expected that all FMUs will contain this ability, so it is possible
to end up with some FMUs supporting rollback (CR), some supporting the suggested extension

20

INTO-CPS

fmi2GetMaxStepSize (CP), and some legacy FMUs (CL) not supporting either. If an FMU
supports both rollback and the extension method then it belongs to the CP category. The algorithm
works with a maximum of one legacy FMU. The idea is first to invoke fmi2GetMaxStepSize
on the CP FMUs and find the minimum step size, then use this step on the CR FMUs. If any of
the FMUs belonging to category CR cannot perform a step with this size, then roll them back and
perform a step with the minimum step size, that they were able to complete. After this, perform
the step on the legacy FMU. If this fails, then rollback the CR FMUs and rerun with the legacy
FMU step. Run the CP FMUs as the last step, as these should not be able to fail. They should not
fail because it is assumed that any FMU in CP can complete any step with time less than or equal
to their maximum step size. The CR FMUs are run before the legacy FMU to prevent a failure. If
they are run in the same step and one of the CR FMUs makes a step size smaller than the legacy
FMU, then it is impossible to roll back the legacy FMU, and thereby the process will have failed.

Figure 2.8: Master-Step with predictable step sizes flow chart described in section 2.5.3.

2.6. INTO-CPS

This thesis is related to the Integrated Tool Chain for Model-Based Design of CPSs (INTO-CPS)
project [Larsen, 2015], which is an EU funded project to support multidisciplinary and collabo-
rative modeling of CPSs covering the full life cycle. The consortium behind INTO-CPS consists
of seven industrial and four academic partners, who provide knowledge, baseline technologies

21

Chapter 2. Background

and applications. The purpose is to create a chain of interlinked tools, based on FMI for Co-
Simulation, that supports development of CPSs from requirements to realization in mechanical
and electronic hardware along with software. Figure 2.9 illustrates the overall workflow and ser-
vices that should be offered by the tool chain and how they are expected to be used in the develop-
ment of CPSs. This thesis contributes to the tool responsible for performing ”MiL Co-Simulation“
and ”HiL / SiL Simulation“, which is simulations with models and hardware/software in the loop
respectively. Requirements from the industrial case studies will drive the development of a mas-
ter, that must exchange data between the models and provide interfaces to other tools. These case
studies will also be used to evaluate and demonstrate the tool chain. It is also part of the project to
provide a formal semantic basis for co-modeling.

Figure 2.9: Overall workflow and services offered by the INTO-CPS tool chain. The contribution
from this thesis is marked in red squares.

2.7. Challenges in Concurrency

When developing CPSs using Co-Simulation, it is desirable to execute the simulations as fast
as possible. The simulations are used to verify the behavior of the components in combination,
and verification can lead to the discovery of undesired behavior. The faster undesired behavior
can be identified, the faster it can be resolved. As many processors today have multiple cores
[Geer, 2005; Creeger, 2005], using concurrency may increase the performance of an application.
However, concurrency is inherent nondeterministic and therefore synchronization mechanisms,
i.e. the semaphore, have been created to ensure determinism when it is required [Dijkstra, 1965a].
This section presents a definition of concurrency and describes some challenges that applying
concurrency and using synchronization mechanisms presents. These challenges are important to
understand in order to successfully implement the usage of concurrency in the COE.

2.7.1 Definition

Concurrency is considered a property of a system, where the execution of a thread occurs concur-
rent with the execution of other threads. A thread executes sequentially, meaning that given the
same input it will go through the same sequence of actions [Dijkstra, 1971], and independently
of the execution of other threads, yet shares the same address space. Parallel Programming is
described by Gill as:

22

Race Conditions and Critical Sections

By ”Parallel Programming“ is meant the control of two or more operations which
are executed virtually simultaneously, and each of which entails following a series of
instructions where operations are executed virtually simultaneously. [Gill, 1958]

Rochester describes it more abstractly as ”The trick used is called ’multiprogramming‘ and it
involves doing two or more different jobs at once.“ [Rochester, 1955]. Parallel Programming,
Multiprogramming and concurrent programming are considered to be the same in this thesis.
Thus implementing a system using Parallel Programming leads to a system with concurrency. It
is becoming a vital part of software development as the increase of CPU performance has begun
slowing, and therefore vendors have turned to multicore processors to gain additional performance
[Creeger, 2005; Geer, 2005]. This requires software developers to implement concurrency in the
applications to take advantage of the additional cores, but it comes with certain challenges.

2.7.2 Race Conditions and Critical Sections

Even though threads run autonomously, they may be interleaving based on scheduling principles,
and from a programmers perspective it happens at random. It can also happen because of external
events, such as hardware interrupts or one thread depends on a input, while another does not.
Because of these issues it is difficult to reason about where a thread is in its sequence of actions.
This is an issue when the threads has to cooperate or use shared variables. Consider the case x
= x + 1, where x is a shared variable, which consists of three operations: Load x, add 1 to x,
store x. Listing 2.2 shows this example with two threads executing it in parallel with the result,
that after one execution by both threads x will only have been incremented with one. This is
called a race condition and is described in ”A taxonomy of race conditions“3 as when the events
of two programs conflict (e.g., one reads and the other writes the same memory location) and
their execution order depends on how the threads are scheduled [Helmbold and McDowell, 1996].
Race conditions break the deterministic behavior of applications and is not acceptable and has to
be solved for multi-threading to be of use.

Pseudocode

//Thread 1 //Thread 2
1 Load x Load x
2 Add 1 to x Add 1 to x
3 Store x Store x

Listing 2.2: Thread 1 and Thread 2 both adding 1 to x.

In the case mentioned above it is necessary to make the critical sections of the threads (x =
x + 1) mutual exclusive. Critical section is defined by Dijkstra as: ”Critical in the sense that
the processes have to be constructed in such a way, that at any moment at most one of the two
is engaged in its critical sector“ [Dijkstra, 1965a]. Dijkstra presents a solution in ”Solution of
a Problem in Concurrent Programming Control“ that works for N computers [Dijkstra, 1965b].
However, this uses busy waiting, which is the repeated check of whether a condition is true, and
it is an undesired activity. The semaphore was created to solve these problems and it is a non-
negative integer with two operations: P increases the value of the semaphore and V decreases

3More specifically, if a race affects only affect data, then it is a data race. However if the result of a race condition
causes a thread to take a different path, then it is a control race, earlier referred to as a general race [Netzer and Miller,
1992].

23

Chapter 2. Background

the value. When the semaphore is zero and a thread invokes a V operation on the semaphore the
thread is put to sleep and inserted into a queue until a different thread has made a P operation on
the semaphore.

2.7.3 Deadlock Issues

The semaphore does not solve all the challenges though, as locking mechanisms introduce new
challenges. Deadlock (called ”the Deadly Embrace“ by Dijkstra [Dijkstra, 1965a]) is described
by Hansen as: ”A deadlock is a state in which two or more processes are waiting indefinitely for
conditions which will never hold“ [Hansen, 1973]. The example in listing 2.3 presents a potential
deadlock. It makes use of a binary semaphore, which is a semaphore that can only be one or
zero. The deadlock can happen when thread 1 takes binSem1, thread 2 takes binSem2
and none of them can now continue, because thread1 waits for binSem2, which is taken
by thread 2, and thread 2 waits for binSem1, which is taken by thread 1. Livelock
was introduced by Ashcroft and describes a case where two threads acts to the response of each
other and therefore keeps passing the resource and neither gets to use it [Ashcroft, 1975]. Using
semaphores in a system can also lead to starvation, where a thread is denied access to a resource
indefinitely. Consider the allocation of a printer, where the policy is to print the smallest files first.
This can lead to larger files never getting printed, if there is a steady flow of small files added to
the print queue. Prioritizing of threads can also lead to this problem, as higher prioritized threads
can prevent lower prioritized threads from executing.

Pseudocode

//Thread 1 //Thread 2
1 p(binSem1) p(binSem2)
2 p(binSem2) p(binSem1)

Listing 2.3: Deadlock example

2.7.4 Referential Transparency

The cases mentioned above deal with shared resources and the protection of these, and some issues
are caused by missing referential transparency. Referential transparency can be described as:
”...the meaning of an expression is its value and there are no other effects, hidden or otherwise, in
any procedure for actually obtaining it“ [Bird and Wadler, 1988]. In other words, with referential
transparency it is possible to substitute an expression with its value without changing the behavior
of the program, thereby eliminating side-effects. Without referential transparency the order of
events matters, meaning that invoking the same function with the same parameters can result in
different values. This is a challenge in a concurrent context, because in most cases it is unknown
from the programmers perspective when a thread gets to run, and thereby the order of events.
Therefore, delegating a function without referential transparency to a new thread increases the
need for synchronization to force the correct flow of events. The example in listing 2.2, imagine
them both as functions, are not referential transparent, as they change a global variable. For
example, none of the methods return any value, so substituting the expression with the value does
change the behavior of the program.

24

Concurrency in Scala

2.8. Concurrency in Scala

As mentioned in chapter 1, Scala was used to implement the COE, and was therefore also used in
this thesis project. For this reason, this section introduces Scala in brief and describes how Scala
can be used to solve the challenges presented in the previous section.

Scala is an acronym for Scalable Language and was first released in 2003 [Odersky, 2006]. It
compiles to Java bytecode and is interoperable with Java. It is an object-oriented language with
functional paradigms where every value is an object and every operation is a method call. The
meaning of ”every value is an object“ is, that float and int for example are objects, as in figure C.1
in appendix C, whereas in Java they are not. This provides additional flexibility e.g. in a poly-
morphic setting. ”Every operation is a method call“ means that e.g. 1 + 2 is invoking the method
+ defined in the Int class. This provides Scala with additional functionality, whereas in Java it is
not possible to define + in a class. Scala is also a functional language where every function is a
value. As stated above, every value is an object so every function is also an object. It is therefore
possible to pass functions as parameters to higher-order functions, making it first-class citizens.

Scala provides language constructs to apply immutability, which means that the state of an object
cannot be changed after construction [Peierls et al., 2005]. Consider the process of turning a Java
class into an immutable class in listing 2.4, which can be instantiated with new Immutable-
JavaClass("Something"). In Scala this can be done much simpler using case classes as
shown in listing 2.5 and the instantiation ScalaCaseClass("Something"). Scala does not
enforce immutability, meaning that it is possible to declare variables using var, thereby making
them mutable. However it does encourage immutability, e.g. parameters are immutable by default.
It is important to mention, that immutability does not necessarily mean that data is copied every
time it is passed to a function. Scala makes use of data sharing, which is possible because the
data is immutable, so it is not necessary to copy it, but instead it can be reused [Chiusano and
Bjarnason, 2014, p. 35-37]. Immutability is an important attribute of functional programming

Java

1 public class ImmutableJavaClass
2 {
3 //The final keyword means immutableVar can only be

↪→ initialized once
4 final private String immutableVar;
5

6 public Foo(final String initialValue)
7 {
8 this.immutableVar = initialValue;
9 }

10

11 public String getVar()
12 {
13 return this.myvar;
14 }
15 }

Listing 2.4: An immutable Java class ImmutableJavaClass

25

Chapter 2. Background

Scala

1 case class ScalaCaseClass(immutableVar: String)

Listing 2.5: A case class in Scala

and it addresses the challenges mentioned in section 2.7 as described below.

Race condition: As specified in section 2.7 a race exists when two programs conflict in the sense
that one reads and another writes the same memory location. Using Scala’s immutability
principles this cannot happen with pure functions. A pure function is a function that always
evaluates to the same result given the same input values, and thereby does not depend on
any hidden information or external input, and the function does not cause any semantically
observable side-effect. Therefore, a pure function is also referential transparent. The ex-
pressions in listing 2.2 are not possible, because x is immutable and can therefore not be
changed once defined.

Locks/Deadlocks: Keeping the data immutable and using pure functions avoids the need for
locks, as it is not necessary to protect regions to prevent changes in variables.

Referential Transparency: Referential transparency is an attribute of functional programming,
however it is not limited to functional programming languages. By ensuring referential
transparency it is straight-forward to delegate a function to a different thread, because it
does not depend on anything else than its parameters and can therefore do its processing
unaware of the system around it. Keeping the data immutable also supports referential
transparency, as there are no variables to alter.

Immutability and pure functions are useful, but for a program to be useful it is often necessary
to communicate between threads, use external resources such as the file system and use other
applications, thereby introducing shared resources and impure functions. However emphasizing
immutability and purity in programming reduces the area of code susceptible to race conditions,
deadlocks and other concurrency challenges.

2.8.1 Futures

A future is a placeholder for a value, that is the result of some concurrent calculation, and it can be
accessed synchronously or asynchronously. The term future was proposed by Baker and Hewitt:

”In call-by-future, each formal parameter of a function is bound to a separate process
(called a ’future‘) dedicated to the evaluation of the corresponding argument.“ [Baker
and Hewitt, 1977]

It is similar in nature to the term promise used by Friedman and Wise in relation to lazy evaluation
of a data structure [Friedman and Wise, 1976, page 268], where a variable is bound to the promise
of a result, which will not be computed until required. Hibbard used the term eventual value
which, like futures, is used for parallel processing [Hibbard, 1977, page 1–7]. The name refers to
the real value of a parallel execution eventually becoming available, but upon initial assignment
of an eventual value to a variable it is not the real value.

26

Futures

A future has two possible states: undetermined or determined. Initially it is undetermined, and
when a value is set in the future object, it becomes determined. A future cannot contain more than
one value, and it cannot be determined more than once. Futures are considered to be first-class
citizens in the sense that they can be passed as arguments, returned from functions, and stored in
data structures [Katz and Weise, 1990]. The future construct causes the following operations to be
performed:

• When an expression is passed, a future is returned. This future is a promise to deliver a
value, once the value of the expression is resolved.

• A new thread is created to evaluate the expression.

• Once the created thread finishes evaluating the expression, the value is made available.

To shift from the general future concept to futures in Scala, it is necessary to present a few defini-
tions:

• A determined future corresponds to a completed future in Scala.

• An undetermined future corresponds to not completed future in Scala.

• The use of futures above referred to the future concept in general. From this point forth,
future will refer to futures in Scala. When the specific type/code instance of a future is
referred to, it is capitalized and written in typewriter font as such: Future.

To run several concurrent processes it can be necessary to compose futures. Scala provides a func-
tion sequence, which turns an iterable collection of future constructs into one future construct
as shown in listing 2.6; in general, the function sequence turns a subclass I of Iterable,
I[Future[A]] into Future[I[A]]. This makes it possible to for example wait till all con-
current processes are finished, as shown on line four in listing 2.6, where a blocking wait is
performed in line three.

Scala

//getFutures is a function generating an iterable
↪→ collection of Future<Integer> objects

1 Iterable<Future<Integer>> listOfFutureInts = getFutures()
2 Future<Iterable<Integer>> futureListOfInts = sequence(

↪→ listOfFutureInts)
3 Await.ready(futureListOfInts, Duration(5,TimeUnit.SECONDS))

Listing 2.6: Futures sequence

A future can result in failure or success once completed, as shown in figure 2.10. It is possi-
ble to provide callback functions for both failures and successes. Listing 2.7 shows a success
callback function, along with a completion callback function using pattern matching. A callback
function in this case is a function, that is executed once the future results in failure or success.
Pattern matching tries to match a value against several patterns, with each pattern pointing to an
expression. The expression associated with the first matching pattern will be executed.

27

Chapter 2. Background

Figure 2.10: A future is either completed or not completed; once completed the result can be a
success or failure.

Scala

1 val originalFuture = Future {getResult()}
2 originalFuture onSuccess {case result =>
3 val actionOnResult = Future {
4 performActionOnResult(result) }
5 actionOnResult onSuccess {case _ => println("Success")}
6 }

Listing 2.7: OnSuccess callbacks

The example in listing 2.7 can be rewritten using the combinator map as shown in listing 2.8. A
combinator is a higher-order function that only depends on its inputs, which includes a function.
The map combinator, given a Future and a function, produces a new Future that is com-
pleted with the value of the function applied to the value of the original successfully completed
future. This rewriting helps to avoid nesting callback functions and thereby avoiding closures,
such as the closure inside the OnSuccess callback function on line two in listing 2.7. The
actionOnResult Future is therefore available at the same scope as the rest of the code,
making it possible for other parts of an application to register callback functions. Another way

Scala

1 val originalFuture = Future {getResult()}
2 val actionOnResult = originalFuture map {result =>
3 performActionOnResult(result) }
4 actionOnResult onSuccess {case _ => println("Success")}}

Listing 2.8: Future map combinator

of composing futures is using a for-comprehension as illustrated in listing 2.9. This performs two
doSteps in parallel and validates the steps. If the steps are valid, the result is retrieved. This
example can be translated into listing 2.10. The flatMap function on line three is necessary to
avoid nested futures.

Futures require an ExecutionContext, which is responsible for executing computations. An
ExecutionContext is an abstraction for working with threads, and it can execute the compu-
tations in a new thread, a pooled thread, or in the current thread. It is possible to implement your
own threading strategy or use a predefined strategy, where it is possible to set parameters such as
pool size, which is a measure of how many threads to use.

28

Actors in Scala

Scala

1 val fmu1Future = Future {doStep(fmu1)}
2 val fmu2Future = Future {doStep(fmu2)}
3 val results = for {
4 fmu1Step <- fmu1Future
5 fmu2Step <- fmu2Future
6 if (validateSteps(fmu1Step, fmu2Step))
7 } yield getResults(fmu1Step, fmu2Step)

Listing 2.9: Futures for-comprehension

Scala

1 val fmu1Future = Future {doStep(fmu1)}
2 val fmu2Future = Future {doStep(fmu2)}
3 val results = fmu1Future flatMap => {
4 fmu1Step => fmu2Future
5 .withFilter(fmu2Step => validateSteps(fmu1Step,fmu2Step))
6 .map(fmu2Step => getResults(fmu1Step, fmu2Step))
7 }

Listing 2.10: Translation of the for-comprehension in listing 2.9

2.8.2 Actors in Scala

In 1973 the concept of the actor model was introduced in the context of artificial intelligence
[Hewitt et al., 1973]. It was introduced as an architecture to efficiently run programs with a high
degree of parallelism without the need for semaphores. Erlang, ”a language designed for writ-
ing concurrent programs that ‘run forever’“ [Armstrong, 2007], is using the actor model and has
been a popular language for developing parallel systems. Erlang’s success has also influenced
the development of the Scala Actors library: ”Our library was inspired to a large extend by Er-
lang’s elegant programming model.“ [Haller and Odersky, 2009]. Furthermore, Agha and Kim
argues, that the actor model is suitable for developing software for real-world systems, because
it is capable of handling both parallel and distributed computing [Agha and Kim, 1999]. The
difference between distributed computing and parallel computing in this context is, that parallel
computing assumes reliable communication links and that processes are ”close“ to each other, so
communication is faster and more trustworthy than in distributed computing, where the processes
are dispersed in a wide area and networked. They argue, that it is important to be able to handle
both distributed and parallel computing, because there is a trend towards a convergence of these as
network technology improves, which Haller and Odersky agrees with in the article ”Scala Actors:
Unifying thread-based and event-based programming“ [Haller and Odersky, 2009]. The actor
model provides an abstraction to concurrency and distributed systems. An actor is an autonomous
object and encapsulates the following [Agha and Kim, 1999]:

Data: Data can be encapsulated inside an actor. This also helps to control state, if it is necessary.
It is important that state is not shared, as it would complicate synchronization.

