

NEER ENGI

MODELLING FIELD ROBOT
SOFTWARE USING AADL

Electrical and Computer Engineering
Technical Report ECE-TR-25

DATA SHEET

Title: Modelling field robot software using AADL
Subtitle: Electrical and Computer Engineering
Series title and no.: Technical report ECE-TR-25

Author: Morten Larsen
Department of Engineering – Electrical and Computer
Engineering, Aarhus University

Internet version: The report is available in electronic format
(pdf) at the Department of Engineering website
http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2016 Pages: 41
Editing completed: April 2016

Abstract: This report contains a technical description and
example on how robotic systems based on a distributed
communication middleware can be modelled in AADL,
incorporating hardware aspects. Furthermore analyses on
the extra-functional properties such as bus-bandwidth and
end-to-end latency are performed.

Keywords: robotics, modelling, Model-driven engineering,
extra-functional properties, software engineering and sys-
tems

Supervisor: Rasmus Nyholm Jørgensen, Peter Gorm Larsen
Financial support: Conpleks Innovation ApS

Please cite as: Morten Larsen, Modelling field robot software
using AADL, 2016 Department of Engineering, Aarhus University.
Denmark. 41 pp. - Technical report ECE-TR-25

Cover image: Morten Larsen

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly
acknowledged

http://www.eng.au.dk/

MODELLING FIELD ROBOT
SOFTWARE USING AADL

Morten Larsen

Aarhus University, Department of Engineering

Abstract

This report contains a technical description and example on how robotic systems based on a
distributed communication middleware can be modelled in AADL, incorporating hardware aspects.
Furthermore analyses on the extra-functional properties such as bus-bandwidth and end-to-end
latency are performed.

Table of Contents

Table of Contents i

Chapter 1 Introduction 1
1.1 Middlewares for robotic software components 1
1.2 Modelling robotics systems . 2
1.3 Architecture Analysis and Design Language . 2
1.4 Line Marking robot . 2
1.5 Report overview . 4

Chapter 2 Modelling robot software using AADL 5
2.1 Introduction to AADL . 5
2.2 Abstract Modelling of the Intelligent Marking robot 6
2.3 Analysing the system models . 8

Chapter 3 Modelling robot hardware 14
3.1 Modelling communication busses . 15
3.2 Bus bandwidth analysis . 16
3.3 Hardware flow latency analysis . 18

Chapter 4 Modelling software components 20
4.1 Anatomy of a ROS based node . 20
4.2 Modelling scheduling properties . 22
4.3 Communication interfaces . 22
4.4 Modelling the ROS message passing infrastructure 23
4.5 Message type modelling . 24
4.6 Component parameters . 24

Chapter 5 Model validation and refinement 26
5.1 Validating bandwidth estimates . 26
5.2 Profiling communication delay of the ROS middleware 27
5.3 Network measurement anomalies . 33
5.4 Profiling the Execution time of ROS nodes . 34
5.5 Refining the system model . 36

Chapter 6 Evaluation 39
6.1 Concluding remarks . 39

Bibliography 40

i

1
Introduction

The robotics domain is characterised by being a multi-disciplinary field. A robot can be decom-
posed into components, which each perform a function. These components may be both me-
chanical components, electrical components and software components. All these components and
systems must be designed and implemented and work in cooperation in order for the robot to work.
The components may be existing components which are bought and interfaced / integrated into a
larger design, or they may be developed for the specific function required. The components of a
robotic system fulfill a function, the complexity of the function may vary, and the requirements for
the function may be specified in various degrees depending on completeness of the overall design.
The main focus of this report is on the electrical components and the software components.

The requirements for these components may both be either functional and non-functional. The
non-functional requirements is the main interest in this report. Timing is often a non-functional re-
quirement for a robot. The timing requirements may be abstract, such as the time it takes from the
user to press start, to the robot is executing the corresponding task, or a more concrete requirement
such as the time it takes for a sensor-reading to reach a robot controller.

The design of the system and the decomposition of the system into subsystems and compo-
nents may adversely affect the timing properties of the system. If for example a distributed hard-
ware computing setup is designed, the bus has to be fast enough to support the communication
between the components. From a software oriented view, the scheduling of the individual threads
implementing the components, or the message passing overhead between components, may also
affect the timing properties of the system.

1.1 Middlewares for robotic software components

The complexity of the software for robotics has resulted in multiple middlewares/frameworks
which aims at reducing this complexity by providing abstractions such as a publish/subscribe
message passing, component organisation/composistion features and other services. The Robot
Operating System (ROS) [13] is a popular publish/subscribe based middleware for developing
robotic systems and has been used in numerous robots [7, 9].

In ROS the component specification of inputs, outputs (subscribers, publishers) are embedded
in the source language of the component which may be C++, python or other languages. The com-
ponent specification can either be read by inspecting the source code or documentation manually,
or starting the component and inspect the ROS graph, in order to view advertised publishers/sub-
scribers and their type. The middleware does not typically provide tools that supports the design

1

Chapter 1. Introduction

of robotics systems, but are more focused on the implementation of these designs. Therefore there
is a need for tools that supports the design of robotic systems, making architecture analysis, tim-
ing/performance analysis, experimentation with architecture alternatives, without having to resort
to implementation languages. Such analyses can be done using general purpose tools such as
spreadsheets and documents.

1.2 Modelling robotics systems

Model Driven Engineering (MDE) is becoming an established methodology for developing com-
plex systems. MDE focuses on modelling the systems and then optionally generate large parts
of the implementation by code-generation. The use of dedicated modelling languages allows the
designer to incrementally detail the design with information and depending on the tools used, also
validate the design against the requirements incrementally.

A model based approach to designing robotic systems can enable more analyses of the design
before any commitment to a specific architecture is made, and may also increase the potential for
reuse of software in different applications. A model based approach will allow the designer to
select a desired level of abstraction depending on the context. For example in the early phase of
design the overall architecture has to be established but the concrete detailed interfaces may not be
specified yet, the modelling tools should support both abstract modelling and detailed modelling
e.g data type assignment, unit specification, target system modelling and execution times.

1.3 Architecture Analysis and Design Language

Architecture Analysis and Design Language (AADL) is a modelling language specified by the
Society of Automotive Engineers (SAE International) [14] for modelling architectures and per-
forming detailed analyses of the architecture such as timing flows, scheduability, etc. AADL has
a textual and a graphical notation, which allows the designer to select between textual models and
graphical models depending on what is to be communicated. AADL supports both abstract and
detailed modelling.

AADL has been used as base language for modelling or analysis activities within the aerospace
domain [5, 12], automotive domain [17], robotics domain [1] and other Cyber-Physical Systems
(CPSs) [10, 3]. This report uses the open source tool Open Source AADL Tool Environment
(OSATE)1 for developing and analysing the models of the Intelligent Marking robot.

1.4 Line Marking robot

The robot case used as basis for the modelling work done in this report is a Line Marking robot
targeted outdoor grass based sport fields. The task is to paint the playing field with lines and arcs
according to predefined dimensions. The robot navigates primarily using a Global Navigation
Satellite System (GNSS) with Real Time Kinematics (RTK) corrections from a national grid. A
3D rendered model of the Intelligent Marking robot can be seen in Figure 1.1.

The performance of the Line Marking robot depends on the accuracy of the localisation sys-
tem, navigation system, and lastly the variation of the delay from a position measurement is per-
formed until the sprayer is activated. A large variation in the delay will result in inaccurate spray

1https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

2

https://wiki.sei.cmu.edu/aadl/index.php/Osate_2

Chapter 1. Introduction

Figure 1.1: Line Marking robot 3D render c©Intelligent Marking

activation and hence the lines may not be connected or may overlap, resulting in a poor quality of
the painted field. For example a 20ms variation in the delay at a driving speed of 0.6m/s the start
of the line may vary by 1.2cm, at 200ms the variation becomes 12cm, which is not acceptable.

Figure 1.2: Example of a sprayer delay which is not accounted for in the software, which in turn
results in the overlap in the lower left corner of the figure.

3

Chapter 1. Introduction

1.5 Report overview

First, chapter 2 introduces the AADL modelling language, then the system is modelled using the
abstract modelling features of AADL, finally the performance of the architecture with respect to
sprayer activation latency is analysed. Then, chapter 3 present AADL models of the hardware
platform and analyses the bus capacity as well as the hardware latency of the devices involved
with the sprayer activation. Afterwards, chapter 4 present methods and examples of applying
AADL modelling capabilities in order to model ROS based software components and infrastruc-
ture. Then chapter 5 validates some of the AADL models developed in the previous chapters
through experiments, and present methods for obtaining the model parameters essential for per-
forming the system latency analyses. Finally, chapter 6 summarises the findings and experiments
performed in this report and provides concluding remarks.

4

2
Modelling robot software using
AADL

In this chapter a common reference architecture is established based on the robot application
introduced in chapter 1 using AADL. This section aims to demonstrate the high level modelling
of an robotic application using AADL.

2.1 Introduction to AADL

The core elements of the Architecture Analysis and Design Language are components and prop-
erty sets. A component is divided into two parts, a component type and one or more component
implementations. A property set specifies properties which can be associated with a component
classifier.

Component types represents the interface of a component furthermore classifies the com-
ponent. AADL component classifiers falls into three categories, abstract, software and hard-
ware. The system classifier can be used to group other components into a hierarchy, and the
abstract classifier can be used in the early stage of a design to represent components whose
classifier is yet to be determined. The interface of a component is described using features. A
Feature can be a port, a bus access or others. Furthermore the component type has a com-
partment for specifying properties, flows, prototypes and others. The flows are spec-
ifications on which input features flows to which output features. The prototypes can be used
to template a component type with other component types.

The component implementations, are concrete implementation of a component type. The
implementation has a compartment for subcomponents which are used to further detail what
components are actually used to implement a component type. The subcomponents can be
empty in the case where there are no further elaboration to be done. The flows compartment
in the component implementation, are used to elaborate the flows defined in the component type.
The component implementation provides concrete paths for a flow through its subcomponents.

2.1.1 Abstract modelling

When modelling systems at an early phase, the main component classifiers used are system
and abstract. A system represent a logical grouping of components or can represent black
boxes. The abstract classifier is used for defining components which does not yet have a

5

Chapter 2. Modelling robot software using AADL

more concrete classifier. The abstract classifier can also be used for abstract interfaces which
requires further elaboration through subclassing.