Methods: An actor can contain several methods.

29

Chapter 2. Background

Thread: To prevent synchronization issues an actor encapsulates a thread, which also makes it
autonomous.

Mailbox: An actor has an ordered mailbox, in which incoming messages are stored.

Mail address: This is a globally unique reference for an actor.

”An actor is a concurrent process that communicates with other actors by exchanging messages“
[Haller and Odersky, 2009]. The communication is asynchronous and each message is buffered in
a mailbox. This is race-free by design and therefore it is possible to avoid synchronization mech-
anisms. The processing of a message is done by the actor without interruptions, which makes it
atomic in nature, and that is vital to avoid synchronization problems as mentioned above, because
an actor might keep internal state. If messages are handled in parallel, then synchronization be-
comes necessary to prevent undesired behavior based on state, which was described in section 2.7.
The basic reactions of an actor upon receiving a message is: Send messages to other actors, spawn
new actors, or make changes to its local data [Agha and Kim, 1999].

This thesis will deal with Akka’s implementation of actors and not Scala Actors4 [Typesafe Inc,
2015], and therefore actors will refer to Akka actors from this point forth. When the specific
type/code instance of an actor is referred to, it is capitalized and written in typewriter font as such:
Actor.

One or more actors that share services such as logging, configuration etc., are referred to as actor
systems. It is possible for several actor systems with different configurations to co-exist, making
the actor model versatile, because it is possible to have different kind of actors. As actors can
spawn other actors, it is possible to create hierarchical structures. An actor spawning other actors
is called a supervisor-actor, and the spawned actors are called child-actors. It is possible for the
supervisor-actor to monitor and provide fault handling for its child-actors. The underlying details
of communication with other actors are abstracted away, such that communication with remote
actors is no different from application perspective than communication with local actors. The
configuration of actors is done via the actor system, and besides threading strategies it is also
possible to configure mailboxes, logging, deployment of remote actor systems, routing etc.

Using actors a message, msg, can be sent to an Actor instance, in this example named actor,
with ”Fire-Forget“ by writing actor ! msg. Receiving messages is based on pattern matching
as shown in listing 2.11. If there are no patterns matching a given msg, then it is send to a synthetic
actor, making receive a partial function.

Scala

1 receive : PartialFunction[Any, Unit] = {
2 case message1 => method1Action
3 case message2 => method2Action
4 ...
5 }

Listing 2.11: Receive syntax in Scala actor

It can be seen in listing 2.11 that the type of the receive method in an actor is PartialFunc-
tion[Any,Unit]. According to figure C.1 in appendix C Any means, that the receive function

4This is because the proposed Actor library for Scala was changed in Scala 2.11.0, see http://docs.
scala-lang.org/overviews/core/actors.html

30

http://docs.scala-lang.org/overviews/core/actors.html
http://docs.scala-lang.org/overviews/core/actors.html

Parallel Collections

can take any type as input, Unitmeans there is no return value, and PartialFunctionmeans
the method is not defined for all messages types . As mentioned above, the sending of messages
uses references to actors, meaning an actor can have been deleted, but the sending will still appear
as a success to the sender. Using ?, which is called ”Ask“ or ”Send-And-Receive-Future“, instead
of !5 when sending a message to an actor, results in the sender receiving a Future object, which
was described in section 2.8.1.

There is an alternative to regular actors called typed actors. Typed actors makes it possible to avoid
the PartialFunction, the Any type and by the Unit type as well. With typed actors a static
contract is used and it is therefore not necessary to define messages, as it is with pattern matching.
Using typed actors will help bridging between regular Object-Oriented code and actor systems. It
is possible to use both ”Send-And-Receive-Future“ and ”Fire-Forget“ with typed actors.

2.8.3 Parallel Collections

Scala also provides parallel collections as a simple high-level abstraction to parallel program-
ming. Many applications use functions, such as map and filter, that operates on data structures
like lists and hashtables. These functions are usually performed sequentially because they depend
on iterators. The article ”A Generic Parallel Collection Framework“ [Prokopec et al., 2011] de-
scribes an approach to parallelizing collection operations in a generic way, which was used for
implementing parallel collections in Scala. To support multiple processors the work is distributed
among processors with each processor maintaining a queue. If a processor is done with all tasks
in its queue, it can steal tasks from another processor’s queue. To schedule tasks the Java fork-join
framework is used, as shown in listing 2.12, which is a divide-and-conquer algorithm [Lea, 2000].
The fork-join framework partitions a task into smaller tasks based on a threshold, in the case of
Scala Parallel Collections: threshold = max(1, n/8P), where n is the number of elements to
process and P is the number of processors.

Pseudocode

1 Result solve(Problem problem){
2 if (problem is small)
3 directly solve problem
4 else {
5 split problem into independent parts
6 fork new subtasks to solve each part
7 join all subtasks
8 compose result from subresults
9 }}

Listing 2.12: Fork/join algorithm [Lea, 2000]. Fork starts a new parallel subtask, join causes the
current task not to proceed until the forked subtask has completed.

To parallelize a collection, the function par must be invoked on the sequential collection, as
shown in listing 2.13. After par has been invoked on the collection, the collection can be used
the usual way. The example in listing 2.13 adds 42 to every element of a list in parallel. The
value parList on line two has the type ParSeq[Int], which makes it possible to define a
threading configuration. It would also be possible to convert the collection to a par collection

5The ? and ! notation has its origin in Communicating Sequential Processes [Hoare, 1985].

31

Chapter 2. Background

on line one by writing val list = (1 to 10000).toList.par and leaving out par on
line two. It is possible to configure e.g. the thread pool size on parallel collections, but the type
must be converted first, for example using par as mentioned above. It is important to notice, that
the par function converts the collection into a parallel collection, and when e.g. a map function
is performed, the result is also a parallel collection, making future functions performed on the
collections execute concurrently. This might not be desirable, and therefore the function seq can
be used to convert the parallel collection a regular sequential collection.

Scala

1 val list = (1 to 10000).toList
2 val parList: ParSeq[Int]: list.par.map(_ + 42)

Listing 2.13: Parallelized map operation

32

Chapter3
Co-Simulation Orchestration Engine
Implementation

This chapter describes the baseline implementation of the Co-Simulation Orchestration Engine
(COE) after it was established. The baseline performs Co-Simulation using the Functional Mock-
up Interface (FMI), as described in chapter 2. Additionally, this chapter also presents the refac-
tored version of the baseline and the three concurrency implementations using the concurrency
features, that was presented in chapter 2. Later in this thesis, these implementations are tested
and evaluated to confirm or refute the hypothesis. The results of the testing and evaluation is de-
scribed in chapter 4. Based on the testing, evaluation, and knowledge gained by performing these
implementations, this chapter helps to fulfill the entirety of goal 3: Learning Scala and differ-
ent concurrency features and additionally, providing knowledge for generalizing on implementing
functionality that uses concurrency in an application for chapter 5. Because these implementa-
tions also perform Co-Simulation using FMI, this chapter also helps to achieve goal 1.

3.1. Introduction

Chapter 3 contains the realization of the Co-Simulation Orchestration Engine (COE) and how
concurrency was implemented in the application using the concepts mentioned in chapter 2. As
described in the approach in chapter 1 the following development tasks had to be performed:
Establishing a baseline, refactor the baseline and add concurrency features to the refactored base-
line. Most of the baseline implementation was done prior to this thesis, and only some minor
refactorings and bug-fixes were performed as part of this thesis project to establish a baseline, and
are therefore not described. After the baseline based on the Master Algorithms (MAs) described
in chapter 2 was established, an implementation using actors was performed without refactoring
the baseline, so it was possible to see whether the refactoring had any effect. Then the baseline
implementation was refactored to enable an optimized implementation of functionality that uses
concurrency. Next, three different implementations were performed on the refactored baseline
using the following concurrency features: parallel collections, futures, and actors.

The baseline implementation performing Co-Simulation using the Functional Mock-up Interface
(FMI) is described in section 3.2 along with details on how to run simulations. Afterwards, sec-

33

Chapter 3. Co-Simulation Orchestration Engine Implementation

tion 3.3 describes the refactoring that was performed to the baseline, in order to prepare it for
implementing concurrency. It also describes the concurrency implementations making use of fu-
tures, actors, and parallel collections as described in section 2.8.

3.2. Co-Simulation Orchestration Engine Baseline Implementation

In this section the baseline implementation of the COE is described. The implementation was
carried out by Kenneth Lausdahl, Aarhus University, with assistance from Victor Bandur, Aarhus
University, and the author of this thesis. The following section, section 3.2.1, presents how to
run simulations using the COE application, which also applies to the concurrent implementations.
Afterwards Section 3.2.2 describes how the simulation phase is performed in the baseline imple-
mentation.

3.2.1 Co-Simulation Orchestration Engine Server

The COE application runs as a web server, and will be referred to as the COE server in this section
to distinguish it from clients. The idea is to make it available for several clients and use sessions to
separate them, using the session ID as a key. This section does not contain the full server protocol
and options, but only the parts used in this thesis; for more information see the ”protocol.pdf“ file
located within the CD. The COE server invocation order consists of three HTTP requests, which
can be seen in figure 3.1.

Figure 3.1: Server requests for performing a simulation and retrieving the results.

These requests consists of POST and GET requests, where a POST request to a web server is a
request that can contain data and therefore submits data, whereas a GET request to a web server
requests data. The requests are described below:

Initialize: In this step the COE configuration file is sent as a POST request to the server via
the URL http://coe/initialize. The COE configuration file describes the entire
model, an example of a model is shown in figure 2.3 in chapter 2, meaning it contains the
Functional Mock-up Units (FMUs), the mappings between the outputs and inputs of the
FMUs, optional parameters and a MA. The structure of the COE configuration file can be
seen in listing 3.1. Once the COE configuration file has been sent to the COE server, the

34

http://coe/initialize

Simulation Phase

COE is initialized and associated with a session ID, the FMUs are loaded, and a fixed or
variable step size algorithm is chosen. The session ID is returned, so it can be used in future
requests to locate the correct COE session.

Simulate: This step is a POST request to the URL http://coe/simulate/sessionID.
The session ID is used to locate the COE session initialized in the previous step and use it
to run the simulation, which was also specified in the previous step. Among other data the
simulation execution time is returned.

Results: To get the result of a simulation it is necessary to send a GET request to the URL
http://coe/results/sessionID. This request returns the result of the simulation
in a CSV formatted string containing time, stepsize, and all outputs.

JSON

1 {
2 "fmus": ["fmuPath1","fmuPath2"],
3 "connections": {"guid.outputVariable": ["guid1.
4 inputVariable","guid2.inputVariable"]},
5 "parameters": {"par1": value, "par2": value2},
6 "algortihm": {
7 "type": "fixed-step",
8 "size": 0.1
9 }

10 }

Listing 3.1: Structure of simulation configuration file

3.2.2 Simulation Phase

The simulation initiated by a POST request to the URL http://coe/simulation/sessionID
contains several parts. A state diagram containing the overall simulation process can be seen in
figure 3.2. ModelInstance is a class in Scala representing an FMU and will be used through-
out this chapter. The steps on the figure are separate functions, meaning that multiple mappings
are performed over the collection of ModelInstances in a single simulation step. The parts of
the simulation process that are relevant for concurrency are described below:

Resolving inputs: As shown in listing 3.1 the configuration file contains the mappings from out-
put to inputs in the connections object. These are added to two Maps: Inputs =
Map[ModelInstance,

Map[ScalarVariable,
Tuple2[ModelInstance, ScalarVariable]]] and Outputs =

Map[ModelInstance, Set[ScalarVariable]]. By looking at the types it can
be seen, that ModelInstance is being used as key. Inputs are ”self-contained“ in the
sense, that it contain references to both the ModelInstance on which to set the input,
but also the ModelInstance from which to retrieve the output.

Set inputs: After the inputs have been resolved, they are set on the FMUs. To set them on the
FMUs another Map with ModelInstance as key and a reference to the actual FMU as

35

http://coe/simulate/sessionID
http://coe/results/sessionID
http://coe/simulation/sessionID

Chapter 3. Co-Simulation Orchestration Engine Implementation

Figure 3.2: The overall process of a simulation step in the baseline

value is used. The ModelInstance thereby serves as key in both outputs, inputs and
instances.

Serializing state: If the FMUs are capable of getting and setting state, then the state is serialized
and retrieved from the FMU to enable rollback. This is done after setting the inputs to avoid
having to set the inputs again in case of a rollback.

Get stepsize: The COE supports two types of steps: fixed and variable step size. In case of
variable step size it is necessary to use the function fmi2GetMaxStepSize proposed
in section 2.5.3. Using fixed step size, the step size configured in ”initialize“ described in
section 3.2.1 is used.

Do Step: The doStep method is invoked on the FMUs, which returns a status of either OK,
Error, Fatal, Discard or Pending.

Process result: Based on the status returned from performing a doStep different actions are
taken. Error and Fatal both causes the COE to terminate. Pending means the FMU
is performing the doStep asynchronously, which also causes the COE to terminate. If
an FMU returns Discard then it was unable to perform the step, however it might have
completed part of it. The FMUs returning Discard are then invoked to find out how much
of the step they were able to complete. Based on the minimum value of the step the FMUs
were able to complete, they are rolled back and rerun with this step size.

Retrieving the new state: Before running the next step, the new state after the doStep is re-
trieved. In case of the COE using variable step size the new state is validated, and based on
the validation a rollback is performed. Once the new state is retrieved, the simulation can
continue with the next step.

36

Co-Simulation Orchestration Engine Concurrency Implementation

3.3. Co-Simulation Orchestration Engine Concurrency
Implementation

There are several ways to apply concurrency to an application and this section describes the dif-
ferent implementations that were realized. The implementations are different ways of performing
some of the tasks an MA must perform, see figure 2.6 in chapter 2 and figure 3.2. This means
that the implementation of ”Initialization“ and ”Tear down“ in figure 2.6 has not been changed.
The implementations were developed separately, so an implementation that changed something
else than the MA implementation did not have an impact on the other implementations. Sec-
tion 3.3.1 describes a refactoring of the MA in the COE application, that forms the basis for the
final implementations of concurrency in the COE: parallel collections in section 3.3.2, futures in
section 3.3.3, and actors in section 3.3.4. Finally, section 3.3.5 describes an implementation, where
the baseline was minimally changed with some FMU function calls optionally being realized in
an actor.

3.3.1 Refactoring to Limit Synchronization

When implementing concurrency in the COE application it is desirable, that as much work as
possible is performed concurrently without having to synchronize between threads, as synchro-
nization takes time. Synchronize in this context means waiting for the threads to finish, so values
can be retrieved and set safely. This section describes the refactoring performed to the baseline
to better support maximizing the workload performed concurrently. Considering the baseline im-
plementation, the flow is shown in figure 3.2, in a concurrent perspective, where the functions
setAllInputs, seralizeStates, doStep, possibly rollback in processResult, and
getState are invoked concurrently for each FMU. This will contain many synchronizations
as illustrated in figure 3.3, where the COE application must wait for all threads to finish in or-
der to continue. It is also clear, that there are many mapping operations which all map over the
ModelInstances. The goal of the refactoring process is to limit the synchronization and the
mapping operations. Synchronization cannot be completely eliminated, because it is necessary to
resolve the inputs for the FMUs before every step, which requires the outputs from the FMUs, and
the simulation cannot continue until this is performed. However, it is still possible to perform a
refactoring, where more work is done between synchronizations.

The refactored implementation is shown in figure 3.4. This effectively reduced the mapping op-
erations from six, possibly seven depending on processResult, to three and synchronizations
from four, possibly five depending on processResult, to one. Previous to the refactoring,
the COE application sequentially controlled the entire flow by calculating the necessary param-
eters for the next function to invoke on the FMUs, invoking one function on the FMUs and so
on until a simulation step was performed. After the refactoring, functions in the COE application
directly related to invoking functions on the FMUs are encapsulated into one entity, and thereby
separated from the calculation of the necessary parameters. This transforms the flow to: Calculate
the necessary parameters for an entire simulation step, invoke the encapsulated and separated en-
tity, which performs the entire simulation step. This encapsulated entity will be referred to as the
concurrent entity, and represents the frame in figure 3.4. By having this functionality separated
and encapsulated, it is straightforward to wrap it in a thread, that performs more work. This is
related to immutability and referential transparency, which was described in section 2.8. However
it comes with a trade off: In case one or more FMUs fail in the doStep, the state would not be
retrieved previous to the refactoring. After the refactoring, the state of the FMUs not failing in the

37

Chapter 3. Co-Simulation Orchestration Engine Implementation

Figure 3.3: The overall process of a simulation step in the baseline implementation with synchro-
nization.

Figure 3.4: The overall process of a simulation step in the concurrent implementation with syn-
chronization.

doStep process would still be retrieved, because the entities responsible for the FMU simulation
step are unaware of the state of other entities until the synchronization phase. This might lead to
unnecessary retrieval of states.

As mentioned in section 3.2.2, the COE application contains a Map called instances with
the ModelInstances as keys and their related FMUs as values. This is used for invok-
ing concurrent entities as in listing 3.2, where a concurrent entity is wrapped in the function
doSimulationStep.

38

Implementation using Parallel Collections

Scala

1 val doStepResults = instances.map {
2 case (mi, si) => {
3 doSimulationStep(mi, si, currentCommunicationPoint,

↪→ communicationStepSize, resolvedInputs.get(mi),rb)
4 }}

Listing 3.2: Iterating over instances and invoking concurrent entities with the function
doSimulationStep.

3.3.2 Implementation using Parallel Collections

This section describes how parallel collections were used to implement concurrency in the COE.
As described in section 2.8.3, parallel collections are a simple high-level abstraction to parallel
programming. As the refactoring described in section 3.3.1 separated and encapsulated the func-
tionality to be wrapped in a thread, it was a conceptually simple task to take advantage of parallel
collections. As a collection is converted to a parallel collection by adding par, which was de-
scribed in section 2.8.3, it is possibly to make the implementation in listing 3.2 concurrent by
adding par, as shown in listing 3.3. When performing functions on the resulting parallel collec-

Scala

1 val doStepResults = instances.par.map {
2 case (mi, si) => {
3 doSimulationStep(mi, si, currentCommunicationPoint,

↪→ communicationStepSize, resolvedInputs.get(mi),rb)
4 }}

Listing 3.3: Using parallel collections to concurrently invoke the concurrent entities.

tion, it must be determined whether these functions should be run in parallel or not. As mentioned
in section 2.8.3, the result of a function performed on a parallel collection is also a parallel col-
lection. The function seq is therefore used on the doStepResults value to convert it to a
sequential collection for further processing.

3.3.3 Implementation using Futures

In this section it is described how futures were used to implement concurrency in the refactored
COE application described in section 3.3.1. Recall, that a future is a placeholder for a value, that
is the result of some concurrent calculation and can be accessed synchronously or asynchronously
as described in section 2.8.1. Invoking the concurrent entities using futures is shown in listing 3.4,
which also makes use of instances, similar to the implementation using parallel collections in
section 3.3.2.