The features of a component can be specified using the keyword feature which is again an
abstract entity, the feature can later be refined to a concrete feature such as a port. The abstract
feature can have a type as well as a direction. The subclassing component types can refine the
feature using refined to keyword.

2.1.2 Software modelling

For modelling software aspects of a system, AADL provides data, process, thread and
subprogram classifiers which are used to model software components in more detail. The
data classifier can represent data types of varying complexity (integers, records and array). The
process classifier represents a protected address space where the data of one or more threads can
reside. The thread classifier represents a scheduable set of instructions. The thread modelling
in AADL is primarily through property sets. The main properties for the thread classifier
is found in Thread_Properties property set.

A port feature in AADL models exchange of data. The port feature has a direction of either
in,out or inout. Furthermore a port can be of either event port, data port or event
data port. An event port in AADL models an event which can be sent or received to/from
the component, the event may carry data. The data port models exchange of data, either via
a shared variable or by message passing. The data is not queued, meaning the current value is
always read. The event data port represents message passing with queuing of messages.

2.1.3 Hardware modelling

AADL has hardware related component classifiers such as bus, memory, processor and
device. The processor represents the hardware which can execute instructions from threads
and provide the interface to the memory and busses. Processes and threads are assigned to a
specific processor by using the Actual_Processor_Binding property. A device classi-
fier represents a device where the logical data exchange is done via the features, but the actual
exchange of data between devices is occurring via a bus. A bus represents a communication
channel where data can be exchanged. Devices and processors communicates with each other
using busses. Feature connections between a device and a processor can be bound to a specific
bus by using the Actual_Connection_Binding property.

2.2 Abstract Modelling of the Intelligent Marking robot

Depending on the type of project, it may be beneficial to start modelling the overall system ar-
chitecture and its components in terms of subsystem black-boxes which are to be refined. If the
project depends on a specific critical feature, it may be beneficial to start with a bottom up ap-
proach for modelling the system, by starting with exploring the design of the critical feature, and
then later model the system as a whole. For the Intelligent Marking robot, we start with modelling
the system and its subsystems. The robot platform is first modelled as a generic robot platform
with the sprayer seen as an application specific part. Reuse of components between robot plat-
forms is common and is also a goal. The generic architecture (reference architecture) is first
established based on previous projects and experience. Then the component library is developed
by modelling the interface of the already developed components in a generic way.

6

Chapter 2. Modelling robot software using AADL

2.2.1 Establishing a reference architecture

The definition of a reference architecture can be done in several ways, one can model the concrete
applications first and then extract commonalities between the applications into a reference archi-
tecture, or the reference architecture can be established and refined as the individual applications
are being modelled, as also suggested in [4]. Several field robot software architectures such as
Agriture [11], Hortibot/AgroBot [8], and FroboMind [7] exists and have been demonstrated on
various platforms. In this work we are inspired by the overall architecture in Frobomind, but do
not fully adhere to it.

Figure 2.1: AADL Graphical model of a design pattern for localisation using RTK and local odom-
etry, shown with AADL flow specifications.

In AADL the reference architecture can be modelled as abstract components having predefined
ports with the type of the ports being unspecified, or alternatively typed by a prototype specifi-
cation. The aim of the reference architecture is to establish the overall hierarchy of components
and their type, as well as define common patterns for composition of these component types. This
may be a common pattern for a differential drive robot where each motor must monitor the other
motor for errors and act accordingly. In Figure 2.1, the reference design for a localisation system
using RTK GNSS and local odometry is presented. This reference design is used when designing
the concrete localisation system for the Line Marking robot.

2.2.2 Component library

This section describes the modelling of a component library in AADL which will contain the
general components used across multiple applications, the separation of generic components
into a library facilitates reuse. Listing 2.1 shows a partial view of the interfaces defined in the
interfaces::localisation package. A graphical view of the package can also be seen in
Figure 2.2.

package i n t e r f a c e s : : l o c a l i s a t i o n
public
abs t r ac t pose_provider

features

7

Chapter 2. Modelling robot software using AADL

pose_out : out event data port ;
r ese t : in event data port ;
s ta tus_ou t : out event data port ;

end pose_provider ;

abs t r ac t gnss_pose_provider extends pose_provider
features

gnss_in : in event data port ;
flows

f1 : flow path gnss_in −> pose_out ;
end gnss_pose_provider ;

abs t r ac t d i f fe ren t ia l_odom_pose_prov ider extends pose_provider
features

encode r_ le f t _ i n : in event data port ;
encoder_ r igh t_ in : in event data port ;
s t a t u s _ l e f t _ i n : in event data port ;
s t a t u s _ r i g h t _ i n : in event data port ;

flows
f _ l e f t : flow path encode r_ le f t _ i n −>pose_out ;
f _ r i g h t : flow path encoder_ r igh t_ in −>pose_out ;

end d i f fe ren t ia l_odom_pose_prov ider ;

end i n t e r f a c e s : : l o c a l i s a t i o n ;

Listing 2.1: Abstract interface definitions of the localisation components

The modelling mechanisms provided by AADL enables us the create interfaces which other
components can inherit, thereby allowing them to be used as plug-in replacements when detailing
the reference architecture.

Figure 2.2: Graphical overview of the interfaces::localisation package

In the high level modelling of the architecture and components, we use abstract component
types, such that the decision of a component being a thread or process, or something else is
deferred until the concrete platform is determined.

2.2.3 System model of the Intelligent Marking robot

With the reference architecture and the component library in place, the application specific in-
stance of the generic architecture and the components can be developed. In the process of refining
the reference architecture, components which are missing can be identified and a specification
derived from the AADL model as input for the component developer.

2.3 Analysing the system models

The flow latency from a sensor reading is acquired from the GNSS, until the sprayer is activated,
is a key performance parameter for the line marking robot. The sprayer module needs to know
this latency in order to mark the lines precisely, furthermore we need to determine the variation

8

Chapter 2. Modelling robot software using AADL

Figure 2.3: AADL system implementation instance using the reference architecture and interfaces
with the flow path from the GNSS to the sprayer highlighted in green.

of this delay. An initial estimation of the flow latency is done using the Flow Latency Plugin
in OSATE and the flow constructs of the AADL language. The flow latency analysis can be
useful in establishing constraints on the design of the system, and as the implementation of the
individual components takes place, the expected flow latency will be compared with the actual,
and warnings/errors will be reported.

system implementation i n m a r k _ f u l l . gnss_f low
subcomponents

sw : system robots : : c i_base_robot : : g ene r i c _ r t k_g ns s_ r obo t_d i f f _d r i v e . s td ;
gnss : device devices : : gnss : : gnss_leica_mojo3_v2 ;
hw_dummy : device dummy;

connections
c1 : port gnss . p o s i t i o n −> sw . gnss_in ;
c2 : port sw . t oo l_ou t −> hw_dummy. t o o l _ i n ;

flows
f _gnss_ la t : end to end flow gnss . output −> c1 −>

sw . f_gnss_tc −> c2 −> hw_dummy. i npu t
{ Latency => 1 ms . . 12 ms ; } ;

properties
Compute_Execution_Time => 1100 us . . 1800 us applies to

sw . loca l i sa t ion_subsys tem . gnss_provider ;
Compute_Execution_Time => 2 ms . . 3 ms applies to

sw . loca l i sa t ion_subsys tem . ek f_ fus ion ;
Compute_Execution_Time => 500 us . . 800 us applies to

sw . navigat ion_subsystem . imp lemen t_con t ro l l e r ;
Per iod => 50 ms applies to

sw . loca l i sa t ion_subsys tem . ek f_ fus ion ;
Per iod => 100 ms applies to

sw . loca l i sa t ion_subsys tem . gnss_provider ;
Per iod => 20 ms applies to

sw . navigat ion_subsystem . nav_con t ro l l e r ,
sw . navigat ion_subsystem . imp lement_con t ro l le r ,
hw_dummy;

end i n m a r k _ f u l l . gnss_f low ;

9

Chapter 2. Modelling robot software using AADL

Listing 2.2: Initial flow specification and allocation of periods and computation time for each
component

The numbers used in Listing 2.2 are based on "best guesses", and are merely used for demon-
stration purposes. These numbers may eventually be based on datasheet information, or informa-
tion from past usage of the components or other methods presented in chapter 5. The key is to
demonstrate that the rather abstract model presented in Listing 2.2 can provide the designer with
insight into the performance of the chosen architecture. Furthermore it can be used to evaluate
design alternatives.

Table 2.1 shows the resulting flow analysis report with some fields left out. The report details
the individual latency contributions made by components and connections along the specified flow
in Listing 2.2. The latency analysis report provides the total minimum actual latency and the total
maximum actual latency, which is then compared with the specified one. Table 2.1 there are
multiple entries per latency contributor. Depending on the properties of a component, there will
be an entry for sampling latency, queuing latency and processing latency.

As seen from Table 2.1, the jitter is 220ms − 5ms = 215ms Which will result in a line
start/end variation of almost 13cm at 0.6m/s driving speed which is above the tolerated deviation.
The main contribution of the variation in the latency is the gnss_provider, which executes at
100ms period. The reason for this choice is that this is the frequency the GNSS device provides
data at. Since the gnss_provider is periodic this will at worst case mean that it has just
executed before the new sample arrived from the GNSS device. In order to reduce the variation in
the design, we can increase the period of the gnss_provider or make it an Aperiodic thread
which triggers when it receives a message from the GNSS device. We can explore this alternative
in AADL quite easily by creating a new system implementationwhich extends the original
instance shown in Listing 2.2. This extension is shown in Listing 2.3 with the results of the latency
analysis shown in Table 2.2.

10

Chapter 2. Modelling robot software using AADL

C
on

tr
ib

ut
or

M
in

Va
lu

e
M

in
M

et
ho

d
M

ax
Va

lu
e

M
ax

M
et

ho
d

de
vi

ce
gn

ss
0.

0m
s

fir
st

sa
m

pl
in

g
0.

0m
s

fir
st

sa
m

pl
in

g
de

vi
ce

gn
ss

1.
0m

s
sp

ec
ifi

ed
3.

0m
s

sp
ec

ifi
ed

C
on

ne
ct

io
n

gn
ss

.p
os

iti
on

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

ab
st

ra
ct

sw
.lo

ca
lis

at
io

n_
su

bs
ys

te
m

.g
ns

s_
pr

ov
id

er
0.

0m
s

sa
m

pl
in

g
10

0.
0m

s
sa

m
pl

in
g

ab
st

ra
ct

sw
.lo

ca
lis

at
io

n_
su

bs
ys

te
m

.g
ns

s_
pr

ov
id

er
1.

1m
s

pr
oc

es
si

ng
tim

e
1.

8m
s

pr
oc

es
si

ng
tim

e
C

on
ne

ct
io

n
gn

ss
_p

ro
vi

de
r.p

os
e_

ou
t

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

ab
st

ra
ct

sw
.lo

ca
lis

at
io

n_
su

bs
ys

te
m

.e
kf

_f
us

io
n

0.
0m

s
sa

m
pl

in
g

50
.0

m
s

sa
m

pl
in

g
ab

st
ra

ct
sw

.lo
ca

lis
at

io
n_

su
bs

ys
te

m
.e

kf
_f

us
io

n
2.

0m
s

pr
oc

es
si

ng
tim

e
3.

0m
s

pr
oc

es
si

ng
tim

e
C

on
ne

ct
io

n
lo

ca
lis

at
io

n_
su

bs
ys

te
m

.e
kf

_f
us

io
n.

po
se

_o
ut

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

ab
st

ra
ct

sw
.n

av
ig

at
io

n_
su

bs
ys

te
m

.n
av

_c
on

tr
ol

le
r

0.
0m

s
sa

m
pl

in
g

20
.0

m
s

sa
m

pl
in

g
ab

st
ra

ct
sw

.n
av

ig
at

io
n_

su
bs

ys
te

m
.n

av
_c

on
tr

ol
le

r
0.

0m
s

no
la

te
nc

y
0.

0m
s

no
la

te
nc

y
C

on
ne

ct
io

n
na

v_
co

nt
ro

lle
r.p

at
h_

fe
ed

ba
ck

_o
ut

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

ab
st

ra
ct

sw
.n

av
ig

at
io

n_
su

bs
ys

te
m

.im
pl

em
en

t_
co

nt
ro

lle
r

0.
0m

s
sa

m
pl

in
g

20
.0

m
s

sa
m

pl
in

g
ab

st
ra

ct
sw

.n
av

ig
at

io
n_

su
bs

ys
te

m
.im

pl
em

en
t_

co
nt

ro
lle

r
0.

5m
s

pr
oc

es
si

ng
tim

e
0.

8m
s

pr
oc

es
si

ng
tim

e
C

on
ne

ct
io

n
sw

.n
av

ig
at

io
n_

su
bs

ys
te

m
.im

pl
em

en
t_

co
nt

ro
lle

r.i
m

pl
em

en
t_

cm
d_

ou
t

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

de
vi

ce
hw

_d
um

m
y

0.
0m

s
sa

m
pl

in
g

20
.0

m
s

sa
m

pl
in

g
de

vi
ce

hw
_d

um
m

y
0.

0m
s

qu
eu

ed
1.

1m
s

qu
eu

ed
de

vi
ce

hw
_d

um
m

y
0.

5m
s

sp
ec

ifi
ed

1.
1m

s
sp

ec
ifi

ed
L

at
en

cy
To

ta
l

5.
1m

s
22

0.
8m

s

Ta
bl

e
2.

1:
Fl

ow
la

te
nc

y
re

po
rt

fo
r

th
e

m
od

el
in

Li
st

in
g

2.
2

us
in

g
th

e
O

S
AT

E
Fl

ow
A

na
ly

si
s

P
lu

gi
n,

sh
ow

n
as

in
di

vi
du

al
co

nt
rib

ut
io

ns
ea

ch
co

m
po

ne
nt

an
d

co
nn

ec
tio

n
m

ak
es

to
th

e
ov

er
al

ll
at

en
cy

.

11

Chapter 2. Modelling robot software using AADL

From the results presented in Table 2.2 it can be seen that the variation in the latency has been
reduced to 120ms − 5ms = 115ms Which will result in a line start/end variation of almost 7cm
at 0.6m/s driving speed which is closer to the accepted deviation. From here on the designer
can continue to improve the latency by experimenting with periods of components or the dispatch
protocol. When the abstract classifiers are replaced with either thread or process classifiers, the
CPU load can be estimated using the OSATE plugin. Alternatively the budget for each component
can be specified using the SEI::MIPSBudget property.

system implementation i n m a r k _ f u l l . gnss_flow2 extends i n m a r k _ f u l l . gnss_f low
properties

Compute_Execution_Time => 1100 us . . 1800 us applies to
sw . loca l i sa t ion_subsys tem . gnss_provider ;

Compute_Execution_Time => 2 ms . . 3 ms applies to
sw . loca l i sa t ion_subsys tem . ek f_ fus ion ;

Compute_Execution_Time => 500 us . . 800 us applies to
sw . navigat ion_subsystem . imp lemen t_con t ro l l e r ;

Per iod => 50 ms applies to
sw . loca l i sa t ion_subsys tem . ek f_ fus ion ;

Per iod => 0 ms applies to
sw . loca l i sa t ion_subsys tem . gnss_provider ;

D ispatch_Protoco l => Aper iod ic applies to
sw . loca l i sa t ion_subsys tem . gnss_provider ;

Per iod => 20 ms applies to
sw . navigat ion_subsystem . nav_con t ro l l e r ,
sw . navigat ion_subsystem . imp lement_con t ro l le r ,
hw_dummy;

end i n m a r k _ f u l l . gnss_flow2 ;

Listing 2.3: Listing of a system implementation in AADL with modified scheduling properties of
the gnss_provider component compared to Listing 2.2

12

Chapter 2. Modelling robot software using AADL

C
on

tr
ib

ut
or

M
in

Va
lu

e
M

in
M

et
ho

d
M

ax
Va

lu
e

M
ax

M
et

ho
d

de
vi

ce
gn

ss
0.

0m
s

fir
st

sa
m

pl
in

g
0.

0m
s

fir
st

sa
m

pl
in

g
de

vi
ce

gn
ss

1.
0m

s
sp

ec
ifi

ed
3.

0m
s

sp
ec

ifi
ed

C
on

ne
ct

io
n

gn
ss

.p
os

iti
on

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

ab
st

ra
ct

sw
.lo

ca
lis

at
io

n_
su

bs
ys

te
m

.g
ns

s_
pr

ov
id

er
0.

0m
s

sa
m

pl
in

g
0.

0m
s

sa
m

pl
in

g
ab

st
ra

ct
sw

.lo
ca

lis
at

io
n_

su
bs

ys
te

m
.g

ns
s_

pr
ov

id
er

1.
1m

s
pr

oc
es

si
ng

tim
e

1.
8m

s
pr

oc
es

si
ng

tim
e

C
on

ne
ct

io
n

gn
ss

_p
ro

vi
de

r.p
os

e_
ou

t
0.

0m
s

no
la

te
nc

y
0.

0m
s

no
la

te
nc

y
ab

st
ra

ct
sw

.lo
ca

lis
at

io
n_

su
bs

ys
te

m
.e

kf
_f

us
io

n
0.

0m
s

sa
m

pl
in

g
50

.0
m

s
sa

m
pl

in
g

ab
st

ra
ct

sw
.lo

ca
lis

at
io

n_
su

bs
ys

te
m

.e
kf

_f
us

io
n

2.
0m

s
pr

oc
es

si
ng

tim
e

3.
0m

s
pr

oc
es

si
ng

tim
e

C
on

ne
ct

io
n

lo
ca

lis
at

io
n_

su
bs

ys
te

m
.e

kf
_f

us
io

n.
po

se
_o

ut
0.

0m
s

no
la

te
nc

y
0.

0m
s

no
la

te
nc

y
ab

st
ra

ct
sw

.n
av

ig
at

io
n_

su
bs

ys
te

m
.n

av
_c

on
tr

ol
le

r
0.

0m
s

sa
m

pl
in

g
20

.0
m

s
sa

m
pl

in
g

ab
st

ra
ct

sw
.n

av
ig

at
io

n_
su

bs
ys

te
m

.n
av

_c
on

tr
ol

le
r

0.
0m

s
no

la
te

nc
y

0.
0m

s
no

la
te

nc
y

C
on

ne
ct

io
n

na
v_

co
nt

ro
lle

r.p
at

h_
fe

ed
ba

ck
_o

ut
0.

0m
s

no
la

te
nc

y
0.

0m
s

no
la

te
nc

y
ab

st
ra

ct
sw

.n
av

ig
at

io
n_

su
bs

ys
te

m
.im

pl
em

en
t_

co
nt

ro
lle

r
0.

0m
s

sa
m

pl
in

g
20

.0
m

s
sa

m
pl

in
g

ab
st

ra
ct

sw
.n

av
ig

at
io

n_
su

bs
ys

te
m

.im
pl

em
en

t_
co

nt
ro

lle
r

0.
5m

s
pr

oc
es

si
ng

tim
e

0.
8m

s
pr

oc
es

si
ng

tim
e

C
on

ne
ct

io
n

sw
.n

av
ig

at
io

n_
su

bs
ys

te
m

.im
pl

em
en

t_
co

nt
ro

lle
r.i

m
pl

em
en

t_
cm

d_
ou

t
0.

0m
s

no
la

te
nc

y
0.

0m
s

no
la

te
nc

y
de

vi
ce

hw
_d

um
m

y
0.

0m
s

sa
m

pl
in

g
20

.0
m

s
sa

m
pl

in
g

de
vi

ce
hw

_d
um

m
y

0.
0m

s
qu

eu
ed

1.
1m

s
qu

eu
ed

de
vi

ce
hw

_d
um

m
y

0.
5m

s
sp

ec
ifi

ed
1.

1m
s

sp
ec

ifi
ed

L
at

en
cy

To
ta

l
5.

1m
s

12
0.

8m
s

Ta
bl

e
2.

2:
Fl

ow
la

te
nc

y
re

po
rt

fo
r

th
e

m
od

el
in

Li
st

in
g

2.
3

us
in

g
th

e
O

S
AT

E
Fl

ow
A

na
ly

si
s

P
lu

gi
n,

sh
ow

n
as

in
di

vi
du

al
co

nt
rib

ut
io

ns
ea

ch
co

m
po

ne
nt

an
d

co
nn

ec
tio

n
m

ak
es

to
th

e
ov

er
al

ll
at

en
cy

.