It is necessary to access all the FMUs for processing the results, getting the next step size and
resolving inputs as illustrated by the synchronization symbol in figure 3.4, and therefore the
futures are accessed synchronously. The function Await.result on line five is similar to
Await.ready described in section 2.8.1, but besides waiting for the future to be completed it

39

Chapter 3. Co-Simulation Orchestration Engine Implementation

Scala

1 val doStepResultsFuture = instances.map{
2 case (mi, si) => { Future {
3 doSimulationStep(mi, si, currentCommunicationPoint,

↪→ communicationStepSize, resolvedInputs.get(mi),rb)
4 }}}
5 val doStepResults = Await.result(Future.sequence(

↪→ doStepResultsFuture), Duration(5, TimeUnit.SECONDS))

Listing 3.4: Using Futures to concurrently invoke the concurrent entities.

also retrieves the result. The Await.result function takes a Future[sometype] type, and
since the type of doStepResultsFuture is Iterable[Future[doSimulationStep-
Result]], it is necessary to transform the type into Future[Iterable[doSimulation-
StepResult]]. This conversion is made possible by the function Future.sequence on
line five, and thereby the doStepResults value contain the results of the simulation step in-
voked on all the concurrent entities and can be processed synchronously. The last part of the fu-
ture implementation is adding an ExecutionContext responsible for controlling the threading
strategy, as it is required for using futures. This implementation uses the default Execution-
Context by import ExecutionContext.Implicits.global.

3.3.4 Implementation using Actors

The implementation of the refactored COE application described in section 3.3.1 using actors is
described in this section. An actor, described in section 2.8.2, is an autonomous object encapsulat-
ing data, methods, a mailbox and has an address. The usage of actors requires more changes than
the usage of parallel collections and futures. The first step was to create an actor system, which is
used to create and instantiate Actor objects as shown in listing 3.5 in line 1.

Scala

1 val system = ActorSystem()
2 val instances = ModelInstances.map{ mi => mi ->
3 val actor: FmuActor = TypedActor(system).typedActorOf(

↪→ TypedProps(classOf[FmuActor], new FmuActorImpl(mi,
4 comp, instanceConfig)))
5 new FmiSimulationInstance2(comp, instanceConfig, actor)
6 }.toMap

Listing 3.5: Using Futures to concurrently invoke the concurrent entities.

Recall from sections 3.3.1 to 3.3.3 that the instances value was used as a starting point for
concurrency. As an actor exists throughout the entire simulation and it is desirable to keep as much
of the implementation performed in the refactoring as possible to increase reuse, the contents of
the instances value was changed, which can be seen in line three to six in listing 3.5. Typed
actors are used in the implementation in order to have a static interface, which makes for better
type checking as described in section 2.8.2. FmuActor is the trait, similar to an interface, for the

40

Actor Implementation: Multiple Actor Invocations

actor and can be seen in appendix D.

Actors encapsulate a thread and methods, and therefore the function doSimulationStep used
to invoke the concurrent entities was moved to the Actor objects. Because of this and with the
change to the instances value, the concurrent invocation of the simulation step now looks as
the implementation shown in listing 3.6. The type of actor invocation used in this implementa-

Scala

1 val doStepResultsActor = instances.map {
2 case (mi, si) => {
3 si.actor.doSimulationStep(mi, si,

↪→ currentCommunicationPoint, communicationStepSize,
↪→ resolvedInputs.get(mi), rb)

4 }}
5 val doStepResults = Await.result(Future.sequence(

↪→ doStepResultsActor), Duration(5, TimeUnit.SECONDS))

Listing 3.6: Using Futures to concurrently invoke the concurrent entities.

tion is ”Send-And-Receive-Future“, which means the function doSimulationStep returns a
Future. Therefore it is possible to wait for the actor to finish the concurrent simulation step in
the same way, as in the implementation using futures described in section 3.3.3. Because of this
similarity, line five in listing 3.6 was already described in section 3.3.3 and is not described here.

3.3.5 Actor Implementation: Multiple Actor Invocations

The multiple actor invocations implementation is based on initial testing of implementing concur-
rency using actors, described in section 2.8.2. The structure is similar to the baseline simulation
flow in figure 3.2, but with the difference that every FMU is also wrapped in an actor. This has
changed the process of a simulation step from the baseline flow in figure 3.2 to the flow shown in
figure 3.5. The setup of actors in this implementation is the same as described in section 3.3.4 and
shown in listing 3.5 The default actor configuration was used, and the Actor trait in listing D.1
shows the functions encapsulated in the actor. In this implementation it is possible to pass argu-
ments to the COE server application upon launching it and these arguments control the level of
concurrency and thereby the invocation of the FmuActor functions in listing D.1. The arguments
and related functions are described below:

NONE/nothing: If NONE is passed or no argument is passed to the COE application then the COE
does not make any use of concurrency and executes similar to the baseline implementation.

GETSTATE: If GETSTATE is passed as an argument, the correct get-functions are executed on
the FMUs concurrently. This is performed in the getState function of the actor.

SETVARIABLES: If SETVARIABLES is passed as an argument, the correct set-functions are
executed on the FMUs concurrently. This is performed in the SetInputVariables of
the actor.

DOSTEP: If DOSTEP is passed as an argument, the doStep function is executed on the FMUs
concurrently. This is performed in the doStep function of the actor.

41

Chapter 3. Co-Simulation Orchestration Engine Implementation

Figure 3.5: Simulation step flow in the multiple actor invocations implementation. The red line
indicates an alternative flow, where setAllInputs and doStep are merged into a single func-
tion call, doStep2, to the actor.

Scala

1 trait FmuActor {
2 def doStep2(currentCommunicationPoint: Double,

↪→ communicationStepSize: Double,
↪→ noSetFMUStatePriorToCurrentPoint:

3 Boolean, inputState: InputState): Future[Fmi2Status]
4 def doStep(currentCommunicationPoint: Double,

↪→ communicationStepSize: Double,
↪→ noSetFMUStatePriorToCurrentPoint:

5 Boolean): Future[Fmi2Status]
6 def setInputVariables(inputState: InputState): Future[

↪→ Unit]
7 def getState(getDerivatives: Boolean = true): Future[

↪→ FmuActorState]
8 }

Listing 3.7: FmuActor trait

DOSTEPSETVARIABLES: If DOSTEPSETVARIABLES is passed as an argument, the functions
DOSTEP and SETVARIABLES are executed on the FMUs concurrently. This is performed
in the doStep2 function of the actor, and is represented by the red line in figure 3.5.

ALL: If ALL is passed as an argument, it is the same as passing GETSTATE, DOSTEP, and

42

Actor Implementation: Multiple Actor Invocations

SETVARIABLES.

It is possible to pass any subset of GETSTATE,DOSTEP,SETVARIABLES, but it will perform as
separate invocations of the actor functions. The change of behavior is based on arguments and han-
dled using conditionals as exemplified in listing 3.8. This shows, that if DOSTEPSETVARIABLES
is set, then an entirely different implementation no shown in the listing is used, if ALL or SETVARIABLES
is set, then the Actor is used, and otherwise the baseline implementation is used.

Scala

1 def setAllInputs(instances: Map[ModelInstance,
↪→ FmiSimulationInstance2],

2 resolvedInputs: Map[ModelInstance, InputState]): Unit = {
3 if (concurrent.contains(concurrentEnum.DOSTEPSETVARIABLES

↪→) == false) {
4 if (concurrent.contains(concurrentEnum.ALL) ||

↪→ concurrent.contains(concurrentEnum.SETVARIABLES))
5 {
6 val futures: Iterable[Future[Unit]] = resolvedInputs.

↪→ map { case (modelInstance, inputState) =>
7 instances(modelInstance).actor.setInputVariables(

↪→ inputState)
8 }
9 Await.ready(Future.sequence(futures), Duration(5,

↪→ TimeUnit.SECONDS))
10 } else {

//baseline implementation
11 }
12 }

Listing 3.8: Example of argument processing in setAllInputs.

43

Chapter4
Evaluation of Implementations

This chapter describes how the concurrent implementations described in chapter 3 are tested
and evaluated. The three different concurrency implementations were tested versus the baseline
and each other. Several tests were implemented and compared to provide results for analyzing
the implementations. To either confirm or refute the hypothesis, the performance results were
compared and analyzed. Besides comparing the implementations based on performance, they
were also compared on other quality attributes. This can be useful for future work, which is
described in chapter 6. Furthermore, the testing and evaluation results are used to generalize the
usage of concurrency in the Co-Simulation Orchestration Engine (COE) presented in chapter 5.
Therefore, this chapter also helps to accomplish goal 3, where a part of the goal was generalizing
on implementing functionality that uses concurrency in an existing application.

4.1. Introduction

This chapter presents the evaluation and verification of the concurrent implementations of the
COE described in chapter 3. As part of the evaluation and verification was carried out by auto-
matic testing, it was useful to define principles, that the testing should adhere to in order to get
usable results. To enable automatic testing a framework was developed. This enabled testing of
different concurrent implementations, evaluation of performance, and verification of consistency
between the baseline simulation results and the concurrent simulation results. Some automated
tests were already implemented prior to this thesis project, and these were run throughout the
development process to verify the concurrent implementation provides the same results and the
baseline implementation.

Besides using the test framework for testing performance and correctness of the implementations,
other quality attributes can be useful in determining the concurrency strategy. Quality attributes
are part of the non functional requirements to an application or framework. Therefore, the three
concurrency features: Parallel collections, futures, and actors were evaluated based on other qual-
ity attributes as well. To use the results of the tests and evaluations, it was necessary to analyze
them, to be able to generalize on the usage of concurrency in the COE and choose the best con-
currency strategies.

The following section describes principles, that the testing should adhere to in order to get usable

45

Chapter 4. Evaluation of Implementations

results. Next, the test framework that enables automatic testing is described in section 4.3 and
the tests are described in section 4.4. Because the testing strategy was not ideal, it is reflected on
in section 4.5. Afterwards, the additional quality attributes and a rating of these are described in
section 4.6. The results of the automatic tests and the evaluation of quality attributes are described
in section 4.7 and finally, section 4.8 presents the analysis of the results.

4.2. Principles

Certain principles should be adhered to when testing to get usable results, and these principles are
presented in this section. The approach to testing in this thesis project focuses on getting usable
results without implementing or using extensive test tools and avoiding large test specifications,
as testing is not the primary goal. However, to ensure usable results in the context of this thesis
some principles should be adhered to:

Test environment: A test consisting of multiple simulations should performed on the same hard-
ware with approximately the same processes running during the test. The reason for stating
”approximately the same processes“ is, that the tests were run in a Windows environment,
where it is not possible to completely control the running processes from the Operating
System. All processes irrelevant to the execution of tests should be disabled during the
tests.

Test functions: To limit inconsistencies in the processes running between simulations, each test
should be implemented as a single test function. This means, that a test performing sim-
ulations on the baseline and the three concurrent implementations should be implemented
in one test function to avoid undesirable interaction required to start other tests. To further
ensure usable results the COE application should be restarted for every simulation.

Correct simulation results: The baseline is considered to be an oracle and it is assumed that it
calculates the ”correct“ simulation results. It should be verified that the concurrent imple-
mentations calculate the same simulation results as the baseline implementation.

Automation: The tests should be automated so they are easy to replicate and less prone to manual
errors. This will also make them usable in the future development of the COE.

Modifying Functional Mock-up Units (FMUs): If an FMU is modified it should be carried out
in such a way that it has minimal impact on the execution time of a simulation.

4.3. Test Framework

This section introduces the test framework, see figure 4.1, that was developed to enable testing
of the different COE implementations. The purpose of the test framework was to support per-
formance testing and verification of consistency between the results of a baseline simulation and
the results of any of the concurrent simulations. Because the baseline and each of the concurrent
implementations were developed separately, it was necessary to provide support for launching dif-
ferent executables. As mentioned in section 3.2.1, the COE application runs as a web server and

46

Test Framework

it was therefore also necessary to provide support for the HTTP requests: initialize, simulate, and
results. These combined provided the basis for testing simulations on COE executables. The code
for the test framework is shown in appendix E along with an example of a test. The classes of the
test framework in figure 4.1 are described below:

IOThreadHandler: The purpose of this class is to print the output from the COE application. In
general, this class encapsulates a thread that prints the output of a process.

CoeLauncher: The purpose of this class is to launch an executable with an implementation of
the COE, possibly with arguments, and return the process to be used by the IOThreadHan-
dler described above. It general, this class launches an exectuable Jar file with the given
arguments and returns the process.

ServerRequester: The purpose of this class is to provide support for the necessary HTTP re-
quests: initialize, simulate, and results, that are required to perform a simulation and retrieve
the results. This is done with POST and GET requests, described in section 3.2.1, tailored
specifically for this COE.

SimulationResults: The purpose of this class is to store execution times, simulation results, and
whether the simulation results matches the baseline results.

TestRunner: The purpose of this class is to orchestrate an entire simulation by using the classes
mentioned above. It is possible to pass the result of a baseline simulation, that will be com-
pared to the result of the simulation being performed. As the name RunTestsForJar
suggests, this function performs testing using a single executable; however each argument
passed will lead to a separate simulation, where the argument is passed to the COE appli-
cation upon launch. Thus passing two arguments will lead to two simulations, one being
performed using the COE application launched with the first argument and another using
the COE application launched with the second argument.

Figure 4.1: Class diagram of the test framework

To aid in the development of test scenarios, a shell script was created to copy an FMUs, modify
the configuration file of the copied FMU, and modify the COE configuration file to make use of
the additional FMUs. The shell script can be seen in appendix F, and to better understand the
script the structure of an FMU package is described in section 2.4.1. In the case where the initial
simulation setup looks as in figure 4.2 and the script is run to add two additional integrate FMUs
chained to the original integrate FMU, it will result in the setup in listing 4.3.

47

Chapter 4. Evaluation of Implementations

Figure 4.2: Example of two connected FMUs.

Figure 4.3: Example of four connected and chained FMUs.

4.4. Performance Tests

This section presents the tests used for evaluating the performance of the baseline and the dif-
ferent concurrency implementations along with validating, that the concurrent implementations
calculate the same simulation results as the baseline implementation. The tests described in this
section makes use of the framework and shell script described in section 4.3 and will adhere to the
principles described in section 4.2. More specifically, each test will be implemented in a single test
function, each simulation will compare the results from the baseline simulation with the results of
the concurrent simulations, and all processes irrelevant to running the test will be disabled.

The basic test flow of a simulation can be seen in figure 4.4. This shows how a given simulation
is performed five times using the baseline implementation of the COE and then averaging the ex-
ecution times. Next, the given simulation is run five times for each concurrent implementation
and then averaging the execution time. Lastly, the simulation results are compared and the execu-
tion times are stored. The COE application is restarted between every simulation, as suggested in
section 4.2.

First section 4.4.1 tests the implementations using non-modified heating, ventilation, and air con-
ditioning (HVAC) FMUs to illustrate the performance of the implementations in a real simulation.
Afterwards, the test described in section 4.4.2 uses modified FMUs in order to evaluate the perfor-
mance in a more competent manner. This is done to get a rough estimate as to when the concurrent
implementations perform a simulation faster than the baseline implementation and provide a basis
for further testing.

4.4.1 Heating, Ventilation, and Air Conditioning Tests

The HVAC tests will be used to investigate the performance of the baseline implementation and
the concurrent implementations in a simulation using non-modified FMUs. The simulation uses
five FMUs, one controller FMU and four Fan Coil Unit (FCU) FMUs, as shown in figure 4.5. The
test follows the test flow shown in figure 4.4. The FMUs are described below:

Controller: The controller FMU can control the water flow into the FCU FMU via the valve
actuator and the state of the damper via the damper actuator. It has an input to receive the

48

Heating, Ventilation, and Air Conditioning Tests

Figure 4.4: Basic test flow of a simulation using baseline and concurrent implementations.

temperature of the return air from the FCU FMUs.

FCU: The FCU FMU receives input on how to set the state of the valve that controls the water
flow and the state of the damper. It outputs the temperate of the return air to the controller
FMU.

Three tests using these FMUs will be performed to see how concurrency behaves in different
scenarios. Each of the simulations in the tests has an end time of 1000 seconds and uses one
controller FMU and four FCU FMUs. The tests are described below:

HVAC Test1 (1 Con, 4 FCU, 0.1 step): The purpose of this test is too see, how the implementa-
tions perform with a small step size and with real FMUs.

Step size: 0.1 seconds.

Implementations used: Baseline described in section 3.2, implementation using parallel
collections described in section 3.3.2, implementation using futures described in sec-
tion 3.3.3, and implementation using actors described in section 3.3.4.

HVAC Test2 (1 Con, 4 FCU, 20 step): The purpose of this test is too see, how the implementa-
tions perform with a large step size and with real FMUs.

Step size: 20 seconds.

Implementations used: Baseline, implementation using parallel collections, implementa-
tion using futures, and implementation using actors.

HVAC Test3 (1 Con, 4 FCU, 0.1 step, MultipleActorInvocations): The purpose of this test is
to see how the implementations perform before and after the refactoring.

Step size: 0.1 seconds.

49

Chapter 4. Evaluation of Implementations

Implementations used: Multiple actor invocations with the argument ALL described in
section 3.3.5, multiple actor invocations with the argument DOSTEP, and implemen-
tation using actors.

Figure 4.5: HVAC simulation with one controller FMU and four FCU FMUs.

4.4.2 Sine Integrate Wait Tests

These tests will be used to investigate the performance of the baseline implementation and the con-
current implementations by using modified FMUs, which will be elaborated on the section 4.4.3.
The FMUs used in these tests are the following:

Sine The sine FMU generates a sine wave with amplitude and angular frequency of the wave
set to one as shown in figure 4.6. It is possible to modify the amplitude and the angular
frequency in the configuration file.

Integrate The integrate FMU integrates the sine values, as shown in figure 4.6.

Modified Integrate The modified integrate FMU integrates the sine values, as shown in fig-
ure 4.6. It differs from the integrate FMU above, as it has been modified to read a value
from a file representing wait time, and wait with the duration of the wait time in the doStep
function. The reading of a value from a file is performed in a function, that is invoked during
the initialization of an FMU and not during the simulation, and therefore it does not affect
the execution time. Figure 4.7 shows how the different wait times are implemented in the
tests that uses modified FMU.

Several tests using these FMUs will be performed to see how concurrency behaves in different
scenarios. Each of the simulations in the tests has an end time of 100 seconds and a step size of
0.1 seconds. The tests are described below:

50

Sine Integrate Wait Tests

SI Test1 (1 Sine, 1 Integrate): The purpose of this test is to see how the implementations per-
form with one increasingly demanding FMU and one non-demanding FMU.

FMUs: 1 sine FMU and 1 modified integrate FMU as illustrated in figure 4.2.

Wait time: The wait time values will start at zero milliseconds and stop at one millisecond
with 0.1 millisecond intervals.

Implementations used: Baseline described in section 3.2, implementation using parallel
collections described in section 3.3.2, implementation using futures described in sec-
tion 3.3.3, and implementation using actors described in section 3.3.4.

SI Test2 (1 Sine, 5 Mod-Integrate): The purpose of this test is to see how the implementations
perform with five increasingly demanding FMUs and one non-demanding FMU.

FMUs: 1 sine FMU and 5 modified integrate FMUs chained as illustrated in figure 4.3.

Wait time: The wait time values will start at zero milliseconds and stop at one millisecond
with 0.1 millisecond intervals.

Implementations used: Baseline, implementation using parallel collections, implementa-
tion using futures, and implementation using actors.

SI Test3 (1 Sine, 100 Integrate): The purpose of this test is to see how the implementations per-
form with many non-demanding FMUs.

FMUs: 1 sine FMU and 100 integrate FMUs chained as illustrated in figure 4.3.

Implementations used: Baseline, implementation using parallel collections, implementa-
tion using futures, and implementation using actors.

SI Test4 (1 Sine, 100 Integrate, MultipleActorInvocations): The purpose of this test is to see
how the implementations perform before and after the refactoring.

FMUs: 1 sine FMU and 100 integrate FMUs chained as illustrated in figure 4.3.

Implementations used: Multiple actor invocations with the argument ALL described in
section 3.3.5, multiple actor invocations with the argument DOSTEP, and implemen-
tation using actors.

Figure 4.6: Sine FMU and integrate FMU simulation results.

51

Chapter 4. Evaluation of Implementations

Figure 4.7: Test flow of a simulation using baseline and concurrent implementations with wait
FMUs, see section 4.4.2.

4.4.3 Modified FMU

This section describes how an FMU was modified to wait for a certain amount of time. A time to
wait is read from a file in the function fmiInstantiate, which is invoked during the loading of
FMUs in the initialization phase of a simulation described in section 3.2.1. This wait time is used
in the doStep function of the FMU using the function usleep2 shown in figure 4.1. This makes
use of QueryPerformanceCounterwhich is based on a hardware counter and recommended
by Microsoft to use when high-resolution time stamps are required with microsecond precision
[Microsoft, 2015]. The function call in line three in listing 4.1 gets the current number of ticks
performed since Windows was started and the function call on line four gets the number of ticks
per second. In the do-while loop a new number of ticks performed is retrieved, and these three
pieces of information can be used to measure the elapsed time. The frequency is divided by
1000000 to get the frequency in microseconds, which is then multiplied by the wait time read
from a file and compared to the elapsed time. The argument to the function therefore has to be
specified in microseconds. The function uses busy-waiting, but it is acceptable in this case.

C

1 void uSleep2(int waitTime) {
2 __int64 time1 = 0, time2 = 0, frequency = 0;
3 QueryPerformanceCounter((LARGE_INTEGER *) &time1);
4 QueryPerformanceFrequency((LARGE_INTEGER *)&frequency);
5 do {
6 QueryPerformanceCounter((LARGE_INTEGER *) &time2);
7 }while((time2-time1) < ((frequency/1000000) * waitTime));
8 }

Listing 4.1: Wait function in FMU

52

Reflection on Testing

The function usleep was used initially, as it is part of the library unistd, which was already
included in the FMU. usleep suspends the execution of a thread for at least the number of
microseconds passed to the function [die.net, 2015]. However initial testing with one sine FMU
and one modified FMU showed, that this did not have any effect until 1000 microseconds as it can
be seen in table 4.1.

Sleep Baseline Future Par Actor
0.0 64 142 217 112

100.0 61 124 211 130
200.0 59 126 214 117
300.0 68 135 221 117
400.0 60 119 208 108
500.0 62 122 215 116
600.0 82 158 284 125
700.0 73 135 233 111
800.0 60 139 208 104
900.0 59 117 210 114
1000.0 1926 1973 2105 1947

Table 4.1: Results in milliseconds from using usleep

4.5. Reflection on Testing

The test framework supports automated testing of simulations in terms of launching the COE,
running simulations, reporting simulation results, and reporting simulation execution times. The
test framework performs the testing by invoking the COE as it would be invoked in a real use
scenario and therefore have minimal impact on the COE execution. Therefore, the test framework
provides a foundation for testing the ongoing development of the COE.

Even though the tests are automated, they have to be started manually, and they are run on a
local computer with a minimum of other processes running. Thereby the state of the computer is
confined to running only the test related processes and the necessary Operating System processes,
which blocks the use of the computer for other activities. This makes it a time-consuming process
to perform testing, which is not desirable. The results are reported as csv and JSON files and every
test creates at least two data files. Therefore, to take advantage of the data created by executing
a test several times involves manually opening and putting the data together, because new files
are generated in every test. This is also time-consuming and it makes reasoning about the results
increasingly difficult. An alternative is to setup a server to run all the tests on a regular basis and
store the results in a database. This would make it a single time-consuming process to set up the
server and therefore not a continuing process of blocking the local computer, and it would make it
easier to generate a large data set, which would make reasoning easier and provide better results.
This was not established because of the time constraints of this thesis project.

It was difficult to find FMUs for testing, and it was difficult to find tools that support exporting
FMUs that perform long-lasting computations. This made it necessary to create the modified FMU
as described in section 4.4.3 to get an idea of the performance of the implementations using con-
currency. The modified FMU performs busy-waiting in the doStep function, which represents

53

Chapter 4. Evaluation of Implementations

an idealized situation. It is idealized because the additional computations does not depend on the
inputs, step size, state of the FMU etc. The HVAC tests uses real FMUs, which illustrates that
using concurrency can increase the performance of the COE without altering the FMUs. How-
ever, these tests are also idealized along with the Sine Integrate tests described in section 4.4.2
because of the way that correctness is established. The correctness depends on whether the base-
line computes the same result for the same simulation as mentioned in section 4.2. This makes it
possible to alter the step size, add additional FMUs to a simulation and still get the correct results.
However, these results might not be correct, if the original configuration of the simulation was to
be run with e.g. a lower or higher step size, or it was expected that the stability of the FMUs was
evaluated during the simulation and so forth.

4.6. Additional Quality Attributes

In order to choose the best suited concurrency strategy for a COE it is necessary to evaluate
more quality attributes than performance, which was described in section 4.4. A quality attribute
can be used as a nonfunctional requirement to an application, or in the context of this thesis an
evaluation parameter to be used in evaluating the different concurrent implementations and the
different concurrent strategies: parallel collections, futures and actors introduced in section 2.8.
The additional quality attributes that will be used the evaluate the strategies in relation to the COE
are described below:

Composability: The purpose of the composability attribute is to evaluate the possibility of com-
bining elements in different ways to satisfy the necessary requirements. As described in
section 2.3 FMUs can have different step sizes and rollbacks can be necessary. This can
lead to complicated scenarioes, where composability becomes important.

Simplicity: The purpose of the simplicity attribute is to evaluate the implementation effort re-
quired to implement a given concurrency strategy, and how easy it is to understand the
implementation. It should be clear what the purpose of an implementation is, and the im-
plementation should be simple, as stated by the KISS (Keep It Simple, Stupid) principle.
Simplicity of the concurrent implementations will be evaluated by considering whether it
is clear why it is necessary to invoke certain functions, what they do, and how they can be
used. As the COE should be able to run simulations using many different FMUs and config-
urations along with being part of a tool chain as described in section 2.6 it can be expected
to change. If it is simple, this change will be easier to implement.

Configurability: The purpose of the configurability attribute is to evaluate, how much the frame-
works can be configured to suite different requirements without having to implement new
functionality. As it is impossible to know which kind of simulations the COE will be used
for, one solution does not necessarily fit all. However, if a solution is configurable, it might
suit more needs and thereby preventing the need for additional implementation, or it can be
configured to perform better.

Scalability: The purpose of the scalability attribute is to evaluate, how the frameworks support
increased work load. The evaluation will look at how the frameworks support splitting the
workload over additional hardware, e.g. networked computers. As the COE is running as a
web server, described in section 3.2.1, scalability is an important attribute.

54

Results

Documentation: The purpose of the documentation attribute is to evaluate, how well the frame-
works are documented. As the concurrency strategy can have a significant effect on the
execution time and the COE can be expected to run on different systems it is important, that
the frameworks behave as expected, and that the usage of the frameworks is optimized. To
achieve this, it is necessary with good documentation.

The frameworks will be given a rating of -, +, or ++ for each attribute along with a description of
why the given rating was achieved. The ratings are described below in table 4.2.

Property Rating
- + ++

Composability No composability Limited composability Easy composability

Simplicity
Extensive initializa-
tion and complicated
usage

Some initialization
and moderate usage

Basic initialization
and easy usage

Configurability Not configurable
Moderately config-
urable

Very configurable

Scalability
No functionality for
scaling

Some scaling func-
tionality

Extensive scaling
functionality

Documentation
Limited documenta-
tion

Basic documentation
Well documented and
many resources

Performance Slowest In the middle Fastest

Table 4.2: Rating of quality attributes. Performance is relative to the three implementations.

4.7. Results

This section contains the results of the tests described in section 4.4 and the quality attributes
described in section 4.6. Section 4.7.1 contains the results for the HVAC test and section 4.7.2
contains the results for the Sine Integrate Wait Tests.

The results of the performance tests are presented in tables. The unit is milliseconds, and the
meaning of the table heads are described below:

Baseline: This is the execution time of the baseline implementation.

Future: This is the execution time of the implementation using futures.

Par: This is the execution time of the implementation using parallel collections.

Actor: This is the execution time of the implementation using actors.

ActorAll: This is the execution time of the implementation multiple Actor Invocation with the
argument ALL.

ActorDoStep: This is the execution time of the implementation multiple Actor Invocation with
the argument DOSTEP.

55

Chapter 4. Evaluation of Implementations

(NAME)Diff This is the execution time of the leftmost implementation in the table subtracted
with the execution time of (NAME) in the table.

Wait This is the wait time.

4.7.1 HVAC Tests

Several tests were performed using the HVAC controller FMU and the HVAC FCU FMU to see
how the implementations perform with different wait times and with a different number of FMUs.
The test cases are described in section 4.4.1 and the results are shown below.

HVAC Test1 (1 Con, 4 FCU, 0.1 step): The results from this test can be seen in table 4.3. Ranked
in order of lowest execution time: Implementation using futures, implementation using ac-
tors, baseline implementation, and implementation using parallel collections.

HVAC Test2 (1 Con, 4 FCU, 20 step): The results from this test can be seen in table 4.4. Ranked
in order of lowest execution time: Implementation using futures, implementation using
actors, implementation using parallel collections, and baseline implementation.

HVAC Test3 (1 Con, 4 FCU, 0.1 step, MultipleActorInvocations): The results from this test can
be seen in table 4.5. Ranked in order of lowest execution time: Implementation using ac-
tors, the implementation multiple actor invocation with the argument DOSTEP, and then the
implementation multiple actor invocation with the argument ALL.

Baseline Future Par Actor FutureDiff ParDiff ActorDiff
31256 29822 31980 30919 1434 -724 337

Table 4.3: Results in milliseconds from HVAC Test1 (1 Con, 4 FCU, 0.1 step) described in sec-
tion 4.7.1.

Baseline Future Par Actor FutureDiff ParDiff ActorDIff
26591 23951 24284 24263 2640 2307 2328

Table 4.4: Results in milliseconds from HVAC Test2 (1 Con, 4 FCU, 20 step) described in sec-
tion 4.7.1.

Actor ActorAll ActorDoStep ActorAllDiff ActorDoStepDiff
30407 31709 30968 -1302 -561

Table 4.5: Results in milliseconds from HVAC Test3 (1 Con, 4 FCU, 0.1 step, MultipleActorIn-
vocations) described in section 4.7.1.

4.7.2 Sine Integrate Wait Tests

Several tests were performed using the sine FMU, the integrate FMU, and the modified integrate
FMU to see how the implementations perform with different wait times and with a different num-
ber of FMUs. The test cases are described in section 4.4.2 and the results are shown below.

56

Sine Integrate Wait Tests

SI Test1 (1 Sine, 1 Integrate): The results from this test can be seen in table 4.6. Ranked in
order of lowest execution time: Baseline implementation, implementation using futures,
implementation using actors, and then the implementation using parallel collections.

SI Test2 (1 Sine, 5 Mod-Integrate): The results from this test can be seen in table 4.7. The base-
line was faster than any of the concurrent implementations with wait time set to zero. With
wait times above zero and ranked in order of lowest execution time: Implementation us-
ing futures, implementation using actors, implementation using parallel collections, and
baseline implementation.

SI Test3 (1 Sine, 100 Integrate): The results from this test can be seen in table 4.8. Ranked in
order of lowest execution time: Implementation using futures, baseline implementation,
implementation using actors, and then implementation using parallel collections.

SI Test4 (1 Sine, 100 Integrate, MultipleActorInvocations): The results from this test can be
seen in table 4.9. Ranked in order of lowest execution time: Implementation using actors,
the implementation multiple actor invocation with the argument DOSTEP, and then the im-
plementation multiple actor invocation with the argument ALL.

Wait Baseline Future Par Actor FutureDiff ParDiff ActorDiff
0 195 330 656 374 -135 -461 -179

100 1036 1178 1609 1249 -142 -573 -213
200 1892 2035 2546 2109 -143 -654 -217
300 2748 2901 3417 2966 -153 -669 -218
400 3608 3773 4289 3837 -165 -681 -229
500 4468 4635 5161 4715 -167 -693 -247
600 5325 5502 6034 5587 -177 -709 -262
700 6185 6359 6920 6453 -174 -735 -268
800 7043 7223 7792 7308 -180 -749 -265
900 7900 8082 8663 8173 -182 -763 -273

1000 8758 8938 9545 9032 -180 -787 -274

Table 4.6: Results in milliseconds from SI Test1 (1 Sine, 1 Integrate) described in section 4.7.2.

57

Chapter 4. Evaluation of Implementations

Wait Baseline Future Par Actor FutureDiff ParDiff ActorDiff
0 355 434 834 622 -79 -479 -267

100 4642 1252 1976 1357 3390 2666 3285
200 8925 2085 2460 2164 6840 6465 6761
300 13280 2981 3408 3116 10299 9872 10164
400 17554 3838 4241 3909 13716 13313 13645
500 21904 4679 5042 4746 17225 16862 17158
600 26195 5510 6212 5616 20685 19983 20579
700 30448 6405 6820 6489 24043 23628 23959
800 34760 7267 7643 7376 27493 27117 27384
900 39251 8174 8921 8313 31077 30330 30938
1000 43356 8970 9348 9184 34386 34008 34172

Table 4.7: Results in milliseconds from SI Test2 (1 Sine, 5 Mod-Integrate) described in sec-
tion 4.7.2.

Baseline Future Par Actor FutureDiff ParDiff ActorDiff
1464 1432 1967 1857 32 -503 -393

Table 4.8: Results in milliseconds from SI Test3 (1 Sine, 100 Integrate) described in section 4.7.2.

Actor ActorAll ActorDoStep ActorAllDiff ActorDoStepDiff
2099 4302 2463 -2203 -364

Table 4.9: Results in milliseconds from SI Test4 (1 Sine, 100 Integrate, MultipleActorInvocations)
described in section 4.7.2.

4.7.3 Evaluation of Quality Attributes

The evaluation of the frameworks based on the quality attributes described in section 4.6 is pre-
sented in appendix G. Additionally, the results of the evaluations are shown in a spider chart in
figure 4.8. The evaluation of the performance quality attribute is based on the results from sec-
tion 4.7.1 and 4.7.2, which means it is relative to the three implementations.

Figure 4.8: Evaluation of quality attributes. The rating is described in table 4.2.

58

Analysis of the Results

4.8. Analysis of the Results

To use the results for improving further development, it is necessary to draw some conclusions.
Therefore, this section describes some conclusions that can be drawn from the results in sec-
tion 4.7. The structure of this section consists of first presenting the conclusions based on the
results. Afterwards it will be discussed, what these conclusions can be used for.

The refactored concurrent implementation is faster than the non-refactored concurrent im-
plementation: The performance of the implementation using actors based on the baseline de-
scribed in section 3.3.5 was compared to the performance of the implementation using actors
based on the refactored implementation described in section 3.3.4 and the results can be seen in
section 4.7, table 4.5 and table 4.9. The results show, that the actor implementation based on the
refactored implementation called ”Actor“ in the tables is the fastest. As the implementation using
futures described in section 3.3.3 is faster in all of the tests than the implementation using actors
it is reasonable to conclude, that this implementation is faster as well. Furthermore, the data for
”Actor“ and ”ActorDoStep“ supports, that performing more computations separated in threads
that are spawned anyhow is faster, than performing fewer computations in threads and doing the
remaining computations sequentially. This supports that performing the refactoring to limit the
number of concurrent invocations and the synchronizations was the correct step to take in order to
lower the execution time.

Invoking several functions in one concurrent invocation with one synchronization is faster,
than invoking several functions in separated concurrent invocations with multiple synchro-
nizations: This conclusion is based on the same comparison as the conclusion above, namely the
results in section 4.7, table 4.5 and table 4.9. The results of ”Actor“ and “ActorAll” show, that
invoking several functions in one concurrent invocation with one synchronization is faster, than
invoking several functions in separated concurrent invocations with multiple synchronizations.

Overhead of invoking functions concurrently is higher than what is gained by invoking the
same functions sequentially: This conclusion is based on the same comparison as the conclusion
above, namely the results in section 4.7, table 4.5 and table 4.9. The data for ”ActorDoStep“
compared to “ActorAll” shows, that invoking the doStep function concurrently and running the
rest of the simulation steps sequentially is faster, than invoking several functions in separated
concurrent invocations and invoking fewer functions sequentially. This test shows, that the price
of invoking functions concurrently might be higher than what is gained by invoking the same
functions sequentially.

Executing simulations sequentially can be faster than executing them concurrently: Perform-
ing simulations sequentially can be faster than running them concurrently, which is backed by the
results for SI Test1, SI Test2, SI Test3, and HVAC Test1. More noticeably is it, that even introduc-
ing an additional millisecond of computation in the doStep function of an FMU as tested in SI
Test1 does not make the simulation faster using concurrency than without concurrency. Because
the baseline is faster than the concurrent implementations in several tests with two or more FMUs,
the hypothesis is considered to be refuted.

Executing simulations concurrently can be faster than executing them sequentially: SI Test2
shows, that if several FMUs perform an additional millisecond of computations in the doStep
function, then it is faster to run the simulation using concurrency. This contradicts the previous
conclusion and thereby indicates, that deciding whether or not to run a simulation concurrently
cannot be decided by looking at whether or not a single FMU perform long-lasting computations.
It is necessary to look at more than one FMU being used in a given simulation. Besides looking

59

Chapter 4. Evaluation of Implementations

at how long-lasting the computations of a given FMU are, the data from SI Test3 shows, that
the amount of FMUs in a simulation plays a role. The simulation in SI Test3 performs faster
without concurrency, as it was shown in SI Test1, but the sheer number of FMUs made one of
the concurrent solutions perform the simulation faster. Even though the hypothesis is refuted
because of the conclusion above, this shows, that concurrency can still increase the performance
of a simulation.

From here we conclude, that it is necessary to allow for different simulation strategies to achieve
the fastest simulation. These strategies should support running simulations sequentially, con-
currently, or a mix. For example, if an FMU that performs long-lasting computations is to be
simulated with three FMUs that performs fast computations, then it could be optimal to run this
simulation using two threads as in figure 4.9. This figure shows an example, where the Master Al-
gorithm (MA) splits the simulation into two concurrent processes: One process simulates a single
FMU that performs long-lasting computations and the other process sequentially simulates three
FMUs that performs fast computations. To implement this, it requires a level of composability.
To properly determine the optimal strategies it is necessary to perform more tests with different
FMUs and different scenarios, which will be further elaborated on in section 6.5.

Figure 4.9: Master algorithm simulating four FMUs using an additional step master algorithm,
that performs a single step.