13

3
Modelling robot hardware

Modelling the hardware can be beneficial for more detailed analysis, as well as providing an
overview of how the software interacts with the hardware. Figure 3.1 show the hardware subsys-
tem of the Intelligent Marking robot. There are two primary analyses we wish to carry out, one is
obtaining an estimate of the bus bandwidth used/required by the hardware devices, secondly we
want to estimate the latency of the hardware subsystem.

Figure 3.1: Graphical view of an AADL system implementation of the Intelligent Marking robot
hardware platform

The hardware is based on a single computing platform with a CAN bus connection to the
motors and a generic IO device for sprayer activation and auxiliary functions such as buttons and
lights. The GNSS and the Inertial Measurement Unit (IMU) each communicates over their own

14

Chapter 3. Modelling robot hardware

serial port. The hardware model shows both the physical busses present, but also shows the ports
provided/required by the devices from a software point of view.

3.1 Modelling communication busses

The CAN bus is modelled as a bus in AADL. Listing 3.1 shows the AADL textual model.
bus can
end can ;
bus implementation can . c125

properties
SEI : : BandWidthCapacity => 125000.0 b i t s p s ;
Latency => 1 us . . 1084 us ;
Transmission_Time => [Fixed => 256 us . . 256 us ;

PerByte => 64 us . . 88 us ;] ;
end can . c125 ;

Listing 3.1: AADL model of the CAN bus with a bitrate of 125000 bits/s

The AADL property set Communication_Properties enables the modeller to specify
the transmission time of the bus in terms of a fixed value representing constant overhead, and a per
byte transmission time. Calculating the transmission time for a CAN bus, can be quite complex
due to the way frames are sent over the bus. The CAN bus hardware may add extra bits to the
frame depending on the contents of the frame (bit stuffing, if more than 6 consecutive bits with
value 1 is encountered). For obtaining a reasonable estimate we have used an online calculator1

found at to provide values for the transmission time. The fixed transmission time in our model
does not include the id part of the CAN frame, but instead it is assumed to be part of the data
transmitted. This allows us to model both normal 11bit identifiers and 29bit identifiers using the
same CAN bus model.

The motors and IO devices are using the CANopen protocol, which specifies both hardware
properties (Connectors, Cabling) and protocols on top of the CAN bus. The CANopen protocol
is modelled in detail in order to better estimate the bandwidth used by the hardware. Listing 3.2
shows how the CANopen protocol is modelled using feature groups to group the communica-
tion between a CANopen compliant motor and driver, and shows an example of the data being
transmitted over the bus.

feature group canopen_dsp401_motor_plug
features

rpdo_1 : in event data port canopen_dsp401_pdo . r1 ;
tpdo_1 : out event data port canopen_dsp401_pdo . t1 ;
tpdo_2 : out event data port canopen_dsp401_pdo . t2 ;
sdo_req : in event data port canopen_dsp401_sdo . i ;
sdo_rep : out event data port canopen_dsp401_sdo . i ;

end canopen_dsp401_motor_plug ;

data implementation canopen_dsp401_pdo . t1
subcomponents

cob : data Base_Types : : Unsigned_32 ;
status_word : data Base_Types : : Unsigned_16 ;

properties
Data_Size => 6 Bytes ;

end canopen_dsp401_pdo . t1 ;

Listing 3.2: Partial AADL model of the CANOpen protocol

1www.esacademy.com/en/library/calculators/can-best-and-worst-case-calculator.
html

15

www.esacademy.com/en/library/calculators/can-best-and-worst-case-calculator.html
www.esacademy.com/en/library/calculators/can-best-and-worst-case-calculator.html

Chapter 3. Modelling robot hardware

AADL allows us to model the semantic connection between a device and the software exe-
cuting on a processor, and then later specify on which bus the communicated data (Connections
between device ports and thread ports) flows using the Actual_Connection_Binding prop-
erty. Other properties of the hardware which could be beneficial to include in the model could be
the power requirements for the individual devices, in order to establish the total power usage
requirements as done in [16].

3.2 Bus bandwidth analysis

In order to fully analyse the bus bandwidth utilised, we introduce a set of dummy drivers to the
hardware model in Figure 3.1, these dummy drivers models the commands sent to the motors and
the commands sent to the IO box. Figure 3.2 shows the modified model of the hardware as an
instance view.

Figure 3.2: AADL system implementation of the Intelligent Marking robot hardware platform

The instance shown in Figure 3.2 is analysed using the OSATE Bus Bandwidth analysis
tool, in order to estimate the bus utilisation. Table 3.1 shows the usage report for the CAN bus
(canbus0), Table 3.2 and Table 3.3 shows the bandwidth usage for the ser0 and ser1 busses
from Figure 3.2.

As seen from Table 3.1, the total bandwidth usage is 2.92 Kilo bytes per second, which is well
below the maximum bandwidth of 15.625 KByteps available.

Similarly the usage of the ser0 and ser1 busses are well below the maximum of the serial
RS232 bus bandwidth of 11.52 kilo bytes per second.

16

Chapter 3. Modelling robot hardware

Source Actual
m_left_driver.motor_in.rpdo_1 0.36 KBytesps
m_left_driver.motor_in.sdo_req 0.08 KBytesps
m_right_driver.motor_in.rpdo_1 0.36 KBytesps
m_right_driver.motor_in.sdo_req 0.08 KBytesps
io_dummy.io_conn.rpdo1 0.36 KBytesps
io_interface.comm.tpdo1 0.36 KBytesps
motor_left.communication.tpdo_1 0.1 KBytesps
motor_left.communication.tpdo_2 0.48 KBytesps
motor_left.communication.sdo_rep 0.08 KBytesps
motor_right.communication.tpdo_1 0.1 KBytesps
motor_right.communication.tpdo_2 0.48 KBytesps
motor_right.communication.sdo_rep 0.08 KBytesps
Total 2.920 KBytesps Available 15.625 KBytesps

Table 3.1: OSATE Bus bandwidth report for the canbus0 where the IO box and the two motors
communicate with the computer.

Source Actual
imu.orientation 1.2 KBytesps
Total 1.200 KBytesps Available 11.52 KBytesps

Table 3.2: Bus bandwidth report for the ser0 bus where the IMU communicates with the computer.

Source Actual
gnss.position 0.6 KBytesps
Total 0.6 KBytesps Available 11.52 KBytesps

Table 3.3: Bus bandwidth report for the ser1 bus where the GNSS communicates with the com-
puter.

17

Chapter 3. Modelling robot hardware

3.3 Hardware flow latency analysis

The hardware model from Figure 3.1 is extended with some flow specifications, which allows us
to perform flow analysis. The hardware contribution to the variation in the latency of the sprayer
module is investigated. In this section it is assumed that we do not have any knowledge of how
the software is structured or performs, in order to show how AADL can be used in early design
phases to estimate latencies for hardware architectures. Listing 3.3 shows the flow specifications
for the hardware model from Figure 3.2. The properties listed in Listing 3.3 assigns guesstimates
to the hardware devices internal operating latencies, these number may come from information
from the manufacturer, or may have to be guessed. In this case we assume that the internal period
of the IO interface and GNSS device is 1ms. Furthermore we assign a computation time to the
devices reflecting the fact that from the input is sampled in the device until a result produced time
passes.

flows
f_io_cmd : end to end flow io_dummy .cmd −>

fg_ io −> i o _ i n t e r f a c e . cmd_in ;

f_gnss_ la t : end to end flow gnss . output −>
c_gnss −> gnss_dummy . i npu t ;

properties
Period => 1 ms applies to i o _ i n t e r f a c e ;
Per iod => 1 ms applies to gnss ;
Compute_Execution_Time => 200 us . . 300 us applies to i o _ i n t e r f a c e ;
Compute_Execution_Time => 200 us . . 300 us applies to gnss ;

Listing 3.3: Flow specification for the hardware flows involved in the overall GNSS to Sprayer
flow

The transmission time properties assigned to the CAN bus is the same as shown in Listing 3.2
and the transmission time properties assigned to the serial bus connecting the GNSS with the
computer is shown in Listing 3.4

bus implementation s e r i a l . RS232
properties

SEI : : BandWidthCapacity => 11520.0 Bytesps ;
Latency => 10 us . . 10 us ;
Transmission_Time => [Fixed => 1 us . . 1 us ;

PerByte => 87 us . . 87 us ;] ;
end s e r i a l . RS232 ;

Listing 3.4: AADL bus model of the serial RS232 connection between the GNSS device and the
computer

The results of the latency flow analysis for the IO interface device is shown in Table 3.4. The
variation of the delay is 1.4ms which is an insignificant contribution the sprayer delay.

Contributor Min Min Method Max Max Method
abstract io_dummy 0.0ms first sampling 0.0ms first sampling
abstract io_dummy 0.0ms no latency 0.0ms no latency
Connection 1.0ms no latency 1.3ms no latency
device io_interface 0.0ms sampling 1.0ms sampling
device io_interface 0.2ms processing time 0.3ms processing time
Latency Total 1.2ms 2.6ms

Table 3.4: OSATE Flow Latency Analysis Plugin report for the IO interface device flow, from the
device to the abstract driver.

18

Chapter 3. Modelling robot hardware

The results of the latency flow analysis for the GNSS interface device is shown in Table 3.5
and again the variation in the latency is insignificant for the sprayer delay. However if a different
bus was selected for interfacing the computer with the sprayer actuation hardware, the delays may
have been significant.

Contributor Min Min Method Max Max Method
device gnss 0.0ms first sampling 0.0ms first sampling
device gnss 0.2ms processing time 0.3ms processing time
Connection 2.6ms no latency 2.6ms no latency
abstract gnss_dummy 0.0ms sampling 0.0ms sampling
abstract gnss_dummy 0.0ms no latency 0.0ms no latency
Latency Total 2.8ms 2.9ms

Table 3.5: OSATE Flow Latency Analysis Plugin report for the GNSS device flow from the GNSS
device to the abstract driver.

19

4
Modelling software components

In this section, we present a methodology for modelling robotic software components in AADL.
ROS [13],Orocos [2],SmartMDSD [15] and OPRoS [6] are all based on a publish/subscribe sys-
tem with varying complexity and feature sets. However the middlewares have three interaction
patterns in common. The first is the basic publish/subscribe pattern. The second is the Remote
Procedure Call (RPC) style interaction pattern. The third is a mechanism for declaring component
parameters, which must be supplied (assigned) by the component user. We wish to be able to
model these three styles of component interaction in AADL. First a set of common "patterns"
found in ROS node implementation is presented and a corresponding AADL model is developed.
Then each section elaborates on a specific set of constructs found in the ROS middleware and
presents a corresponding AADL model.