Allowing for different strategies also involves computing the strategy to use. A way of assisting the
choice of strategy is including a measure of how long-lasting the computations performed by an
FMU are in the FMU configuration file, which may vary from where the FMU is in the simulation
as well. However, this file is standardized, and therefore it might not be possible. Furthermore,
choosing the best strategy might not depend on individual FMUs, but all the FMUs used in a
given simulation, and therefore this solution would still include processing. Instead of storing
this metadata in the FMU configuration file, it can be stored in the simulation configuration file.
This would allow for targeting specific simulations and the combination of FMUs used in a given
simulation. The metadata can be established either by defining it in the simulation configuration
file or implementing functionality in the COE to store the strategy used. This would require the
COE to perform computations that processes the execution time of the FMUs used in a simulation
and calculate the best strategy. This could be carried out by adapting or switching strategy between
simulation steps, and choosing the fastest. As simulations are expected to be reused several times
with adaptions to the FMUs deployed, it might be worth spending resources on computing and
storing the best strategy once, so it can be reused. Furthermore, as the COE is part of a tool chain
dedicated to developing Cyber-Physical Systems (CPSs) as described in section 2.6, the metadata
can be shared across multiple tools and possibly improve the performance of these tools as well.

The different features used for performing the functions concurrently are not equally fast, with
the implementation using parallel collections being the slowest and the implementation using fu-

60

Analysis of the Results

tures the fastest. As the implementation using parallel collections does not offer any additional
advantages over the implementation using futures as shown in section 4.7.3, it can be ruled out for
this purpose, unless future tests show otherwise. However, the implementation using actors offers
advantages in terms of scalability, configurability and composability. As the COE is implemented
as a web server, scalability can be an important attribute to service many clients or perform dis-
tributed simulations in the future development of the COE. Configurability can help to adapt the
COE for different setups, and as the COE is expected to be run by several companies, it should
be configurable. Composability can prove to be an important attribute in implementing different
strategies, as it was detailed in the paragraph above.

61

Chapter5
Guidelines

This chapter presents guidelines on adding functionality that takes advantage of concurrency to
improve performance for an existing application, and therefore helps to achieve goal 3. It is based
on the work performed in this thesis, but it is applicable in other contexts as well. Because it is
based on the work performed in this thesis, it is a natural continuation of the previous chapters,
and it is part of the concluding remarks and future work in chapter 6. However, to make these
guidelines more accessible this chapter is also roughly self-contained, though it will contain ref-
erences to relevant parts of this thesis.

5.1. Introduction

The Intel co-founder Gordon E. Moore has made some interesting observations and predictions
on the evolution of processors. One of these observations and predictions is famously known
as ”Moore’s law“: ”The number of transistors incorporated in a chip will approximately double
every 24 months.“ [as cited in Intel Corporation, 2015]1. Roughly this translates to: The speed of
processors will double every two years. Besides observing this fact, it was also a prediction that
has proven to be a guideline for the semiconductor industry. However, it has started to slow down,
and Intel is having trouble keeping up with this ”law“ [Reisinger, 2014]. So, as the increase in
processor speeds has begun slowing down, the manufacturers have turned to multiple processing
cores known as multicore [Geer, 2005; Creeger, 2005]. This requires software developers to take
advantage of concurrency in order to make use of the additional cores.

This chapter describes some guidelines on implementing functionality that takes advantage of
concurrency in an existing application. They do not cover distributed systems, language specific
features, or threading strategies as such. First, section 5.2, presents a motivation for creating
these guidelines and what they hopefully achieves. Afterwards, section 5.3 to 5.5 describes the
guidelines for adding functionality that uses concurrency in an existing application. These are split
up in three parts: 1) Preparation/Prelimary steps, 2) implementation, and 3) evaluation. Figure 5.1
presents an overview of the guidelines and will be explained in the sections below.

1Originally, Moore stated, that it would double every year [Moore, 1965], but it was revised in 1975 [as mentioned
in Mollick, 2006].

63

Chapter 5. Guidelines

Figure 5.1: Guidelines on implementing concurrency.

5.2. Motivation for Guidelines

An adage known by ”Wirth’s law“ goes: ”Software is getting slower more rapidly than hardware
becomes faster“ [Wirth, 1995].2 To compensate for this slowing, Wirth states: ”The way to
streamline software lies in disciplined methodologies and a return to the essientials.“ [Wirth,
1995]. The motivation for creating these guidelines is to present a few steps that can be used to
take advantage of concurrency to increase the performance of software in terms of execution time.
It is the hope, that these guidelines can be turned into a methodology in the future.

Concurrency can take advantage of multiple cores by performing two or more computations con-
currently instead of sequentially. When implementing functionality that uses concurrency in an
application, it increases the complexity, as it becomes necessary to consider the challenges in-
volved. Race conditions is one of these challenges (race conditions are described in section 2.7.2),
and it can happen when two or more threads are accessing the same resource, and their execution
order depends on the scheduling of threads [Helmbold and McDowell, 1996]. Race conditions can
lead to nondeterminism, which is undesirable, as it is more difficult to reason about. To ensure

2Wirth attributes this to a different saying by Reiser [Reiser, 1991]

64

Preparing for Concurrency

determinism one can use synchronization mechanisms, e.g. semaphores, but these comes with
other challenges. For example deadlocks, which happens when two or more threads are waiting
for a resource, that is held by another. This makes concurrency seem difficult, but it does not
necessarily have to be.

There are concurrency features, that abstracts the necessary synchronization, so it is not necessary
for the developer to deal with these challenges. The Scala example in listing 5.1 takes advantage of
concurrency via the function par to download three images from a web server. This concurrency
feature is called parallel collections (see section 2.8.3 for a more thorough description), and what
it does is splitting the list imageUrls into three concurrent tasks, and when these have finished
downloading an image each, these images are combined back into a list. This is abstracted from
the developer and therefore it is not necessary to handle synchronization explicitly.

Scala

1 val imagesUrls = List("http://example.dk/img1.png","http://
↪→ example.dk/img2.png","http://example.dk/img3.png")

2 val images = imagesUrls.par.map(imageUrl => downloadImage(
↪→ imageUrl))

Listing 5.1: Download images from a url concurrently

The example in listing 5.1 is small and conceptually simple; but if the implementation is structured
in a fashion that is described in these guidelines, then the same principles can be applied in other
contexts and to a larger amount of functionality. The hope is, that these guidelines will help make
developers more inclined to try using concurrency and take advantage of the possibilities it offers.

5.3. Preparing for Concurrency

Before implementing functionality that uses concurrency in an application, it can be useful to ad-
dress some challenges to avoid complications later in the implementation. One of these challenges
is investigating whether the implementation is a ”one size fits all“ implementation in the sense,
that it will only use one concurrency strategy. A strategy can determine which parts of the func-
tionality is executed concurrently, and which are not. In the case of ”one size fits all“ it is expected,
that the domain is well-known and therefore it is evident, that the chosen strategy results in the
desired benefits. In the other case, the domain is unknown or the benefits that is achieved from
the choice of strategy is unclear. Because of this, it can be difficult to determine which strategy to
implement, or whether to implement several strategies. For this reason, it can be useful to conduct
tests and in order to test it is necessary to have the following: Test data that covers the different
use cases that the application expect to fulfill and a test setup that makes testing possible.

It might not be possible to find test data covering all the use cases at an early stage. However,
this does not mean, that this step should be ignored. In some cases it is possible to create test
data where the amount of computations is parameterized, i.e. the modified Functional Mock-up
Unit (FMU) described in section 4.4.3, which can make it possible to rule out some strategies or
indicate, that additional testing is necessary to determine the right strategies. This involves early
testing, where the application has not yet been implemented to support concurrency to the full
extent and therefore this should not include too much effort. The implementation described in

65

Chapter 5. Guidelines

section 3.3.5 is an example of this. Collecting test data should be a priority throughout the project,
as it will enable testing of the application throughout the project, which can prove valuable; espe-
cially when implementing several strategies.

Implementing several strategies is not always a simple task, and different strategies can be better
at particular cases. Because it can be difficult to reason about which strategy is the best for
different cases, regression testing is important in finding the optimal strategy for different cases.
Regression testing is testing for regressions, where ”a regression is a feature that used to work
and now doesn’t“ [Osherove, 2009]. Without going into the definition a feature, it can be tests
which verify, that changes have not introduced performance degradations or wrong results. In
case of multiple strategies, it can be necessary to test and compare the results. However, if the
implementation is not carried out with a focus on testability, it can prove difficult to do this. The
initial testing of the Co-Simulation Orchestration Engine (COE) involved several conditionals as
shown in listing 3.8, and this made it difficult to extend and configure. Therefore, deciding on a
test setup early can ensure, that the implementation is carried out with testability in mind, and this
makes it easier to test and identify the optimal strategies for different cases. If concurrency usage
is being added to an existing implementation similar to what was done in this thesis project, then
it is also important to clearly determine the capabilities of the existing implementation and create
tests, that verify this behavior.

Creating a test setup before starting the implementation resembles the idea behind Test-Driven
Development (TDD) [Beck, 2002], where a failing test is created before implementing the func-
tionality that makes it pass. However, the test setup does not provide clear results on whether a
given strategy is the best strategy, because it may depend on other quality attributes, that are diffi-
cult to measure objectively. Therefore, the test setup can be used to evaluate the implementation
based on some measurable quality attributes, while others must be addressed in a different manner.

5.4. Process of Implementing Use of Concurrency

The previous section focused on what could be performed as preliminary steps to applying con-
currency such as finding test data and deciding on a test setup. This section describes the process
of developing an application to take advantage of concurrency. Several of the steps that were
performed in the process of making the COE take advantage of concurrency (described in chap-
ter 3) can be applied to implementing the use of concurrency in other systems. The following
describes guidelines that can be used to implement the usage of concurrency in other applications,
and examples from this thesis project will be used to demonstrate some of the principles.

The first step is to identify which parts of the application that could run concurrently. In this thesis
project, this step revealed several parts as described in section 3.3.1: Setting inputs, serializing
state, invoking doStep, performing rollbacks, and retrieving output variables. It is not always
straightforward to identify these parts, and it is important to make a distinction between parts that
could run concurrently and parts shat should run concurrently. For example, the task of setting
inputs in the FMUs consists of assignment operations, and the overhead in terms of time of using
concurrency for this task would be larger than the time gained.

Once the parts than can run concurrently have been identified, it is necessary to consider the syn-
chronization involved in making these parts run concurrently. Synchronization requires waiting
for the threads to finish their computations, and is considered part of the overhead by using concur-
rency. In section 5.2 a small example was mentioned, where synchronization could be abstracted

66

Process of Implementing Use of Concurrency

away. This is still true, as the low-level details are abstracted away, but it is still necessary to
mark the synchronization spots in the implementation, and the overhead still exists. The COE
was implemented in such a way, that it was necessary to synchronize several times in a simulation
step as shown in figure 3.4, and the implementation using multiple actor invocations described in
section 3.3.5 performs several synchronizations.

Assume that the parts that can run concurrently and the synchronization related to running them
concurrently has now been identified. This provides a basis for determining a refactoring of the
application as to minimize the overhead of using concurrency. The refactoring should focus on
maximizing the amount of computations for every thread and minimizing the synchronizations.
Figure 5.2 shows this process, where the identification of concurrent part and synchronization be-
fore the refactoring has been performed on the left hand side, and after the refactoring on the right
hand side. The left hand side is a typical sequential implementation, which follows the pattern:
Prepare, Act, Process Results (PAPR). These steps happen just as the application is expected to
behave: Prepare for a task, execute the task, process the results, prepare for the next task etc. How-
ever, each of the concurrent operations comes with an overhead in initializing the threads and each
of the synchronizations comes with an overhead of waiting for the threads to finish their computa-
tions. Because of this, it is necessary to change process of repeating PAPRs into as few coherent
concurrent functions and synchronizations as possible, which is what happens when going from
left to right in the figure. Instead of preparing for a single task, prepare for as many concurrent
tasks as possible. This limit is defined by, how many tasks can be done independently in differ-
ent threads before a synchronization is necessary. When the preparation for multiple concurrent
functions has been performed, these can be run with only a single thread initialization for each
set of coherent functions. A set of coherent functions are functions related to a particular task,
for example downloading and scaling an image is a set of coherent functions (an example using
such functions is given below). The processing of results requires all the results, and therefore a
synchronization is necessary, before performing the last step. In the implementation of the COE
it was possible to perform only one synchronization; however, this is not always the case.

Figure 5.2: Reduction of separated concurrent invocations and synchronizations.

67

Chapter 5. Guidelines

If the image example from listing 5.1 is extended to both download and scale the images, then the
process mentioned above can be applied. This is shown in figure 5.3, where the left hand side and
the right hand side performs the following:

Left hand side: First the URLs of the images are set, then all the images are downloaded, and
this is verified. Then the scaling properties are set, all the images are scaled, and the are
passed to the UI for viewing or something else.

Right hand side: First set the URLs and the scaling properties of the images. Then perform the
following set of functions for each image: download and scale the image. These functions
are performed in a single concurrent invocation for each image. Lastly, verify the images
and pass them to the UI or something else.

Figure 5.3: Reduction of separated concurrent invocations and synchronizations for the image
example.

This refactoring successfully reduces two separate concurrent invocations to one and two syn-
chronizations to one. However, there is a trade-off: Consider the process of downloading three
images: img1, img2, and img3. Say img1 fails to download, but img2 and img3 succeeds.
In the left hand side example this would be detected immediately after the download. In the right
hand side example, img2 and img3 would still be scaled, before the failure to download img1 is
detected. This can lead to unnecessary computations and should be considered when performing
the refactoring.3 It is worth noting, that the concurrent functions should be referential transparent,
which can be roughly described as without side-effects (a more thorough explanation was given
in section 2.7.4). When executing code in parallel that has side-effects, it may affect the code in
several threads in an unpredictable fashion and thus lead to undesired behavior.

3Several programming languages support terminating threads in a case like this. However, that increases the
complexity and is not considered applicable in general.

68

Evaluating an Implementation

5.5. Evaluating an Implementation

Once the implementation is finished, the test setup described in section 5.3 can be used to evaluate
it. It is necessary to verify the correctness of the different strategies meaning, that they calculate
the correct results; i.e. in a COE setting, the results must be semantically consistent. The perfor-
mance testing provides a measure of how fast the strategies perform calculations and can be used
to fine-tune the strategies or detect cases where the application uses a less optimal strategy.

Performance and correctness are only part of the quality attributes, that can be used to evaluate
the implementation. Other attributes such as scalability and composability can be necessary to
provide additional features, but it might result in sacrificing performance. For example, the trade-
off mentioned above can also be used to verify the implementation. Therefore, it can be necessary
to choose which quality attributes a given application should exhibit, and how important these are
in relation to each other. For example, if a given strategy fulfills a use case in an optimal fashion
according to performance, and this use case covers the vast majority of users. However, for a
small number of users it is not the optimal strategy, but it still covers their use case. Implementing
another strategy that is optimal for these users is considered to include an increase in complexity
and degradation of maintainability of the entire application. Should the additional strategy be
implemented? Evaluation of an implementation should be used to combine the implementation
with the quality attributes, that the application is expected to exhibit.

As applications are subject to change, the evaluations must also be subject to change. When
more features are implemented and more test data becomes available, the strategies may have
to be adjusted or new ones have to be developed. Because of this, testing is an ongoing task
throughout the entire development process, as this provides additional data for reasoning about
the implementation. The tests should track the quality attributes over time, so tendencies can be
clarified and ensure, that the development of the application targets the selected quality attributes.
This should be set up in an automated fashion, for example on a build server.

69

Chapter6
Concluding Remarks and Future Work

This chapter concludes this thesis by presenting the main findings, and it is therefore based on
all of the previous chapters. Besides presenting the main findings, this chapter also evaluates on
the achievement of the goals and hypothesis stated in chapter 1. As this thesis only scratches the
surface of concurrency and the implementation of the Co-Simulation Orchestration Engine (COE)
was not finished at the end of this thesis project, this chapter also outlines possible future work.

6.1. Introduction

Reflection on work that has been carried out can be used to improve the process of other projects
and learn from mistakes. Therefore, it is discussed in the next section which parts of this thesis
project that could have been performed in a better fashion, but also new skills achieved by the
author of this thesis. Next, section 6.3 presents the conclusion containing the main findings of
this thesis. Besides presenting the main findings, this thesis also had four goals set, and these are
evaluated on in section 6.4. Afterwards, future work for both the development of the COE and the
guidelines are outlined in section 6.5. Finally, section 6.6 presents some final remarks on the work
performed in this thesis.

6.2. Discussion

In order to learn from the process in this thesis project, it is necessary to reflect on how it has
been carried out. An important part of this is identifying parts, that has been challenging. The
identification of these parts makes it possible to avoid making the same mistakes in a future project,
or take measures to alleviate them. Furthermore, it is important to identify skills that are applicable
in general and should be continuously improved.

Previously, in section 4.5 the test framework was reflected upon. Next, section 6.2.1 describes part
of the approach that proved to be challenging and could have been carried out differently. Finally,
section 6.2.2 describes transferable skills, which are skills that are applicable in general.

71

Chapter 6. Concluding Remarks and Future Work

6.2.1 Thesis Project Approach

The approach described in section 1.5 has proven to be a challenge, because the COE was at
an early stage in development and not tested thoroughly when this MSc thesis started. Bugs have
been found after establishing the baseline and that has impacted the development. For example, the
Functional Mock-up Units (FMUs) were not unloaded correctly after a simulation, and therefore
the web server had to be relaunched for every simulation. This bug would have been found before
establishing a baseline if the testing of the COE had been more comprehensive. Because of the
missing tests it is also difficult to determine which features the baseline implementation supports,
and thereby which features the concurrent implementations should support. Therefore, a vital
part of establishing a baseline should be to clearly identify what is supported and have tests to
verify this. This put additional requirements on establishing a baseline and potentially delays
the investigation of concurrency, but ensures the implementation is correct in terms of supported
functionality and possibly avoids having to do workarounds due to bugs.

Besides the challenges regarding establishing a baseline described above, the chosen approach
has also made the continued work on the COE unnecessary complicated. This is caused by the
fact, that the COE has also been developed externally in parallel to this thesis project, and thus it
will be difficult to merge the refactored implementation and the external development of the COE,
because the developments have taken different branches. This means, that depending on the suc-
cess of this thesis project, it will most likely be a matter of reimplementing the refactoring on the
external development instead of merging the two developments. A way of accomplishing a better
reuse of this thesis project would be to merge the external development and the refactored imple-
mentation as shown in figure 6.1 as soon as the refactored implementation was finished. In this
way, the external development could have continued based on the refactored implementation, and
the implementations in this thesis project would still not be impacted by the external development.

Figure 6.1: Server requests for performing a simulation and retrieving the results.

6.2.2 Transferable Skills

Acquiring new information
Acquiring information was a challenge, because there is a lot of literature. It is therefore not
feasible to expect to read every article on a given subject, as there is simply too much. This is
quite different from taking a course, where the literature is usually provided by the teachers, and
it requires a different strategy. One of the first steps should be to get an overview of the available
literature by reading abstracts and use this for categorization. Thereby some resources may be
considered off topic, and other resources will prove to be on topic. A resource that is particularly
useful in relation to the given topic often contains references to other useful resources. The trans-

72

Transferable Skills

ferable skill is therefore to improve in acquiring and filtering new information and thereby reuse
earlier research to perform better research.

Source criticism/Information evaluation
Source criticism is important and not always straightforward. A source can be credible and con-
sidered an expert within an area, but still provide information aiming at a specific purpose, that
might not be ideal. Therefore it can be necessary to consider information in the functional view
”... which states that a source is not in itself good or bad, but just more or less fruitful or relevant
in relation to a given question“ [Hjørland, 2012].