4.1 Anatomy of a ROS based node

A typical pattern of an implementation of a ROS node component can be seen in Listing 4.1
/ / Read parameters from server
/ / setup outputs
/ / setup inpu ts
void d i f f e r e n t i a l _ d r i v e : : con f igu re ()
{

configureFromParameters () ;
con f i gu rePub l i she rs () ;
con f igureSubscr ibe rs () ;
nh . createTimer (ros : : Durat ion (0 . 1) ,

& d i f f e r e n t i a l _ d r i v e : : onMainLoopTimer , th is) ;
}
/ / Cal lback f u n c t i o n f o r the CmdMsg t o p i c
void d i f f e r e n t i a l _ d r i v e : : onCmdMsg(

const geometry_msgs : : TwistStamped : : ConstPtr& msg)
{

/ / read re l evan t f i e l d s from message i n t o i n t e r n a l data members
}

/ / Timer ca l l back f u n c t i o n c a l l e d every per iod
void d i f f e r e n t i a l _ d r i v e : : onMainLoopTimer (const ros : : TimerEvent &)
{

/ / read i n t e r n a l data members

/ / update c o n t r o l l e r s / s t a t e

/ / w r i t e outputs

20

Chapter 4. Modelling software components

}

Listing 4.1: Sample c++ pseudo code of a periodically triggered ROS node

The pattern shown in Listing 4.1 is a periodically triggered node, which samples its inputs
(regardless of when they were actually received) and produces an output at each period. We refer
to this pattern as a periodically sampled node. A second pattern is a asynchronous pattern, where
the callback for the received messages on a topic directly triggers the algorithm and produces an
output. This pattern is shown in Listing 4.2.

/ / Read parameters from server
/ / setup outputs
/ / setup inpu ts

void d i f f e r e n t i a l _ d r i v e : : con f igu re ()
{

configureFromParameters () ;
con f i gu rePub l i she rs () ;
con f igureSubscr ibe rs () ;

}
/ / Cal lback f u n c t i o n f o r the CmdMsg t o p i c
void d i f f e r e n t i a l _ d r i v e : : onCmdMsg(

const geometry_msgs : : TwistStamped : : ConstPtr& msg)
{

/ / read the message
/ / run a lgo r i t hm
/ / w r i t e outputs

}

Listing 4.2: Sample c++ pseudo implementation asynchronously triggered ROS node

A hybrid between the two patterns presented so far (periodically sampled and the asynchronous)
exists. A node may need to perform partial processing of the received data in the callback func-
tion. As an example consider a node which receives inputs from two encoders and produces an
estimate of the odometry. In this case the encoders are publishing delta readings and therefore
loss of messages results in inaccurate odometry calculations. The node has to synchronise the two
topics by accumulating each received message until both callback has received data. Listing 4.3
shows an example of such a node. We refer to this kind of pattern as a hybrid.

/ / Cal lback f u n c t i o n f o r the r i g h t encoder
void d i f f e r e n t i a l _ o d o m : : onEncRightMsg (const msgs : : encoder : : ConstPtr& msg)
{

/ / accumulate t i c k s and s i g n a l to t imer thread t h a t we have data
}

/ / Cal lback f u n c t i o n f o r the l e f t encoder
void d i f f e r e n t i a l _ o d o m : : onEncLeftMsg (const msgs : : encoder : : ConstPtr& msg)
{

/ / accumulate t i c k s and s i g n a l to t imer thread t h a t we have data
}

/ / Timer ca l l back f u n c t i o n c a l l e d every per iod
void d i f f e r e n t i a l _ o d o m : : onMainLoopTimer (const ros : : TimerEvent &)
{

/ / check i f l e f t and r i g h t has produced data
/ / c a l c u l a t e odometry i f both has produced data
/ / e lse wa i t another per iod

}

Listing 4.3: Sample c++ pseudo implementation of a hybrid ROS node

4.2 Modelling scheduling properties

21

Chapter 4. Modelling software components

The corresponding AADL model of the periodic and asynchronous ROS node are shown in List-
ing 4.4. The Thread_Properties::Dispatch_Protocol and Timing_Properties::-
Period properties are used to model the timer and the triggering of a callback when a message
is received.

thread periodic_component
features

cmd_msg_in : in event data port
middleware : : ros : : geometry_msgs : : TwistStamped ;

properties
Dispatch_Protoco l => Per iod i c ;
Per iod => 100 ms;

end periodic_component ;

thread asynchronous_component
features

cmd_msg_in : in event data port
middleware : : ros : : geometry_msgs : : TwistStamped ;

properties
Dispatch_Protoco l => Aper iod ic ;
D ispatch_Tr igger => (reference (cmd_msg_in)) ;

end asynchronous_component ;

Listing 4.4: AADL model of a periodic and asynchronous ROS node

In Figure 4.1 as graphical view of the AADL model of a hybrid ROS node is shown. The
model features both normal port connections and data access connections which indicates that
data is shared between the threads in the thread group. This detailed modelling can be useful if the
component is to work both in non-preemptive and preemptive situations. The default for the ROS
node is to work in a single threaded mode, where all events (Timer events, Message reception)
share a single callback queue thread.

Figure 4.1: AADL instance of a thread group modelling the hybrid ros node from Listing 4.3

4.3 Communication interfaces

For the communication interface part, that is, the publish/subscribe pattern and the RPC pattern
we can directly use the port feature. A publisher is modelled as a out event data port
feature of an AADL component type. The event data specifies that the individual received
messages are queued.

22

Chapter 4. Modelling software components

thread g n s s _ l o c a l i s a t i o n extends i n t e r f a c e s : : l o c a l i s a t i o n : : gnss_pose_provider
features

gnss_in : ref ined to in event data port middleware : : ros : : msgs : : gpgga_tranmerc ;
pose_out : ref ined to out event data port middleware : : ros : : nav_msgs : : Odometry ;
rese t : ref ined to in event data port middleware : : ros : : std_msgs : : Bool ;
s ta tus_ou t : ref ined to out event data port middleware : : ros : : std_msgs : : Bool ;

end g n s s _ l o c a l i s a t i o n ;

thread implementation g n s s _ l o c a l i s a t i o n . s td
subcomponents

con f i g : data g n s s _ l o c a l i s a t i o n _ c o n f i g . impl ;
properties

Dispatch_Protoco l => Per iod i c ;
end g n s s _ l o c a l i s a t i o n . s td ;

Listing 4.5: Sample of an ROS node modelled as a thread

The thread implementation in Listing 4.5 specifies that this thread is triggered peri-
odically, which also implies that the inputs are sampled at each trigger. This model is a simplified
view on the actual implementation the component. In ROS a number of threads are created for
each node, these threads are used for communication and management, we chosen to abstract
this away in our model, and instead model the latency / execution time overhead for the publish
subscribe elsewhere in the model.

A RPC style interface can be modelled using the AADL subprogram access specification
as shown in Listing 4.6

package plann ing
public

wi th i n t e r f a c e s : : p lann ing ;

thread f i e l d_p lan_gene ra to r extends
i n t e r f a c e s : : p lann ing : : p lan_prov ider

features
get_plan : ref ined to provides subprogram access

i n t e r f a c e s : : p lann ing : : get_plan ;
get_planners : ref ined to provides subprogram access

i n t e r f a c e s : : p lann ing : : l i s t _ p l a n n e r s ;
end f i e l d_p lan_gene ra to r ;

end plann ing ;

Listing 4.6: RPC style interface modelling

4.4 Modelling the ROS message passing infrastructure

The publish/subscribe message passing system used in ROS is based on TCP sockets. All nodes in
a ROS system registers with a master who then provides the connection details when a node pub-
lishes/subscribes to a topic. The actual message passing is done directly between the nodes. The
message passing system itself is transparent to the node, but we want to model the non-functional
properties of the message passing system, in order to more accurately determine latencies associ-
ated with node to node communication.

In AADL we can model this as a virtual bus which can be used to model required proto-
cols for communication. The model of the message passing system can be seen in Listing 4.7. The
numbers used for the Transmission_Time are fictional, and will be estimated on real hard-
ware platforms in section 5.2. In order to model that the data transmitted between a set of nodes is
transported via the ROS message passing system, we can use the Actual_Connection_Binding
property to bind the connection to the virtual bus.

23

Chapter 4. Modelling software components

v i r t u a l bus ros_ ipc
properties

SEI : : BandWidthCapacity => 10.0 GBytesps ;
Latency => 2 us . . 1 ms;
Transmission_Time => [Fixed => 1 us . . 20 us ;

PerByte => 1 ns . . 1 ns ;] ;
end ros_ ipc ;

Listing 4.7: virtual bus model of the ROS message passing system

4.5 Message type modelling

In order to be able to estimate timing properties of a system modelled in AADL the data types
of the inputs and outputs must be known, or to be more specific, the expected size of the data
transmitted between two components must be known. For the ROS middleware, we have de-
veloped a script which converts all defined message types into an corresponding AADL model.
The ROS message types are comparable to C structures, they can either be a simple field like,
double,float,int,short,char, an array or a reference to another defined structure. The
conversion tool sums up the size of the individual fields recursively until the complete size is
estimated. The complete size cannot be determined accurately since the size of the arrays is un-
specified in the ROS message type definitions. Per default an array is assumed to be containing
one element. However the modelling capabilities of AADL makes it possible to override the de-
fault size by assigning the property Data_Size another value. Listing 4.8 shows an example of
a ROS message described in AADL.

data Imu
properties

Data_Size => 128 Bytes ;
end Imu ;

data implementation Imu . impl
subcomponents

l i nea r_acce le ra t i on_cova r i ance : data Base_Types : : Float_64 [] ;
o r i e n t a t i o n : data middleware : : ros : : geometry_msgs : : Quaternion . impl ;
angu la r_ve loc i t y_covar iance : data Base_Types : : Float_64 [] ;
o r i en ta t i on_cova r i ance : data Base_Types : : Float_64 [] ;
header : data middleware : : ros : : std_msgs : : Header . impl ;
l i n e a r _ a c c e l e r a t i o n : data middleware : : ros : : geometry_msgs : : Vector3 . impl ;
a ng u l a r _ ve l o c i t y : data middleware : : ros : : geometry_msgs : : Vector3 . impl ;

end Imu . impl ;

Listing 4.8: AADL model of the sensor_msgs/Imu ROS message type

It is possible to associate units with the message type definitions, in order to make it clear the
expected units that the sender and receiver of a given message should use.