During this study I encountered a case that required additional attention. Martin Odersky is the
developer of Scala and as such considered an expert within the Scala community. He also founded
the company Typesafe together with the creator of the framework Akka, which is being promoted
as the default framework for actors in Scala [Jovanovic and Haller, 2015]. It is important to
keep this in mind, for example when Martin Odersky states: ”That said, currently by far the
most popular approach to concurrency is Scala’s actor library.“ [Sommers, 2008] or appears in
Typesafe related content. The transferable skill is to be critical when reading literature and identify
possible underlying motivations.

Collaboration
Collaboration is a large part of doing research and the author of this thesis has been surprised
with how helpful and open to discussion other researchers are. A part of collaboration is working
together achieving the desired results, another part is also showing that the collaboration is ben-
eficial. As the INTO-CPS project has several industrial and academic partners, collaboration is
required. During this thesis project a partner asked for help on making a quick demonstration of
the COE for a meeting occurring two days later, and the only thing available for running an entire
simulation was a shell script. However, as the partner was familiar with Java, the test framework
developed during this thesis project was used to set up a configurable test, that performed an en-
tire simulation. It is important to create understandable content during the research to make the
progress clear to collaborators. The transferable skill is to make sure, that research is available to
others while being conducted as well as after.

Conveying information
Sir Isaac Newton once wrote: ”If I have seen farther, it is by standing upon the shoulders of
giants.“ [as cited in Brewster, 2009]. Conveying information is a fundamental part of researching,
as it lays the foundation for other research to build upon. To properly convey information it
is important to be precise and define all terms, that can lead to doubt. A way of conveying a
definition of a term is citing a resource that describes it, thereby the reader can read the cited source
if in doubt, otherwise a description of the term is necessary, which may prove difficult. Besides
precisely defining terms, it is also important to clearly show how different concepts relate to each
other and how the given research is applicable in general. Structuring this thesis and creating the
flow that leads the reader from one subject to the next has been a challenge to the author, and
should be focused on in the future. Conveying information is also closely related to collaboration,
as effective conveying of information can improve the collaboration. The transferable skill is to
become better at conveying information, thereby making the research more usable.

73

Chapter 6. Concluding Remarks and Future Work

6.3. Conclusion

The thesis project is based on an application called the COE which performs Co-Simulation with-
out using concurrency. Functionality that takes advantage of concurrency was implemented using
Scala in three different versions of the COE, each using different concurrency features. The con-
currency features were the following: Parallel collections, futures, and actors. In order to evaluate
the different implementations a test framework was developed. The framework supports launch-
ing the COE, invoking the COE to perform a simulation, and retrieving the results and execution
time of a simulation.

The test framework was used to evaluate the implementations in terms of correctness and execu-
tion time. For this purpose, different FMUs and test scenarios were set up. The implementation
using futures was faster in terms of execution time than the implementation using actors, which
again was faster than the implementation using parallel collections. However, the original se-
quential implementation was faster in some scenarios involving two or more FMUs. Because
the sequential implementation was faster than the concurrent implementations in these cases, the
hypothesis has been proved to not hold for all simulations with two or more FMUs and is there-
fore refuted. It is necessary to investigate whether implementing multiple strategies that combines
sequential and concurrent processing can optimize the performance of the COE. Other quality
attributes than performance may also be important to the further development of the COE, and
therefore the implementations were evaluated based on the following quality attributes: Com-
posability, simplicity, configurability, scalability, and documentation. The results are shown in
figure 6.2.

Figure 6.2: Evaluation of the chosen quality attributes for the COE. The rating is described in
table 4.2.

The steps used for implementing functionality that uses concurrency in this thesis project can be
applied in other contexts, and therefore the process was generalized to the following steps:

Preliminary tasks: Concurrency may not increase the performance under all conditions. To de-
termine the optimal strategy for when to use concurrency or how to use concurrency it is
necessary to test the application under different conditions. To ensure the application is
testable, a test strategy should be decided on early, and test data should be found.

Identify concurrent parts: Some parts in the application are better suited to execute concur-

74

Evaluation on the Achievement of the Goals

rently than other parts. It is necessary to identify which parts that should execute concur-
rently, which parts that could run concurrently, and which parts that should not run concur-
rently.

Identify synchronizations: Executing parts of the application concurrently often requires coor-
dination during the execution of the application. Therefore, the different parts have to syn-
chronize and this might involve waiting until the concurrent parts have finished computing.
The synchronization required for coordinating the tasks that could/should run concurrently,
which was identified in the previous step, should be identified.

Implement concurrency: Based on the identification performed in the previous two steps, the
implementation of functionality that uses concurrency should try to achieve the following:
Minimize the invocation of concurrent functions, maximize the work load in every concur-
rent function, minimize the number of synchronizations. To achieve the best performance, it
can be necessary to implement different strategies that determines whether to use concurrent
processing, sequential processing, or a mix and which feature to use for concurrency.

Evaluate the implementation: Evaluate and test the implementation based on selected quality
attributes for the application. Based on the results from evaluating and testing the imple-
mentation, the strategies may need to be adjusted.

Ongoing evaluation: When the application is used in a new way, this should result in new test
data and thereby possibly an adjustment of the strategies. Automatic regression testing
should be used, to ensure the application targets the selected quality attributes over time.

6.4. Evaluation on the Achievement of the Goals

Besides investigating and testing the hypothesis, this thesis project also had four goals that should
be accomplished. This section revisits these goals and evaluates whether they have been accom-
plished or not.

6.4.1 Revisting the goals

In order to evaluate the achievement of this thesis project, four goals were set. The goals were
presented in chapter 1, and shown again below:

Goal 1: Understand the concepts of Cyber-Physical Systems (CPSs) and Co-Simulation. Addi-
tionally, learn how Co-Simulation can be performed using the Functional Mock-up Interface
(FMI) standard.

Goal 2: Learn the basics of the challenges that implementing the usage of concurrency presents,
and how the functional paradigm addresses these.

Goal 3: Learn and use the programming language Scala for the development of the COE appli-
cation with different concurrency features. A part of this goal is to be able to generalize on
implementing functionality that uses concurrency in an application.

Goal 4: Improve personal skills in general for conducting research by identifying transferable
skills that may be reusable in the future.

75

Chapter 6. Concluding Remarks and Future Work

6.4.2 Evaluation

The evaluation of the goals set for this thesis project is described in this section. Each goal will be
evaluated by briefly explaining why the goal is considered to be achieved, and afterwards which
parts of this thesis are related to the goal.

Goal 1: This goal is successfully achieved. The concepts of CPSs and Co-Simulation were stud-
ied and grasped, along with understanding a relation between these concepts. Furthermore,
FMI has been studied along with algorithms describing how to use it in practice. These
algorithms have laid the foundation for the implementation of an application that performs
Co-Simulation using FMI.

Literature on the concepts of CPSs and Co-Simulation has been studied and the concepts
were described in section 2.2 and section 2.3. The description of FMI consists of some
background in section 2.4 and actual algorithms for performing Co-Simulation using FMI
in section 2.5. Moreover, the concepts were related to each other in section 1.1 and the
implementations described in chapter 3 have performed Co-Simulation using FMI.

Goal 2: This goal is successfully achieved. The reason for using concurrency and the main chal-
lenges in using concurrency has been studied. Furthermore, the solutions to these challenges
offers new challenges, which were studied as well. The functional paradigm addresses these
challenges, and Scala has been used exemplify the concepts.

Section 2.7 describes why it is important to use concurrency, but also the challenges inherent
in using it. Afterwards, section 2.8 presented how the functional paradigm addresses these
challenges.

Goal 3: This goal is successfully achieved. The COE application is developed in Scala, so the
refactoring has performed in Scala. Furthermore, three different concurrency features: par-
allel collections, futures, and actors were used in the development of the COE. The process
of refactoring, implementing, and evaluating the implementation of the concurrency fea-
tures in the COE were generalized to a set of guidelines, than can be used in other projects.

The basics of the concurrency features used in the implementation was described in sec-
tion 2.8, and they have been used for the implementations described in chapter 3. The
guidelines based on the implementation in chapter 3 and evaluation in chapter 4 was de-
scribed in chapter 5.

Goal 4: This goal is successfully achieved. This thesis is the result of conducting research for the
first time by the author, and therefore several transferable skills have been improved. These
are considered to be general skills and therefore applicable within many areas. Because this
thesis does not deal with transferable skills as such, the evaluation of this goal deviates from
the evaluation of the other goals above. These skills were described in section 6.2.

6.5. Future Work

To achieve more knowledge within the subject of performing Co-Simulations, more studies and
tests are required. Furthermore, it is interesting to gain more knowledge on implementing func-
tionality that uses concurrency in general, which also can be applied to this subject. Below, some
possibilities are listed, which can be used to continue the work from this thesis.

76

Future Work

Implement features: The implementation of the COE is not finished, as there are still features
that need to be supported such as extrapolation and interpolation of simulation step results.
These features need to be implemented.

Testability: The COE currently supports reporting the execution time of an entire simulation
without initialization and reporting of results. The initialization and reporting of results
will be part of any simulation, and therefore these should also be tested for performance.
Additionally, the COE should offer better granularity for performance measurements. A
better granularity makes it possible to examine the performance of different parts of the
COE, and this can be used to target the development effort and find bottlenecks.

Testing: To gain more knowledge of when to use sequential or concurrent processing it is nec-
essary to gather more real test data. The test data should be diverse in the sense that the
FMUs should have different computation times, amount of inputs/outputs and step sizes,
but also diverse in the COE configuration of a simulation. Different configurations can lead
to different scenarios, where rollbacks, extrapolation and interpolation of the step results
are needed. To better take advantage of the additional tests a test server should be set up to
automatically run performance tests. The performance tests should be run on every commit,
so it is clear whether the commit increases of decreases the performance. Besides focusing
on individual commits, it should also be possible to view the results of the performance
tests over time. This will help to illustrate the tendency of the implementation and provide
a foundation for discussing whether the architecture of the COE is correct.

Strategy: This thesis has shown, that sequential processing is faster than concurrent processing in
some cases and vice versa. Therefore, it is necessary to investigate, whether an increase of
performance is achievable by enabling sequential, concurrent, and mixed processing. Mixed
processing is where some FMUs are grouped together and run sequentially inside the group,
but runs concurrent to other groups of FMUs or single FMUs as shown in figure 4.9.

Initialization and adaption: If the investigation of choosing strategies results in implementing
multiple strategies, then it should be investigated how to properly configure the COE, so it
chooses the right strategy for optimal performance of a given simulation. One way to do this
is including metadata in the COE configuration file, which should describe the performance
of the different FMUs and choice of strategy. Another way is to let the COE adapt between
running simulation steps based on the performance of FMUs. Once the COE has found the
optimal strategy, this can be serialized to the COE configuration file for the given simulation.

Guidelines The guidelines provide basic advice on implementing functionality that uses concur-
rency in an existing application. It could be interesting to use these guidelines on different
case studies to gain more knowledge of cases where they can be applied, and cases where
they cannot be applied. This would outline cases where the guidelines are lacking, and
this can be used for extending the guidelines. Furthermore, existing research on the topic
should be studied, as it may contribute to subjects already covered by the guidelines or in-
troduce subjects, that should be covered. The hope is, that these guidelines are extended
and improved, thereby gradually becoming a methodology.

77

Chapter 6. Concluding Remarks and Future Work

6.6. Final Remarks

The hypothesis was, that implementing concurrency increases the performance of the COE. This
has been proven to be false in some cases and true in others. This does not mean, that the work
done in this thesis is useless, but that a different approach to increasing the performance of the
COE has to be chosen. The approach must combine sequential and concurrent processing to
achieve optimal performance.

Besides testing the hypothesis, this thesis project has also successfully achieved four goals that
were set up. The achievement of these goals mean, that the author has studied the fields of CPSs,
Co-Simulation using FMI, concurrency, the functional paradigm, and Scala. Furthermore, the
work carried out in this thesis project has improved the research skills of the author.

Implementing functionality that uses concurrency in the COE also gave rise to some guidelines
on the process. This expands the relevance of this thesis from concerning the process of adding
concurrency usage to a specific application to a more general applicable process, that can be
applied to a multitude of applications.

To conclude this thesis, it is the hope that the results are used in the further development of the
COE, and that the guidelines are used in other projects and improved. Additionally it is the hope,
that Co-Simulation becomes widespread in the development of model-based CPSs and improves
both the development process and the end result of such systems.

78

Bibliography

[Agha and Kim, 1999] G. A. Agha and W. Kim, “Actors: A unifying model for parallel and distributed
computing,” Journal of Systems Architecture, vol. 45, no. 15, pp. 1263 – 1277, 1999. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1383762198000678 [cited at p. 29,

30, 79]

[Armstrong, 2007] J. Armstrong, “A history of erlang,” in Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages, ser. HOPL III. New York, NY, USA:
ACM, 2007, pp. 6–1–6–26. [Online]. Available: http://doi.acm.org.ez.statsbiblioteket.dk:
2048/10.1145/1238844.1238850 [cited at p. 29, 79]

[Ashcroft, 1975] E. Ashcroft, “Proving assertions about parallel programs,” Journal of Computer
and System Sciences, vol. 10, no. 1, pp. 110 – 135, 1975. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000075800183 [cited at p. 24, 79]

[Avizienis et al., 2004] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts and
taxonomy of dependable and secure computing,” Dependable and Secure Computing, IEEE
Transactions on, vol. 1, no. 1, pp. 11–33, Jan 2004. [cited at p. 12, 79]

[Baker and Hewitt, 1977] H. C. Baker, Jr. and C. Hewitt, “The incremental garbage collection of
processes,” in Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages. New York, NY, USA: ACM, 1977, pp. 55–59. [Online]. Available:
http://doi.acm.org/10.1145/800228.806932 [cited at p. 26, 79]

[Bastian et al., 2011] J. Bastian, C. Clauss, S. Wolf, and P. Schneider, “P.: Master for co-simulation
using fmi,” in 8th International Modelica Conference, 2011. [cited at p. 2, 11, 14, 19, 79]

[Beck, 2002] Beck, Test Driven Development: By Example. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002. [cited at p. 66, 79]

[Bird and Wadler, 1988] R. Bird and P. Wadler, An Introduction to Functional Programming. Hert-
fordshire, UK, UK: Prentice Hall International (UK) Ltd., 1988. [cited at p. 24, 79]

[Box and Draper, 1987] G. E. P. Box and N. R. Draper, Empirical Model-building and Response Sur-
faces. Wiley, 1987. [cited at p. 13, 79]

[Brewster, 2009] D. Brewster, “Chapter vi (diplomatic version),” http://www.newtonproject.sussex.ac.
uk/view/texts/diplomatic/OTHE00101, September 2009, (Visited on 12/16/2015). [cited at p. 73,

79]

79

http://www.sciencedirect.com/science/article/pii/S1383762198000678
http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/1238844.1238850
http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/1238844.1238850
http://www.sciencedirect.com/science/article/pii/S0022000075800183
http://doi.acm.org/10.1145/800228.806932
http://www.newtonproject.sussex.ac.uk/view/texts/diplomatic/OTHE00101
http://www.newtonproject.sussex.ac.uk/view/texts/diplomatic/OTHE00101

Bibliography

[Broman et al., 2013] D. Broman, C. Brooks, L. Greenberg, E. Lee, M. Masin, S. Tripakis, and M. Wet-
ter, “Determinate composition of fmus for co-simulation,” in Embedded Software (EMSOFT),
2013 Proceedings of the International Conference on, Sept 2013, pp. 1–12. [cited at p. 15, 18, 80, 91]

[Chiusano and Bjarnason, 2014] P. Chiusano and R. Bjarnason, Functional Programming in Scala,
1st ed. Greenwich, CT, USA: Manning Publications Co., 2014. [cited at p. 25, 80]

[Creeger, 2005] M. Creeger, “Multicore cpus for the masses,” Queue, vol. 3, no. 7, pp. 64–ff, Sep. 2005.
[Online]. Available: http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/1095408.1095423
[cited at p. 2, 12, 22, 23, 63, 80]

[die.net, 2015] die.net, “usleep(3) - linux man page,” http://linux.die.net/man/3/usleep, Dec 2015, (Vis-
ited on 12/07/2015). [cited at p. 53, 80]

[Dijkstra, 1965b] E. W. Dijkstra, “Solution of a problem in concurrent programming control,”
Commun. ACM, vol. 8, no. 9, pp. 569–, Sep. 1965. [Online]. Available: http:
//doi.acm.org/10.1145/365559.365617 [cited at p. 23, 80]

[Dijkstra, 1965a] ——, “Cooperating sequential processes, technical report ewd-123,” Tech. Rep.,
1965. [cited at p. 22, 23, 24, 80]

[Dijkstra, 1971] E. Dijkstra, “Hierarchical ordering of sequential processes,” Acta Informatica,
vol. 1, no. 2, pp. 115–138, 1971. [Online]. Available: http://dx.doi.org/10.1007/BF00289519
[cited at p. 22, 80]

[Elsheikh et al., 2013] A. Elsheikh, M. Awais, E. Widl, and P. Palensky, “Modelica-enabled rapid pro-
totyping of cyber-physical energy systems via the functional mockup interface,” in Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES), 2013 Workshop on, May 2013,
pp. 1–6. [cited at p. 16, 80]

[EPFL, 2015] EPFL, “Implicit parameters - scala documentation,” http://docs.scala-lang.org/tutorials/
tour/implicit-parameters.html, 2015, (Visited on 12/10/2015). [cited at p. 80, 110]

[FMI development group, 2014a] FMI development group, “Functional mock-up interface for model
exchange and co-simulation 2.0,” Modelica, Tech. Rep. Version 2.0, July 2014.
[Online]. Available: https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_
for_ModelExchange_and_CoSimulation_v2.0.pdf [cited at p. 11, 16, 80, 87, 88]

[FMI development group, 2014b] ——, “Fmi [start],” https://fmi-standard.org/, 2014, accessed May 28
2015. [cited at p. 15, 80]

[Friedman and Wise, 1976] D. P. Friedman and D. S. Wise, “The impact of applicative programming on
multiprocessing,” in Proceedings of the 1976 International Conference on Parallel Processing.
Long Beach, CA, USA: IEEE, 1976, pp. 263–272, IEEE Catalog Number: 76CH1127-0C.
[cited at p. 26, 80]

[Geer, 2005] D. Geer, “Chip makers turn to multicore processors,” Computer, vol. 38, no. 5, pp. 11–13,
May 2005. [cited at p. 2, 12, 22, 23, 63, 80]

[Gill, 1958] S. Gill, “Parallel programming,” The Computer Journal, vol. 1, no. 1, pp. 2–10, 1958.
[Online]. Available: http://comjnl.oxfordjournals.org/content/1/1/2.abstract [cited at p. 22, 23, 80]

80

http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/1095408.1095423
http://linux.die.net/man/3/usleep
http://doi.acm.org/10.1145/365559.365617
http://doi.acm.org/10.1145/365559.365617
http://dx.doi.org/10.1007/BF00289519
http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html
http://docs.scala-lang.org/tutorials/tour/implicit-parameters.html
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://fmi-standard.org/
http://comjnl.oxfordjournals.org/content/1/1/2.abstract