4.6 Component parameters

AADL does not provide explicit support for modelling parameterisation of components. As an ex-
ample consider an component converting general linear/angular velocity commands into left/right
wheel velocities command. One important parameter the component need to know is the distance
between the two wheels. This can be modelled implicitly in AADL by defining a data type and
implementation containing these parameters as shown in Listing 4.9.

24

Chapter 4. Modelling software components

data g n s s _ l o c a l i s a t i o n _ c o n f i g
end g n s s _ l o c a l i s a t i o n _ c o n f i g ;

data implementation g n s s _ l o c a l i s a t i o n _ c o n f i g . impl
subcomponents

o r i e n t a t i o n _ b u f f e r _ s i z e : data Base_Types : : I n tege r {
Data_Model : : Integer_Range => 2 . . 5 0 ; } ;

m in_d is t : data Base_Types : : F loa t {
Data_Model : : Real_Range => 0.04 . . 1 . 5 ;
Data_Model : : Measurement_Unit => "m" ; } ;

min_vel : data Base_Types : : F loa t {
Data_Model : : Real_Range => 0.05 . . 1 . 0 ;
Data_Model : : Measurement_Unit => "m/ s " ; } ;

end g n s s _ l o c a l i s a t i o n _ c o n f i g . impl ;

Listing 4.9: Sample of data type and unit specification for the parameters of a component

The properties associated with the data components in Listing 4.9 can be further detailed with
default values (Data_Model::Initial_Value). The Measurement_Unit property used
for representing units is based on text strings, which can result in problems with units being the
same but written differently, for a more formal type based unit, a property set can be declared
enumerating the units as proper AADL units to be applies to a data element.

25

5
Model validation and refinement

In this chapter some of the models developed in chapter 2, 3 and 4 are validated through exper-
iments. Furthermore a method for obtaining the platform timing data needed for the analysis of
the communication delays between software components is presented along with concrete mea-
surements of different hardware platforms. Finally a method for measuring the execution time
of software components is presented and concrete results for a selected set of components is pre-
sented. The models are validated on the hardware platforms listed in Table 5.1

Computer Processor N cores Clock Freq Memory Disk type
RT101 i.MX6 A9 4 1.0 GHz 1 GB Class 10, 8 GB SD card
Spectra i7-3612QM 2 2.1GHz 8GB Samsung SSD 840 256 GB

Table 5.1: Table of the hardware platforms used for validating the models

5.1 Validating bandwidth estimates

The hardware plays an important role when the latency of a system has to be determined. Com-
munication busses interconnects the computer with physical devices.

5.1.1 Ethernet based devices

The experiments performed in this section aims to quantify the bandwidth required for communi-
cation from a serial to ethernet converter device. These experiments also provide a guideline for
how to estimate the bandwidth of a ethernet based device.

The bandwidth requirements for a given ethernet device can be modelled in AADL and then
a experiment can be carried out in order to validate this model against the real device. Figure 5.1
shows the AADL model of an IMU with a serial interface which is bridged to ethernet via an
adapter. The purpose of the experiment is to compare the estimated bandwidth usage from the
AADL model with the measured actual bandwidth. The bandwidth estimate from the AADL
model is calculated by using the bandwidth estimation tool from OSATE as demonstrated in sec-
tion 3.2. The bandwidth estimation is based on the size of the data transmitted from the serial
device, the overhead added by the TCP protocol when transmitting the data via ethernet and fi-
nally the output rate of the IMU. The data sent from the IMU varies in size due to numbers being

26

Chapter 5. Model validation and refinement

transmitted as ASCII, and this is difficult to include in the bandwidth model. Therefore we use a
"guesstimated" mean data size for the model.

Figure 5.1: AADL model of the ethernet bridge between a serial device and a computer.

Wireshark1 is used for measuring the bandwidth required by the setup shown in Figure 5.1.
Each packet received from the device to the computer is stored with a timestamp of reception. The
total bandwidth usage is then calculated as

BWtotal =
∑N

p=0 packets(p)
tend − tstart

(5.1)

Where p is the packet number, packets is a function returning the size of that package in bytes,
and tstart is the time of the first package, and tend is the time in seconds for the last package.

Total packet size [Bytes] Total time [s] Bandwidth [Bytes/s]
Estimated na na 4560
Measured 88156 18.048 4884.5

Table 5.2: Estimated bandwidth usage from the AADL model and actual measured bandwidth
usage.

Table 5.2 shows the estimated bandwidth of the ethernet connection between the IMU bridge
and the computer and the actual measured bandwidth. The estimated bandwidth is lower than
the actual measured. This may be due to the data size variation. The relative error between the
estimated bandwidth and the actual measured is 6.64%.

5.2 Profiling communication delay of the ROS middleware

In order to determine the communication delay of the ROS publish/subscribe middleware on a
given hardware platform, a set of experiments has been designed. The experiments are divided
into two parts, one part for local communication on the same computer between two ROS nodes
(processes), and another part for communication between two nodes on separate computers con-
nected via ethernet. An overview of the experiment setup for the local communication can be seen
in Figure 5.2 and the setup for the remote communication can be seen in Figure 5.3.

From Figure 5.4 we can see that the standard deviation of the transmission delay between two
ROS nodes running on the same computer is depending on the message size itself. This depen-
dency is difficult to model in AADL at least using only a virtual bus as the representation of
the middleware. However we can decide on suitable linear values for a given situation, and thereby
avoid complex modelling of the middleware. Furthermore the data presented in Figure 5.4 shows

1www.wireshark.org

27

www.wireshark.org

Chapter 5. Model validation and refinement

Figure 5.2: AADL Model of the experiment setup for local node communication measurements,
where both nodes are located on the same computer.

Figure 5.3: AADL Model of the experiment setup for remote node communication measurements
where the sender is located on the Spectra PC and the receiver is located on RT101 embedded
platform, connected via a 1000 Mbit/s ethernet.

a few outliers. These outliers may come from the Linux operating system it self, as the kernel is
not real-time capable, and therefore does not provide any deadline guarantees. section 5.4 will
provide more details on the scheduling of a ROS node.

28

Chapter 5. Model validation and refinement

Data size Computer min [ms] max [ms] mean [ms] median [ms] stddev [ms]

76 Bytes
RT101 1.0 2.5 1.2 1.2 0.056
Spectra 0.206 0.555 0.468 0.478 0.049

132 Bytes
RT101 1.1 2.1 1.2 1.2 0.057
Spectra 0.227 0.593 0.495 0.508 0.048

244 Bytes
RT101 1.1 2.2 1.3 1.3 0.075
Spectra 0.218 0.567 0.494 0.510 0.043

468 Bytes
RT101 1.2 2.1 1.3 1.3 0.059
Spectra 0.252 0.566 0.513 0.518 0.025

916 Bytes
RT101 1.2 2.3 1.3 1.3 0.056
Spectra 0.234 0.607 0.486 0.499 0.048

1812 Bytes
RT101 1.3 2.8 1.5 1.4 0.096
Spectra 0.254 0.671 0.487 0.497 0.044

3604 Bytes
RT101 1.7 2.8 1.8 1.8 0.095
Spectra 0.306 0.687 0.547 0.551 0.026

7188 Bytes
RT101 2.3 3.8 2.4 2.4 0.077
Spectra 0.300 0.731 0.594 0.600 0.034

14356 Bytes
RT101 3.6 5.0 3.7 3.7 0.093
Spectra 0.429 0.859 0.670 0.676 0.046

28692 Bytes
RT101 6.1 7.6 6.2 6.2 0.070
Spectra 0.669 1.2 0.918 0.923 0.036

57364 Bytes
RT101 11.1 13.2 11.2 11.2 0.133
Spectra 1.0 1.7 1.4 1.4 0.058

Table 5.3: Combined results of each measured data size for the RT101 platform and the Spectra
platform for easier comparison. Each value in the rows are calculated based on 2000 samples.

29

Chapter 5. Model validation and refinement

Fi
gu

re
5.

4:
R

es
ul

t
of

ru
nn

in
g

th
e

ro
un

dt
rip

te
st

on
th

e
sp

ec
tra

P
C

,
ea

ch
da

ta
si

ze
w

as
m

ea
su

re
d

20
00

tim
es

.
Th

e
da

sh
ed

bl
ac

k
lin

e
re

pr
es

en
ts

th
e

m
ea

n
va

lu
e,

th
e

da
sh

ed
re

d
lin

e
is

th
e

m
ea

n
va

lu
e

pl
us

th
e

st
an

da
rd

de
vi

at
io

n,
th

e
da

sh
ed

bl
ue

lin
e

is
th

e
m

ea
n

va
lu

e
su

bt
ra

ct
ed

th
e

st
an

da
rd

de
vi

at
io

n,
th

e
gr

ee
n

lin
e

re
pr

es
en

ts
a

lin
ea

rr
eg

re
ss

io
n

on
th

e
m

ea
n

va
lu

es
(th

e
da

sh
ed

bl
ac

k
lin

e)
,fi

na
lly

ea
ch

sa
m

pl
e

is
pl

ot
te

d
as

a
do

t.

30

Chapter 5. Model validation and refinement

Fi
gu

re
5.

5:
R

es
ul

t
of

ru
nn

in
g

th
e

ro
un

dt
rip

te
st

on
th

e
rt

10
1

em
be

dd
ed

pl
at

fo
rm

,
ea

ch
da

ta
si

ze
w

as
m

ea
su

re
d

20
00

tim
es

.
Th

e
da

sh
ed

bl
ac

k
lin

e
re

pr
es

en
ts

th
e

m
ea

n
va

lu
e,

th
e

da
sh

ed
re

d
lin

e
is

th
e

m
ea

n
va

lu
e

pl
us

th
e

st
an

da
rd

de
vi

at
io

n,
th

e
da

sh
ed

bl
ue

lin
e

is
th

e
m

ea
n

va
lu

e
su

bt
ra

ct
ed

th
e

st
an

da
rd

de
vi

at
io

n,
th

e
gr

ee
n

lin
e

re
pr

es
en

ts
a

lin
ea

rr
eg

re
ss

io
n

on
th

e
m

ea
n

va
lu

es
(th

e
da

sh
ed

bl
ac

k
lin

e)
,fi

na
lly

ea
ch

sa
m

pl
e

is
pl

ot
te

d
as

a
do

t.

31

Chapter 5. Model validation and refinement

Fi
gu

re
5.

6:
R

es
ul

to
fr

un
ni

ng
th

e
ro

un
dt

rip
te

st
w

ith
th

e
se

nd
er

no
de

on
th

e
S

pe
ct

ra
co

m
pu

te
r

an
d

th
e

re
ce

iv
er

ru
nn

in
g

on
th

e
R

T1
01

co
m

pu
te

r,
ea

ch
da

ta
si

ze
w

as
m

ea
su

re
d

20
00

tim
es

.
Th

e
gr

ee
n

lin
e

re
pr

es
en

ts
a

lin
ea

r
re

gr
es

si
on

on
th

e
m

ea
n

va
lu

es
(th

e
da

sh
ed

bl
ac

k
lin

e)
,fi

na
lly

ea
ch

sa
m

pl
e

is
pl

ot
te

d
as

a
do

t.
Th

is
pl

ot
of

th
e

m
ea

su
re

m
en

td
at

a
ex

cl
ud

es
a

nu
m

be
ro

fo
ut

lie
rs

,a
nd

fu
rt

he
rm

or
e

ex
cl

ud
es

th
e

m
ea

su
re

m
en

ts
fo

rt
he

71
88

B
yt

es
da

ta
si

ze
,s

ee
se

ct
io

n
5.

3.

32

Chapter 5. Model validation and refinement

5.3 Network measurement anomalies

The networked node experiment performed in section 5.2 contained results for a specific data size,
which varied in measured delay significantly more than the measured delay for the other data sizes.
This section investigates this anomaly in more detail. In order to figure out when this behaviour
starts to show in the measurements, the same test as performed in section 5.2 with a linear sweep
from 76 Bytes up to 14020 Bytes with an increment of 560 Bytes. Figure 5.7 shows a scatter plot
of these measurements.

Figure 5.7: Scatter plot of the sweep from 76 Bytes to 14020 Bytes, with 560 Bytes increment.
The round trip delay time was measured 2000 times for each message size. The dashed black
line represents the mean value of each data size.

As seen from Figure 5.7, the variance starts to increase at around 3000 Bytes and then increases
significantly at 5500 to around 7500 Bytes.

Figure 5.8 shows a comparison of two data sizes close to each other in data size, but with
different measurement results. The root cause of this sudden increase in variance has not been
found, but using Wireshark, a large amount of TCP retransmission frames where recorded for the
measurements with high latency, although this is just a symptom of ethernet frames being dropped
by the kernel.

33

Chapter 5. Model validation and refinement

(a) (b)

Figure 5.8: Plot of the 2000 measurements of the round trip delay with a data size of 5620 Bytes
(a) and data size 5060 (b), showing a large variation in the delay measured in (a) and a much
smaller variation in (b).

5.4 Profiling the Execution time of ROS nodes

In this section a method for measuring the execution time of a ROS component and using the
execution time measurements in an AADL setting is presented. Table 5.4 list the components to
be profiled. The listed components are all part of the flow from the GNSS device to the sprayer
device.

Component Type
gnss_serial_driver Asynchronous
gnss_pose_provider Asynchronous
ekf_pose_provider Asynchronous
auto_steering Periodic
implement_controller Hybrid
implement_driver Asynchronous

Table 5.4: A list of the components and their implementation pattern, for which the execution time
is measured and feed back into the AADL model for further analysis

Each component is measured independently of the other, in a component specific test bench
which provides sample inputs for the component. The component is instrumented with execution
time measurement code. For components implemented as a periodic node, the execution time of
the timer loop is measured. For asynchronous nodes, each callback is measured. For hybrid nodes,
both the timer loop and the callbacks are measured.

34

Chapter 5. Model validation and refinement

C
om

po
ne

nt
T

hr
ea

d
Pl

at
fo

rm
M

in
M

ax
M

ea
n

St
dd

ev

gp
gg

a_
to

_u
tm

gp
sS

ta
te

C
al

lb
ac

k
rt

10
1

23
.7

us
13

7.
0u

s
30

.5
us

3.
2u

s
sp

ec
tr

a
4.

9u
s

48
.1

us
20

.2
us

2.
7u

s

gn
ss

_p
os

e_
pr

ov
id

er
on

gn
ss

_s
ub

M
sg

rt
10

1
24

3.
0u

s
1.

3m
s

43
2.

0u
s

20
5.

5u
s

sp
ec

tr
a

73
.2

us
75

6.
8u

s
16

5.
3u

s
33

.5
us

ek
f_

po
se

_p
ro

vi
de

r

on
O

do
m

M
es

sa
ge

rt
10

1
7.

3u
s

1.
6m

s
45

6.
9u

s
16

2.
0u

s
sp

ec
tr

a
1.

2u
s

23
3.

5u
s

13
2.

1u
s

45
.9

us

on
Ti

m
er

rt
10

1
1.

7u
s

2.
8m

s
53

.1
us

53
.6

us
sp

ec
tr

a
48

6.
0n

s
1.

6m
s

41
.4

us
31

.0
us

on
U

tm
M

es
sa

ge
rt

10
1

8.
0u

s
1.

9m
s

86
8.

8u
s

30
6.

1u
s

sp
ec

tr
a

1.
2u

s
1.

2m
s

21
5.

1u
s

77
.4

us

au
to

_s
te

er
in

g
on

_t
im

er
rt

10
1

4.
3u

s
3.

4m
s

85
.8

us
11

2.
7u

s
sp

ec
tr

a
1.

1u
s

63
1.

9u
s

48
.2

us
25

.1
us

on
pa

th
_c

m
d_

in
M

sg
rt

10
1

3.
3u

s
16

.9
m

s
32

.7
us

69
4.

9u
s

sp
ec

tr
a

1.
6u

s
3.

1m
s

8.
7u

s
12

5.
5u

s

im
pl

em
en

t_
co

nt
ro

lle
r

on
_t

im
er

rt
10

1
13

.7
us

83
.7

us
28

.0
us

4.
3u

s
sp

ec
tr

a
6.

9u
s

63
.3

us
21

.0
us

2.
2u

s

on
cm

d_
in

M
sg

rt
10

1
69

8.
7u

s
69

8.
7u

s
69

8.
7u

s
0.

0
sp

ec
tr

a
22

6.
8u

s
22

6.
8u

s
22

6.
8u

s
0.

0

on
pa

th
_f

ee
db

ac
kM

sg
rt

10
1

22
.3

us
50

7.
0u

s
30

.1
us

13
.0

us
sp

ec
tr

a
4.

4u
s

22
4.

2u
s

17
.3

us
6.

0u
s

Ta
bl

e
5.

5:
Ta

bl
e

sh
ow

in
g

th
e

m
in

,m
ax

,m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
th

e
co

m
pu

ta
tio

n
tim

e
fo

r
ea

ch
th

re
ad

in
ea

ch
co

m
po

ne
nt

on
th

e
tw

o
ha

rd
w

ar
e

pl
at

fo
rm

s.
Th

e
co

m
po

ne
nt

s
ar

e
pa

rt
of

th
e

G
N

S
S

de
vi

ce
to

sp
ra

ye
rfl

ow
pa

th
.

35

Chapter 5. Model validation and refinement

5.5 Refining the system model

In this section we update the AADL model of the Intelligent Marking Robot with the timing
measurement results obtained from the two computer platforms in section 5.4 and section 5.2.

5.5.1 Determine model parameters

The first task is to derive the model parameters for the middleware from the experimental data
obtained in section 5.2. In our case we are interested in the variation in the latency.Therefore
we want to extract a reasonable estimate for the minimum transmission time and the maximum
transmission time. The minimum transmission time is calculated based on fitting a linear function
to the minimum transmission value of each measured data size, and then divide this by two as the
results in section 5.2 are round trips.

Platform Min per-byte Min fixed max per-byte Max fixed
RT101 87 ns 529 us 95 ns 1115 us
Spectra 7 ns 113 us 10 ns 295 us

Table 5.6: The linear function parameters for the AADL bus transmission time property - calculated
from the measurement results obtained in section 5.2, Table 5.3, by fitting a linear function to the
Min value of each data size, and fitting a linear function to the Max value of each data size, and
then divide by two to account for the measurements being roundtrip.

The choice of model parameters differs based on the system to be analysed and the type of
analysis to be performed, in our case we are interested in a worst case scenario when it comes to
the maximum delay and minimum delay, but other model parameters may be more suitable for
analysing the generic case of latency and execution time, if the system requirements are different.
For each of the threads involved in the flow path from the GNSS device to the sprayer device, we
use the minimum and maximum observed execution time from Table 5.5 as model parameters for
the Timing_Properties::Compute_Execution_Time.

5.5.2 Latency analysis

The flow latency from the GNSS device to the sprayer device is now analysed again using the
model of the robot refined with the execution time measurements and the middleware overhead
measurements. The flow analysed includes only the software components, and the minimum and
maximum reported delays or executions times are used. Table 5.7 shows the latency contribution
by each thread and connection between ports of these threads. The main contribution to the latency
variance comes from the sampling of the data at the ekf_fusion.main_loop thread and at
the nav_controller thread. The total variation in latency for the RT101 platform is 43ms
which results in a 2.5cm variation in the resulting start and end of a painted line. The line width
is commonly 10cm and if the route is generated such that the sprayer targets to turn on and off at
the center then this variation is within the requirements. However, this variation is only part of the
total variation of the line. The accuracy of the GNSS and the navigation controllers also affects
the total precision of the sprayed line.

Table 5.9 shows the latency contribution for each thread and connection when executing on
the Spectra computer, a more powerful platform. As seen we do not get a large reduction in the
latency variation just be selecting a more powerful platform, as the main contribution to the latency
variation is the periodic sampling of the inputs by the ekf_fusion.main_loop thread and at
the nav_controller thread.