Bibliography

[Haller and Odersky, 2009] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and
event-based programming,” Theoretical Computer Science, vol. 410, no. 2-3, pp. 202 – 220,
2009, distributed Computing Techniques. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0304397508006695 [cited at p. 29, 30, 81]

[Haller et al.] P. Haller, A. Prokopec, H. Miller, V. Klang, R. Kuhn, and V. Jovanovic, “Futures and
promises - scala documentation,” http://docs.scala-lang.org/overviews/core/futures.html, (Vis-
ited on 12/10/2015). [cited at p. 81, 111]

[Hansen, 1973] P. B. Hansen, Operating System Principles. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1973. [cited at p. 24, 81]

[Helmbold and McDowell, 1996] D. Helmbold and C. McDowell, “A taxonomy of race conditions,”
Journal of Parallel and Distributed Computing, vol. 33, no. 2, pp. 159 – 164, 1996. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0743731596900349 [cited at p. 23,

64, 81]

[Hewitt et al., 1973] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor formalism for
artificial intelligence,” in Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, ser. IJCAI’73. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1973, pp. 235–245. [Online]. Available: http://dl.acm.org.ez.statsbiblioteket.dk:
2048/citation.cfm?id=1624775.1624804 [cited at p. 29, 81]

[Hibbard, 1977] P. Hibbard, “Parallel processing facilities,” in New directions in algorithmic languages,
1976, S. A. Schuman and I. de recherche d’informatique et d’automatique (France)), Eds.
2, 1976, Saint-Pierre-de-Chartreuse, IsÃ¨re: IRIA, 1977, pp. 1–7. [Online]. Available:
http://opac.inria.fr/record=b1075190 [cited at p. 26, 81]

[Hjørland, 2012] B. Hjørland, “Methods for evaluating information sources: An annotated catalogue,”
Journal of Information Science, vol. 38, no. 3, pp. 258–268, 6 2012. [cited at p. 73, 81]

[Hoare, 1985] T. Hoare, Communication Sequential Processes. Englewood Cliffs, New Jersey 07632:
Prentice-Hall International, 1985. [cited at p. 31, 81]

[Intel Corporation, 2015] Intel Corporation, “Moore’s law and intel innovation,” http://www.intel.
com/content/www/us/en/history/museum-gordon-moore-law.html, December 2015, (Visited
on 12/18/2015). [cited at p. 63, 81]

[ITEA Office Association, 2015] ITEA Office Association, “Itea 3 Â· project Â· 07006 modelisar,”
https://itea3.org/project/modelisar.html, December 2015, (Visited on 12/06/2015). [cited at p. 15,

81]

[Jovanovic and Haller, 2015] V. Jovanovic and P. Haller, “The scala actors migration guide - scala docu-
mentation,” http://docs.scala-lang.org/overviews/core/actors-migration-guide.html, 2015, (Vis-
ited on 10/23/2015). [cited at p. 73, 81]

[Katz and Weise, 1990] M. Katz and D. Weise, “Continuing into the future: On the interaction of
futures and first-class continuations,” in Proceedings of the 1990 ACM Conference on LISP
and Functional Programming, ser. LFP ’90. New York, NY, USA: ACM, 1990, pp. 176–184.
[Online]. Available: http://doi.acm.org/10.1145/91556.91628 [cited at p. 27, 81]

[Larsen, 2015] P. G. Larsen, “into-cps.au.dk,” http://into-cps.au.dk/, 2015, (Visited on 10/13/2015).
[cited at p. iii, 21, 81]

81

http://www.sciencedirect.com/science/article/pii/S0304397508006695
http://www.sciencedirect.com/science/article/pii/S0304397508006695
http://docs.scala-lang.org/overviews/core/futures.html
http://www.sciencedirect.com/science/article/pii/S0743731596900349
http://dl.acm.org.ez.statsbiblioteket.dk:2048/citation.cfm?id=1624775.1624804
http://dl.acm.org.ez.statsbiblioteket.dk:2048/citation.cfm?id=1624775.1624804
http://opac.inria.fr/record=b1075190
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html
https://itea3.org/project/modelisar.html
http://docs.scala-lang.org/overviews/core/actors-migration-guide.html
http://doi.acm.org/10.1145/91556.91628
http://into-cps.au.dk/

Bibliography

[Lea, 2000] D. Lea, “A java fork/join framework,” in Proceedings of the ACM 2000 Conference on Java
Grande, ser. JAVA ’00. New York, NY, USA: ACM, 2000, pp. 36–43. [Online]. Available:
http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/337449.337465 [cited at p. 31, 82]

[Lee, 2008] E. A. Lee, “Cyber physical systems: Design challenges,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2008-8, Jan 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html [cited at p. 1, 5, 12, 82]

[Lee, 2010] ——, “CPS foundations,” in Proceedings of the 47th Design Automation Conference, ser.
DAC ’10. New York, NY, USA: ACM, 2010, pp. 737–742. [cited at p. 2, 12, 13, 82]

[Microsoft, 2015] Microsoft, “Acquiring high-resolution time stamps (windows),” https:
//msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx, 2015, (Visited on 12/07/2015).
[cited at p. 52, 82]

[Mollick, 2006] E. Mollick, “Establishing moore’s law,” IEEE Annals of the History of Computing,
vol. 28, no. 3, pp. 62–75, 2006. [cited at p. 63, 82]

[Moore, 1965] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, pp. 114–117, 1965. [cited at p. 63, 82]

[Netzer and Miller, 1992] R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues
and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1, no. 1, pp. 74–88, Mar. 1992.
[Online]. Available: http://doi.acm.org/10.1145/130616.130623 [cited at p. 23, 82]

[Newcombe et al., 2014] C. Newcombe, T. Rath, F. zhang, B. Munteanu, marc Brooker, and
M. Deardeuff, “Use of formal methods at amazon web services,” http://research..com/en-us/
um/people/lamport/tla/formal-methods-amazon.pdf, 2014, accessed May 27 2015. [cited at p. 13,

82]

[NIST, 2015] C. P. S. P. W. G. NIST, “Draft framework for cyber-physical systems,” National Institute
of Standardards and Technology, Tech. Rep. Draft Release 0.8, September 2015. [cited at p. 13, 82]

[Odersky, 2006] M. Odersky, “A brief history of scala,” http://www.artima.com/weblogs/viewpost.jsp?
thread=163733, June 2006, (Visited on 09/22/2015). [cited at p. 25, 82]

[Odersky and al., 2004] M. Odersky and al., “An overview of the scala programming language,” EPFL
Lausanne, Switzerland, Tech. Rep. IC/2004/64, 2004. [cited at p. 82, 93]

[Osherove, 2009] R. Osherove, The Art of Unit Testing: With Examples in .Net, 1st ed. Greenwich,
CT, USA: Manning Publications Co., 2009. [cited at p. 66, 82]

[Peierls et al., 2005] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer, D. Lea, and D. Holmes, Java Concur-
rency in Practice. Addison-Wesley Professional, 2005. [cited at p. 25, 82]

[Prokopec, 2015] A. Prokopec, “Design of parallel collection’s tasksupport - google groups,”
https://groups.google.com/forum/#!topic/scala-internals/lzxVlexkqEg, July 2015, (Visited on
12/10/2015). [cited at p. 82, 110]

[Prokopec and Miller, 2015] A. Prokopec and H. Miller, “Parallel collections - overview - scala
documentation,” http://docs.scala-lang.org/overviews/parallel-collections/overview.html, 2015,
(Visited on 12/10/2015). [cited at p. 82, 111]

82

http://doi.acm.org.ez.statsbiblioteket.dk:2048/10.1145/337449.337465
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
https://msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dn553408(v=vs.85).aspx
http://doi.acm.org/10.1145/130616.130623
http://research..com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://research..com/en-us/um/people/lamport/tla/formal-methods-amazon.pdf
http://www.artima.com/weblogs/viewpost.jsp?thread=163733
http://www.artima.com/weblogs/viewpost.jsp?thread=163733
https://groups.google.com/forum/#!topic/scala-internals/lzxVlexkqEg
http://docs.scala-lang.org/overviews/parallel-collections/overview.html

Bibliography

[Prokopec et al., 2011] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky, “A generic parallel
collection framework,” in Euro-Par 2011 Parallel Processing, ser. Lecture Notes in Computer
Science, E. Jeannot, R. Namyst, and J. Roman, Eds. Springer Berlin Heidelberg, 2011,
vol. 6853, pp. 136–147. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-23397-5_14
[cited at p. 31, 83]

[Reiser, 1991] M. Reiser, The Oberon System: User Guide and Programmer’s Manual. New York,
NY, USA: ACM, 1991. [cited at p. 64, 83]

[Reisinger, 2014] D. Reisinger, “Keeping up with moore’s law proves difficult for intel - cnet,”
http://www.cnet.com/news/keeping-up-with-moores-law-proves-difficult-for-intel/, July 2014,
(Visited on 12/18/2015). [cited at p. 63, 83]

[Rochester, 1955] N. Rochester, “The computer and its peripheral equipment,” in Papers
and Discussions Presented at the the November 7-9, 1955, Eastern Joint AIEE-IRE Com-
puter Conference: Computers in Business and Industrial Systems, ser. AIEE-IRE ’55
(Eastern). New York, NY, USA: ACM, 1955, pp. 64–69. [Online]. Available:
http://doi.acm.org/10.1145/1455319.1455330 [cited at p. 23, 83]

[SISO, 1999] S. I. S. O. SISO, “Siso-ref-002-1999: Fidelity implementation study group report,”
https://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx, 1999, (Visited on
12/18/2015). [cited at p. 13, 83]

[Sommers, 2008] F. Sommers, “Scala tendencies and concurrency,” http://www.artima.com/lejava/
articles/javaone_2008_martin_odersky.html, May 2008, (Visited on 10/23/2015). [cited at p. 73,

83]

[Sun et al., 2011] Y. Sun, S. Vogel, H. Steuer, A. Siemens, and E. Sector, “Combining advantages of
specialized simulation tools and modelica models using functional mock-up interface (fmi),” in
Proceedings of the 8th MODELICA Conference, 2011. [cited at p. 16, 17, 83]

[Typesafe Inc, 2015] Typesafe Inc, “Akka scala documentation,” http://akka.io/docs/, Akka, September
2015, Release 2.4.0. [cited at p. 30, 83, 111]

[van Acker et al., 2015] B. van Acker, J. Denil, H. Vangheluwe, and P. D. Meulenaere, “Generation
of an Optimised Master Algorithm for FMI Co-simulation,” in DEVS ’15 Proceedings of the
Symposium on Theory of Modeling & Simulation, January 2015. [cited at p. 14, 83]

[Wirth, 1995] N. Wirth, “A plea for lean software,” Computer, vol. 28, no. 2, pp. 64–68, Feb 1995.
[cited at p. 64, 83]

83

http://dx.doi.org/10.1007/978-3-642-23397-5_14
http://www.cnet.com/news/keeping-up-with-moores-law-proves-difficult-for-intel/
http://doi.acm.org/10.1145/1455319.1455330
https://www.sisostds.org/ProductsPublications/ReferenceDocuments.aspx
http://www.artima.com/lejava/articles/javaone_2008_martin_odersky.html
http://www.artima.com/lejava/articles/javaone_2008_martin_odersky.html

Appendices

85

AppendixA
FMU State

This appendix contains a diagram and a table of the state machine used for Co-Simulation in the
Functional Mock-up Interface (FMI) standard.

Figure A.1: Co-Simulation state machine for an Functional Mock-up Unit (FMU) [FMI develop-
ment group, 2014a].

87

Appendix A. FMU State

Figure A.2: Co-Simulation state table for an FMU [FMI development group, 2014a].

Meaning of symbols and numbers in figure A.2.

x means: call is allowed in the corresponding state
number means: call is allowed if the indicated condition holds:
1 for a variable with variability 6= ”constant“ that has initial = ”exact“ or ”approx“
2 for a variable with causality = ”output“ or continuous-time states or state derivatives (if element

<Derivatives> is present)
3 for a variable with variability 6= ”constant” that has initial=”exact“ or causality=”input“
6 for a variable with causality = ”input“ or (causality = ”parameter“ and variability = ”tunable“

88

7 always, but retrieved values are usable for debugging only
8 always, but if status is other than fmi2Terminated, retrieved values are useable for debugging

only.

89

AppendixB
FMI formalization overview sheet

The formulas and descriptions below is a condensed version of the proposed formalization of the
FMI [Broman et al., 2013].

C Set of all FMU instances in a model
Set of all FMU instances coordinated by the same MA

c ∈ C FMU Instance modifier
One FMU instance, c, is an element in C

Sc Set of state valuations for instance c
Given an instance c, Sc denotes the set of all possible states that c may be in

Uc Set of input port variables for instance c

Yc Set of output port variables for instance c

VVV Set of values that a variable may take on
Assume single universe of values for all variables

Dc ⊆ Uc ×Yc I/O dependency for instance c
The XML file in an FMU can (optionally) express the dependencies between input and
output variables of an FMU. The set of all such input/output dependencies of an FMU
instance c are modeled as a binary relation. (u, y) ∈ Dc means output y of c is directly
dependent on input u of c

U = ∪c∈CUc Set of all input variables in a model

Y = ∪c∈CYc Set of all output variables in a model

D = ∪c∈CDc Set of all I/O dependencies in a model

P : U→ Y Port mapping
Connections between FMU instances in the model. U and Y are the sets of all input and
output variables of all instances, respectively. P is a total function, that maps every input to
a unique output variable. It is assumed, that the model is closed. Multiple inputs can have
the same output, yet one input can only lead to one output by the definition of function.

91

Appendix B. FMI formalization overview sheet

Functions

initc : RRR≥0 Corresponds to fmiInitializeSlave.
Initializes FMU instance c with given start time t

setc : Sc ×Uc ×VVV→ Sc Corresponds to fmiSetXXX.
Given FMU instance c, given current state s ∈ Sc, input variable u ∈ Uc, and value
v ∈ V returns the new state of c obtained by setting u to v and keeping the rest
unchanged.

getc : Sc ×Yc → VVV Corresponds to fmiGetXXX.
Returns the value of output variable y of FMU instance c at state s

doStepc : Sc ×RRR≥0 → Sc ×RRR≥0 Corresponds to doStep.
Takes an input the current state s of FMU instance c and a non-negative real value
h ∈ R≥0, corresponding to the communicationStepSize.

FMU contract
A0: If doStepc(s,h) = (s′, h′) then 0 ≤ h′ ≤ h

A1: If doStepc(s, h) = (s′,h′) then for any h” where 0 ≤ h′′ ≤ h′, doStepc(s, h
′′) = (s′′, h′′)

for some s”
If an FMU accepts a certain time step h, or at least makes partial progress until h′ ≤ h then
it must accept any time step h′′ ≤ h′

s′ = s[u := v] Given state s ∈ Sc of some instance c ∈ C and given input variable u ∈ Uc

and value v ∈ V we denote by s′ = s[u := v] the state that is identical til s′ except that s′

assigns value v to variable u

A2: Let s′ = setc(s,u, v). Then s′ = s[u := v]

A3: Let v = getc(s, y) and v′ = getc(s
′, y). If s′ = s[u1 := v1, ...,uk := vk] and out-

put variable y does not directly depend on any input u1, ...,uk, then v′ = v

Determinate execution
(1): getMaxStepSizec : Sc → R≥0 ∪ {∞}

Returns an upper bound on the step size that the FMU can accept.

A4: If c ∈ CP and s ∈ Sc and getMaxStepSizec(s) = h then for all h′ where 0 ≤ h′ ≤ h,
doStepc(s,

′ h) = (s′, h′) for some s′.
Cp Is the set of FMU instances that implement (1).
An instance in CP will accept any time step smaller than or equal to the time step returned
by getMaxStepSize.

A5: (a): |CL| ≤ 1

(b): |CL| ∪CR ∪CP = C
CR set of FMU isntances with rollback capability, i.e. supports setting and getting
states
CL set of FMU instances that are not in CR and not in CP

(c): CL ∩CR = ∅ and CR ∩CP = ∅ and CP ∩CL = ∅

92

AppendixC
Scala class hierarchy

This appendix contains the Scala class hierarchy shown in figure C.1.

Figure C.1: Scala class hierarchy [Odersky and al., 2004].

93

AppendixD
Actor Trait

The trait used in the implementation using actors described in section 3.3.4 is shown in listing D.1.

Scala

1 trait FmuActor {
2 def doSimulationStep(mi: ModelInstance, si:

↪→ FmiSimulationInstance2, currentCommunicationPoint:
↪→ Double, communicationStepSize:

3 Double, inputState: Option[InputState], rb: Option[
↪→ IFmiComponentState]):

4 Future[Either[(ModelInstance, (InstanceState, Option[
↪→ IFmiComponentState])), Either[(ModelInstance, (
↪→ Double, Option[IFmiComponentState])), (
↪→ ModelInstance,

5 Fmi2Status)] with Product with Serializable] with Product
↪→ with Serializable]

6 }

Listing D.1: FmuActor trait

95

AppendixE
Test Framework

This appendix contains the code of the test framework. The test framework was used to evaluate
performance and correctness of Co-Simulation Orchestration Engines (COEs) implementations. It
was described in chapter 4. The code for the class TestRunner is shown in listing E.1, the code
for the class CoeLauncher is shown in listing E.2, the code for the class SimulationResult
is shown in listing E.3, the code for the class ServerRequester is shown in listing E.4, and the code
for the class IOThreadHandler is shown in listing E.5. An example of the test HVAC Test1
described in section 4.4.1 that uses the test framework is shown in listing E.6

1 public class TestRunner {
2 public static SimulationResults RunTestsForJar(String

↪→ overallTestName, String jarPath, String configPath,
↪→ double endTime, List<String> arguments, String baseline)
↪→ throws Exception {

3 Map<String, String> results = new HashMap<>();
4 Map<String,Long> executionTimes = new HashMap<>();
5 Map<String,Boolean> baselineNonMatches = new HashMap<>();
6 if(arguments != null && arguments.size() > 0) {
7 for (String argument : arguments) {
8 // do some work here on intValue
9 RunSimulation(overallTestName + " - " + argument,

↪→ jarPath, configPath, endTime, argument.split(" "),
↪→ baseline, results, executionTimes,
↪→ baselineNonMatches); }

10 } else {
11 RunSimulation(overallTestName, jarPath, configPath,

↪→ endTime, null, baseline, results, executionTimes,
↪→ baselineNonMatches);

12 }
13 return new SimulationResults(results, executionTimes,

↪→ baselineNonMatches);
14 }
15 private static void RunSimulation(String overallTestName,

↪→ String jarPath, String configPath, double endTime,
↪→ String[] argument,

97

Appendix E. Test Framework

16 String baseline, Map<String,
17 String> results, Map<String, Long> executionTimes, Map<String,

↪→ Boolean> doesNotMatchBaseline) throws Exception {
18 SimulationResult result = RunSimulation(endTime,jarPath,

↪→ configPath,argument);
19 String name = overallTestName;
20 if(baseline != null && result.result.equals(baseline) ==

↪→ false){
21 doesNotMatchBaseline.put(name, true);}
22 } else{
23 doesNotMatchBaseline.put(name, false);
24 }
25 results.put(name,result.result);
26 executionTimes.put(name,result.executionTime);
27 }
28

29 public static SimulationResult RunSimulation(double endTime,
↪→ String jarPath, String configPath, String[] arguments)
↪→ throws Exception {

30 Process proc = CoeLauncher.launchCoe(jarPath, arguments);
31 //Keep printing inputs from the java process to the console
32 ThreadHelpers.IOThreadHandler outputHandler = new

↪→ ThreadHelpers.IOThreadHandler(
33 proc.getInputStream());
34 outputHandler.start();
35 //Initialize the CoE
36 JsonNode initializationDataJson = ServerRequester.