36

Chapter 5. Model validation and refinement

Contributor Min Value Min Method Max Value Max Method
Connection 0.53161ms no latency 1.11785ms no latency
thread gnss 0.0ms queued 0.0ms queued
thread gnss 0.023ms processing time 0.0ms no latency
Connection 0.5377ms no latency 1.1245ms no latency
thread gnss_provider 0.0ms queued 0.0ms queued
thread gnss_provider 0.243ms processing time 0.0ms no latency
Connection 0.542224ms no latency 1.12944ms no latency
thread ekf_fusion.gnss_filter 0.0ms queued 0.0ms queued
thread ekf_fusion.gnss_filter 0.008ms processing time 0.0ms no latency
Connection 0.0ms no latency 0.0ms no latency
thread ekf_fusion.main_loop 0.0ms sampling 20.0ms sampling
thread ekf_fusion.main_loop 0.002ms processing time 0.0ms no latency
Connection 0.542224ms no latency 1.12944ms no latency
thread nav_controller 0.0ms sampling 20.0ms sampling
thread nav_controller 0.0ms queued 0.0ms queued
thread nav_controller 0.004ms processing time 0.0ms no latency
Connection 0.5608ms no latency 1.14977ms no latency
thread implement_controller.async 0.0ms queued 0.0ms queued
thread implement_controller.async 0.014ms processing time 0.0ms no latency
Connection 0.529087ms no latency 1.115095ms no latency
thread sprayer 0.0ms queued 0.0ms queued
thread sprayer 0.0ms no latency 0.0ms no latency
Connection 0.53ms no latency 1.11614ms no latency
Latency Total 4.07ms 47.88ms

Table 5.7: OSATE Flow Latency report for the refined instance of the Intelligent Marking model
using the RT101 computer platform, the hardware and low-level drivers are excluded for this
analysis.

37

Chapter 5. Model validation and refinement

Table 5.8

Contributor Min Value Min Method Max Value Max Method
Connection 0.113ms no latency 0.295ms no latency
thread gnss 0.0ms queued 0.0ms queued
thread gnss 0.005ms processing time 0.0ms no latency
Connection 0.114ms no latency 0.296ms no latency
thread gnss_provider 0.0ms queued 0.0ms queued
thread gnss_provider 0.073ms processing time 0.0ms no latency
Connection 0.114ms no latency 0.296ms no latency
thread ekf_fusion.gnss_filter 0.0ms queued 0.0ms queued
thread ekf_fusion.gnss_filter 0.001ms processing time 0.0ms no latency
Connection 0.0ms no latency 0.0ms no latency
thread ekf_fusion.main_loop 0.0ms sampling 20.0ms sampling
thread ekf_fusion.main_loop 4.86E-4ms processing time 0.0ms no latency
Connection 0.114ms no latency 0.296ms no latency
thread nav_controller 0.0ms sampling 20.0ms sampling
thread nav_controller 0.0ms queued 0.0ms queued
thread nav_controller 0.001ms processing time 0.0ms no latency
Connection 0.115ms no latency 0.299ms no latency
thread implement_controller.async 0.0ms queued 0.0ms queued
thread implement_controller.async 0.007ms processing time 0.0ms no latency
Connection 0.113ms no latency 0.295ms no latency
thread sprayer 0.0ms queued 0.0ms queued
thread sprayer 0.0ms no latency 0.0ms no latency
Connection 0.113 ms no latency 0.295 ms no latency
Latency Total 0.88 ms 42.07 ms

Table 5.9: OSATE Flow Latency report for the refined instance of the Intelligent Marking model
using the Spectra computer platform, the hardware and low-level drivers are excluded for this
analysis.

38

6
Evaluation

This this chapter summaries the contents of the previous chapter and provides concluding remarks.

6.1 Concluding remarks

From a system and architecture design point of view, the AADL language is easily applied, and
can be used to structure a design into both hardware and software sub-systems for which the
interfaces can be defined, and refined. The hardware modelling aspects of AADL enable early
analysis and selection of Bus bandwidths, communication protocols, etc. Furthermore being able
to experiment with different architectures at a relative low effort, is paramount for achieving an
architecture which satisfied all the requirements. From a software modelling point of view, AADL
is most suited for modelling components as black-boxes in terms of behaviour, and then focusing
on the interface and execution semantics (asynchronous, periodic, etc.). The Flow Path Analysis
plugin offers key insight into the design tradeoffs, by providing detailed impact of assigning a
thread a specific period, in terms of overall system performance. However the absolute accuracy
of the predictions has not been validated in this work. However as a initial comparison between
different architectures it is still a valuable tool.

Modelling the robotic middleware as a virtual bus, enables different middlewares to be bench-
marked in the same way as the ROS middleware was, and compare the gain from switching mid-
dleware, or to model subsystems using a different middleware for communication. As seen from
the middleware measurements, the ROS middleware has quite varying performance, in terms of
message transmission delay. The reason for the measured delays, has not been investigated, but
a primary influence on the results, is the fact that the system is not real-time. Many robotic
systems contains both real-time tasks and non-real-time tasks. Real-time tasks may be low-level
motor control running at 500Hz, or functions which have a hard deadline in terms of reaction time.
Tasks such as feature extraction, and Simultaneous Localisation and Mapping (SLAM) algorithms
typically does not execute in a real-time environment due to their unpredictability in terms of ex-
ecution time, and the amount of computational resources required. However AADL can handle
both types of systems, although it is difficult to express that the scheduler is not real-time, as this
does not affect any of the end-to-end analyses made. But from a modelling point of view, it is
trivial to have multiple systems running on different processors, and using different schedulers in
the same overall model.

39

Bibliography

[1] Biggs, G., Fujiwara, K., Anada, K.: Modelling and analysis of a redundant mobile robot ar-
chitecture using aadl. In: Simulation, Modeling, and Programming for Autonomous Robots,
pp. 146–157. Springer (2014)

[2] Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE ICRA 2001
Proceedings. vol. 3, pp. 2523–2528 vol.3 (2001)

[3] Delange, J., Feiler, P.: Incremental latency analysis of heterogeneous cyber-physical systems
(2014)

[4] Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

[5] Fernández, M.M.: Ground systems modeling using the architecture analysis & design lan-
guage (aadl) (2014)

[6] Jang, C., Lee, S.I., Jung, S.W., Song, B., Kim, R., Kim, S., Lee, C.H.: Opros: A new
component-based robot software platform. ETRI journal 32(5), 646–656 (2010)

[7] Jensen, K., Larsen, M., Nielsen, S.H., Larsen, L.B., Olsen, K.S., Jørgensen, R.N.: Towards
an open software platform for field robots in precision agriculture. Robotics 3(2), 207–234
(2014)

[8] Jørgensen, R., Sørensen, C., Maagaard, J., Havn, I., Jensen, K., Søgaard, H., Sørensen, L.:
Hortibot: A system design of a robotic tool carrier for high-tech plant nursing. Agricultural
Engineering International: CIGR Journal (2007)

[9] Linz, A., Ruckelshausen, A., Wunder, E., Hertzberg, J.: Autonomous service robots for
orchards and vineyards: 3d simulation environment of multi sensor-based navigation and ap-
plications (2014), https://my.hs-osnabrueck.de/ecs/fileadmin/groups/
156/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_
Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_
of_Multi_Sensor_Based_Navigation_and_Applications.pdf

[10] Murugesan, A., Heimdahl, M., Whalen, M., Rayadurgam, S., Komp, J., Duan, L., Kim, B.,
Sokolsky, O., Lee, I.: From requirements to code: Model based development of a medical
cyber physical system (2014)

[11] Nebot, P., Torres-Sospedra, J., Martínez, R.J.: A new hla-based distributed control architec-
ture for agricultural teams of robots in hybrid applications with real and simulated devices
or environments. Sensors 11(4), 4385–4400 (2011)

[12] Noll, T.: Safety, dependability and performance analysis of aerospace systems. In: Formal
Techniques for Safety-Critical Systems, pp. 17–31. Springer (2014)

40

https://my.hs-osnabrueck.de/ecs/fileadmin/groups/156/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_of_Multi_Sensor_Based_Navigation_and_Applications.pdf
https://my.hs-osnabrueck.de/ecs/fileadmin/groups/156/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_of_Multi_Sensor_Based_Navigation_and_Applications.pdf
https://my.hs-osnabrueck.de/ecs/fileadmin/groups/156/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_of_Multi_Sensor_Based_Navigation_and_Applications.pdf
https://my.hs-osnabrueck.de/ecs/fileadmin/groups/156/Veroeffentlichungen/2014-ICPA_2014_Autonomous_Service_Robots_for_Orchards_and_Vineyards_3D_Simulation_Environment_of_Multi_Sensor_Based_Navigation_and_Applications.pdf

Bibliography

[13] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.:
Ros: an open-source robot operating system. In: ICRA workshop on open source software.
No. 3.2 (2009)

[14] SAE: Architecture Analysis & Design Language (AADL). SAE, SAE (September 2012),
http://standards.sae.org/as5506b/

[15] Schlegel, C., Lotz, A., Steck, A.: Robotic software systems: From code-driven to model-
driven software development. INTECH Open Access Publisher (2012)

[16] Senn, E., Laurent, J., Diguet, J.P.: Multi-level power consumption modelling in the aadl
design flow for dsp, gpp, and fpga. ACESMB 2008 p. 9

[17] Yu, H., Yang, Y.: Latency analysis of automobile abs based on aadl. In: Industrial Control
and Electronics Engineering (ICICEE), 2012 International Conference on. pp. 1835–1838.
IEEE (2012)

41

http://standards.sae.org/as5506b/

Department of Engineering
Aarhus University
Inge Lehmanns Gade 10
8000 Aarhus
Denmark

Tel.: +45 8715 0000

Morten Larsen, Modelling field robot software using AADL, 2016

	technical-report-aadl-modelling.pdf
	Table of Contents
	Introduction
	Middlewares for robotic software components
	Modelling robotics systems
	Architecture Analysis and Design Language
	Line Marking robot
	Report overview

	Modelling robot software using AADL
	Introduction to AADL
	Abstract Modelling of the Intelligent Marking robot
	Analysing the system models

	Modelling robot hardware
	Modelling communication busses
	Bus bandwidth analysis
	Hardware flow latency analysis

	Modelling software components
	Anatomy of a ROS based node
	Modelling scheduling properties
	Communication interfaces
	Modelling the ROS message passing infrastructure
	Message type modelling
	Component parameters

	Model validation and refinement
	Validating bandwidth estimates
	Profiling communication delay of the ROS middleware
	Network measurement anomalies
	Profiling the Execution time of ROS nodes
	Refining the system model

	Evaluation
	Concluding remarks

	Bibliography