↪→ InvokeInitialize(configPath);
37 int sessionId = initializationDataJson.path("sessionId").

↪→ asInt();
38 //Simulate
39 JsonNode simulationDataJson = ServerRequester.InvokeSimulate

↪→ (endTime, sessionId);
40 String status = simulationDataJson.path("status").asText();
41 Long executionTime = simulationDataJson.path("lastExecTime")

↪→ .asLong();
42 System.out.println("Status: " + status);
43 System.out.println("Execution time: " + executionTime);
44 //Get results
45 String resultData = ServerRequester.invokeResult(sessionId);
46 //Terminate the CoE
47 proc.destroy();
48 //Return the results
49 return new SimulationResult(resultData, executionTime);
50 }
51 }

Listing E.1: Java. The code for the class TestRunner

98

1 public class CoeLauncher {
2 //Returns once the CoE has started.
3 public static Process launchCoe(String fullPath, String[]

↪→ arguments) throws IOException {
4 String argument = "";
5 if(arguments != null && arguments.length > 0){
6 argument = " " + String.join(" ", arguments);
7 }
8 Process proc = Runtime.getRuntime().exec("java -jar " +

↪→ fullPath + argument);
9 BufferedReader br = new BufferedReader(new InputStreamReader

↪→ ((proc.getInputStream())));
10 String output;
11 while ((output = br.readLine()) != null) {
12 System.out.println(output);
13 if (output.equalsIgnoreCase("Hit Enter To Stop."))
14 break;
15 }
16

17 return proc;
18 }
19 public static Process launchCoe(String fullPath) throws

↪→ IOException {
20 return launchCoe(fullPath, null);
21 }
22 }

Listing E.2: Java. The code for the class CoeLauncher

1 public class SimulationResults {
2 public Map<String, Boolean> baselineNonMatches;
3 public Map<String, String> results;
4 public Map<String,Long> executionTimes;
5 public SimulationResults(Map<String, String> results, Map<

↪→ String,Long> executionTimes){
6 this.results = results;
7 this.executionTimes = executionTimes;
8 }
9

10 public SimulationResults(Map<String, String> results, Map<
↪→ String, Long> executionTimes, Map<String, Boolean>
↪→ baselineMatches) {

11 this.results = results;
12 this.executionTimes = executionTimes;
13 this.baselineNonMatches = baselineMatches;
14 }
15 }

Listing E.3: Java. The code for the class SimulationResults

99

Appendix E. Test Framework

1 public class ServerRequester {
2 final static ObjectMapper mapper = new ObjectMapper();
3

4 public static JsonNode PerformPostRequest(byte[] data, URL url
↪→) throws Exception {

5 HttpURLConnection urlConn;
6 urlConn = (HttpURLConnection) url.openConnection();
7 urlConn.setDoOutput(true); //Makes it a POST request
8 urlConn.addRequestProperty("Content-Type", "application/json

↪→ ");
9 urlConn.setRequestProperty("Content-Length", Integer.

↪→ toString(data.length));
10 urlConn.getOutputStream().write(data);
11

12 BufferedReader br = new BufferedReader(new InputStreamReader
↪→ ((urlConn.getInputStream())));

13 StringBuilder sb = new StringBuilder();
14 String output;
15 while ((output = br.readLine()) != null) {
16 sb.append(output);}
17

18 urlConn.disconnect();
19

20 //Removing [] around json data
21 String response = sb.substring(1, sb.length()-1);
22 return mapper.readTree(response);
23 }
24

25 public static JsonNode InvokeInitialize(String configFullPath)
↪→ throws Exception {

26 byte[] data = Files.readAllBytes(Paths.get(configFullPath));
27 URL mUrl = new URL("http://localhost:8082/initialize");
28

29 return PerformPostRequest(data, mUrl);
30 }
31

32 public static JsonNode InvokeSimulate(double endTime, int
↪→ sessionId) throws Exception {

33 Map<String,Double> startEndTime = new HashMap<>();
34 startEndTime.put("startTime",0.0);
35 startEndTime.put("endTime",endTime);
36 String startEndTimeJson = new ObjectMapper().

↪→ writeValueAsString(startEndTime);
37 byte[] data = startEndTimeJson.getBytes();
38

39 URL url = new URL("http://localhost:8082/simulate/"+
↪→ sessionId);

40

100

41 return PerformPostRequest(data, url);
42 }
43

44 public static String invokeResult(int sessionId) throws
↪→ Exception {

45 HttpURLConnection urlConn;
46 URL mUrl = new URL("http://localhost:8082/result/"+sessionId

↪→);
47 urlConn = (HttpURLConnection) mUrl.openConnection();
48 urlConn.addRequestProperty("Content-Type", "text/plain");
49

50 BufferedReader br = new BufferedReader(new InputStreamReader
↪→ ((urlConn.getInputStream())));

51 ArrayList<String> outputArray = new ArrayList<>();
52 String output;
53 while ((output = br.readLine()) != null) {
54 outputArray.add(output);
55 }
56

57 urlConn.disconnect();
58

59 //Csv format
60 return String.join("\n", outputArray);
61 }
62 }

Listing E.4: Java. The code for the class ServerRequester

1 public class ThreadHelpers {
2 public static class IOThreadHandler extends Thread {
3 private InputStream inputStream;
4 private StringBuilder output = new StringBuilder();
5

6 IOThreadHandler(InputStream inputStream) {
7 this.inputStream = inputStream;
8 }
9

10 public void run() {
11 Scanner br = null;
12 try {
13 br = new Scanner(new InputStreamReader(inputStream));
14 String line = null;
15 while (br.hasNextLine()) {
16 line = br.nextLine();
17 System.out.println(line);
18 output.append(line
19 + System.getProperty("line.separator"));
20 }
21 } finally {

101

Appendix E. Test Framework

22 br.close();
23 }
24 }
25

26 public StringBuilder getOutput() {
27 return output;
28 }
29 }
30 }

Listing E.5: Java. The code for the class IOThreadHandler

1 public void HVAC1Controller4VCU01Step1000EndTime() throws
↪→ Exception {

2 String configPath = "C:\\thesis\\source\\testing\\
↪→ hvac4fcu01step.json";

3 double endTime = 1000.0;
4 int nrOfSimulationsPerWaitTime = 5;
5 SimulationResult baselineResult = null;
6

7 ArrayList<Tuple<String, String>> jars = new ArrayList<>();
8 jars.add(new Tuple<>("Baseline", "C:\\thesis\\source\\testing

↪→ \\jars\\baseline.jar"));
9 jars.add(new Tuple<>("Future", "C:\\thesis\\source\\testing\\

↪→ jars\\fullFuture.jar"));
10 jars.add(new Tuple<>("Par", "C:\\thesis\\source\\testing\\jars

↪→ \\fullPar.jar"));
11 jars.add(new Tuple<>("Actor", "C:\\thesis\\source\\testing\\

↪→ jars\\fullActor.jar"));
12 //Create directory to contain test result
13 File directory = new File(TestUtils.getCurrentTimeStamp());
14 directory.mkdir();
15

16 //Create and open file to contain test results
17 File executionResults = new File(directory, "executionTimes.

↪→ csv");
18 FileWriter fStream = new FileWriter(executionResults, true);
19 BufferedWriter bufferedWriterExecResults = new BufferedWriter(

↪→ fStream);
20 PrintWriter executionResultWriter = new PrintWriter(

↪→ bufferedWriterExecResults);
21 executionResultWriter.println("baseline,Future,Par,Actor");
22 ArrayList<String> csvResults = new ArrayList<>();
23

24 for (Tuple<String, String> tuple : jars) {
25 ArrayList<Long> execTimes = new ArrayList<>();
26 for (int j = 1; j <= nrOfSimulationsPerWaitTime; j++) {
27 SimulationResult result = TestRunner.RunSimulation(endTime,

↪→ tuple.y, configPath, null);

102

28 if(tuple.x == "Baseline" && baselineResult == null)
29 baselineResult = result;
30 else
31 Assert.assertTrue("Failed with " + tuple.x, result.result.

↪→ equals(baselineResult.result));
32 execTimes.add(result.executionTime);
33 }
34 if(nrOfSimulationsPerWaitTime >= 3)
35 {execTimes.remove(execTimes.indexOf(Collections.min(execTimes)

↪→));
36 execTimes.remove(execTimes.indexOf(Collections.max(execTimes))

↪→);
37 }
38 csvResults.add(String.valueOf(TestUtils.sum(execTimes) / (

↪→ nrOfSimulationsPerWaitTime-2)));
39 }
40

41 executionResultWriter.println(String.join(",", csvResults));
42

43 executionResultWriter.close();
44 System.out.println("Stored data in " + executionResults.

↪→ getAbsolutePath());
45 }

Listing E.6: Java. Example of the test HVAC Test1, that is described in section 4.4.1

103

AppendixF
Copy-script

The script in listing F.1 copies an Functional Mock-up Unit (FMU), modifies the FMU config-
uration file by changing the model name and guid along with modifying the COE configuration
file to make use of the new FMUs. To better understand the operations in the script, section 2.4.1
describes an FMU package. The script was mentioned in section 4.3.

1 #!/usr/bin/env bash
2 #Name of output without guid
3 JsonOutputProperty=output
4 #Name of input without guid
5 JsonInputProperty=input
6 #Path to the FMU to chain
7 FmuPath=$1
8 #"fmus/performance/integrate"
9 #cat ${FmuPath}/modelDescription.xml

10 echo "${FmuPath}"
11 #FMU base name taken from directory
12 FmuBaseName=$(basename $FmuPath)
13 #Destination folder for the new FMUs
14 FmuDestFolder=$2
15 #"fmus/performance/test"
16 #Basepath to insert in FMUs without FMU name
17 ConfigFmuBasePath=$3
18 #../fmus/performance/
19 #Path to initial config file
20 ConfigJsonPath=$4
21 #Types of libraries
22 LibraryTypes=("dll" "dylib" "so")
23 #Guid of the FMU
24 #FmuGuid=$(sed -n ’s/.*guid="{\([^"]\+\)}.*/\1/p’ $FmuPath/

↪→ modelDescription.xml)
25 FmuGuid=‘grep -oh ’guid="{\([^"]\+\)}"’ "${FmuPath}/

↪→ modelDescription.xml" | sed ’s|guid=||g’ | tr -d ’"’ | tr
↪→ -d ’{’ | tr -d ’}’‘

26 #FmuGuid=‘echo ’${FmuPath}/modelDescription.xml’‘

105

Appendix F. Copy-script

27 echo $FmuGuid
28

29 echo Create output config
30 cp $ConfigJsonPath performance.json
31 ConfigJsonPath=performance.json
32 mkdir -p $FmuDestFolder
33

34 END=$5
35 for i in $(seq "$END")
36 do
37

38 #Copy the existing FMU to a new directory
39 NewFmuPath="${FmuDestFolder}/$(basename $FmuPath)$i"
40 echo "BLAA $NewFmuPath"
41 rm -rf $NewFmuPath
42 cp -r $FmuPath $NewFmuPath
43 echo "Copied FMU from $FmuPath to $NewFmuPath"
44

45 #Change the library names so e.g. integrate.dll becomes
↪→ integrate1.dll

46 for type in ${LibraryTypes[@]}
47 do
48 for lib in $(find $NewFmuPath -iname ’*.’"$type")
49 do
50 NewLibFileName=$(dirname $lib)/${FmuBaseName}${i}.${lib##*.}
51 echo Renaming ${lib} to ${NewLibFileName}
52 mv $lib $NewLibFileName
53 done
54 done
55

56 #Replace the old GUID with the new guid in the modelDescription.
↪→ xml file

57 newGuid="$FmuGuid$i"
58 sed -i.kk "s/$FmuGuid/$newGuid/g" "$NewFmuPath/modelDescription.

↪→ xml"
59 echo "Replaced guid in modelDescription.xml with $newGuid"
60

61 #New FMU in config.json
62 FmuConfigAppend=".fmus |= (.+ [\"

↪→ $ConfigFmuBasePath$FmuBaseName$i\"] | unique)"
63

64

65 #New connection in config.json
66 if [$i != 1]; then
67 CONGUID="$FmuGuid"$(($i-1))
68 else
69 CONGUID=$FmuGuid
70 fi
71

106

72 #Create the new config.json file
73 FmuConnectionAppend=".connections.\"{$CONGUID}.int1.

↪→ $JsonOutputProperty\" = [\"{$newGuid}.int1.
↪→ $JsonInputProperty\"]"

74 "jq" "$FmuConnectionAppend | $FmuConfigAppend" "$ConfigJsonPath"
↪→ > "$newGuid.json"

75 mv -f "$newGuid.json" "$ConfigJsonPath"
76 echo "Appended the new FMU to fmus and connections in config.

↪→ json"
77 done
78 exec $SHELL

Listing F.1: Bash. The code for the shell script that copies an FMU.

107

AppendixG
Evaluation of Quality Attributes

This appendix describes the evaluation of the quality attributes composability, simplicity, config-
urability, scalability, documentation, and performance described in section 4.6. The rating scheme
is described in table G.1

Property Rating
- + ++

Composability No composability Limited composability Easy composability

Simplicity
Extensive initializa-
tion and complicated
usage

Some initialization
and moderate usage

Basic initialization
and easy usage

Configurability Not configurable
Moderately config-
urable

Very configurable

Scalability
No functionality for
scaling

Some scaling func-
tionality

Extensive scaling
functionality

Documentation
Limited documenta-
tion

Basic documentation
Well documented and
many resources

Performance Slowest In the middle Fastest

Table G.1: Rating of quality attributes. Performance is relative to the three implementations.

Composability

Parallel Collections: Parallel collections invokes functions concurrently on a range of collections
as shown in section 2.8.3 and gathers the results in a blocking fashion. The composability
of parallel collections is therefore given the rating -.

Futures: Futures offers various possibilities for composability, some of them are shown in sec-
tion 2.8.1: for-comprehensions, sequence, callbacks, combinators and so forth. With paral-
lel collections it is necessary to wait for the entire computation to finish, whereas the result
of each future can be accessed as soon as it is completed. The composability of futures is
therefore given the rating +.

109

Appendix G. Evaluation of Quality Attributes

Actors: Actors can be made to return futures as shown in section 2.8.2, and therefore offers the
composability features of futures. Actors also provide additional composable features such
as hierarchical structures, they can send messages to other actors etc. The composability of
actors is therefore given the rating ++.

Simplicity

Parallel Collections: Parallel collections can be taken advantage of by invoking the function par
on a range of collections, and can be converted back to a regular collection by invoking the
function toSeq. It is simple to use and requires no initialization. The simplicity of parallel
collections is therefore given the rating ++.

Futures: Futures can be taken advantage of by wrapping the functions that are to run con-
currently in future objects. They require an ExecutionContext, which is passed as
an implicit parameter. This means, that an ExecutionContext must be passed ex-
plicitly to the function or it is provided automatically [EPFL, 2015]. The passing of an
ExecutionContext and the wrapping of functions in future objects are considered to
be conceptually simple. The simplicity of futures is therefore given a rating of ++.

Actors: Actors require the external library Akka and a central initialization of the actor system.
The actor system is used for constructing actors, and this is also considered initialization.
As the actors are objects, they have to be passed around as parameters for functions to use
them. The simplicity of actors therefore get the rating +.

Configurability

Parallel Collections: Parallel collections uses task support, which is backed by an Execution-
Context. However, configuring task support makes chaining collection functions impos-
sible as shown in listing G.1. It shows, that in order to perform a map function on the parallel
collection with a different task support than the default, it is necessary to introduce mutable
state and split the chaining of functions. This example: Array(1,2,3).par.map(x
=> x) uses the default task support, but supports chaining of functions 1. So parallel col-
lections are configurable to an extent, but it comes with trade offs. The configurability of
parallel collections is therefore given the rating +.

Scala

1 val array = Array(1,2,3).Par
2 array.taskSupport = new ForkJoinTaskSupport(new scala

↪→ .concurrent.forkjoin.ForkJoinPool(2))
3 array.map(x => x)

Listing G.1: Configuration of parallel collections

Futures: Futures use implicit parameters as mentioned previously. Thereby an ExecutionContext
can be used just by importing it without having to change the implementation using futures.

1Discussions regarding this issue has been ongoing, and it might be changed in a future version of Scala [Prokopec,
2015]

110

Futures are configurable because of their usage of an ExecutionContext. The config-
urability of futures is therefore given the rating +.

Actors: Actors can be configured with dispatchers, which contains execution contexts as used by
parallel collections and futures. However the dispatchers contain additional functionality,
e.g. throughput, which is a measure of how many messages an actor should process before
the thread jumps to the next actor. Besides the additional functionality in dispatchers, it is
also possible to configure logging, routing, remoting, etc. The configurability of actors is
therefore given the rating ++.

Scalability

Parallel Collections: Parallel collections can take advantage of concurrency, but otherwise it
does not offer anything in terms of scalability, as it performs blocking operations. The
scalability of parallel collections is therefore given the rating -.

Futures: Because futures provide the opportunity of performing non-blocking operations it can
increase the scalability of the COE. As the COE runs as a web server, it is undesirable
to block the thread responsible of handling requests, and therefore futures can be used to
perform simulations without leaving the server unresponsive until the simulation is finished.
Similar to parallel collections it can also take advantage of concurrency. The scalability of
futures is therefore given the rating +.

Actors: Actors offers the features of futures and additional features. It provides remoting ca-
pabilities, making it able to split a simulation workload not only across cores but across
distributed hardware as well. It also offers session management capabilities, fault handling
e.g. with supervisor actors as described in section 2.8.2 and so forth. The possibility of
sending untyped messages makes it possible to provide a single api, that can redirect mes-
sages without having to know the content of them e.g. in case of load-balancing. The
scalability of actors is therefore given the rating ++.

Documentation

Parallel Collections: Official documentation exists on parallel collections [Prokopec and Miller,
2015]; however, there are not many resources available on configuring parallel collections
using execution contexts. Documentation on parallel collections is therefore given the rating
+.

Futures: Official documentation exists on futures [Haller et al.], and there are several resources
available on using and configuring them. Documentation on futures is therefore given the
rating ++.

Actors: Official documentation exists on actors [Typesafe Inc, 2015], and there are several re-
sources available on using and configuring them. These resources also include documenta-
tion on advanced scenarios such as session management, load balancing, fault tolerance etc.
Documentation on actors is therefore given the rating ++.

111

Department of Engineering
Aarhus University
Inge Lehmanns Gade 10
8000 Aarhus
Denmark

Tel.: +45 8715 0000

Casper Thule, Investigating Concurrency in the Co-Simulation
Orchestration Engine for INTO-CPS, 2016

	technical_report_ece_tr_26.pdf
	Abstract
	Preface
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	3 Co-Simulation Orchestration Engine Implementation
	4 Evaluation of Implementations
	5 Guidelines
	6 Concluding Remarks and Future Work
	Bibliography
	Appendices
	A FMU State
	B FMI formalization overview sheet
	C Scala class hierarchy
	D Actor Trait
	E Test Framework
	F Copy-script
	G Evaluation of Quality Attributes

	Tom side

