

NEER ENGI

SYSTEMS OF SYSTEMS
WITH SECURITY

Electrical and Computer Engineering
Technical Report ECE-TR-10

DATA SHEET

Title: Systems of Systems with Security
Subtitle: Electrical and Computer Engineering
Series title and no.: Technical report ECE-TR-10

Author: Rasmus Winther Lauritsen
Department of Engineering – Electrical and Computer Engineering,
Aarhus University

Internet version: The report is available in electronic format (pdf) at
the Department of Engineering website http://www.eng.au.dk.

Publisher: Aarhus University©
URL: http://www.eng.au.dk

Year of publication: 2013 Pages: 34
Editing completed: March 2013

Abstract: In this report we present two case studies with Systems of Sys-

tems modelling. One model illustrates how Cryptographic parameter

consistency can be checked using VDMPP for a System of Systems uses

encryption to enforce Digital Right Management. The other model

shows how a new formalism (CML) tailored specifically to Systems of

Systems can express Multi-Party Computation protocol. The idea of

using Canetti simulation proofs from Multi-Party computation as a mod-

el for refinement of models in CML is presented. Our goal is modest. We

do not aim at proving security through refinement but to assists model-

lers/developers in maintaining security properties during refinement of

a concept to designs.

Keywords: COMPASS, modelling, Vienna Development Method, COM-

PASS Modelling Language, digital rights management, multi party com-

putation, systems of systems, systems

Supervisors: Peter Gorm Larsen, Ivan Damgaard
Financial support: Supported by the 7th framework programme project

COMPASS grant 287829

Please cite as: Rasmus Winther Lauritsen, 2013. Systems of Systems with

Security. Department of Engineering, Aarhus University. Denmark. 34 pp.

- Technical report ECE-TR-10

Cover image: Rasmus Winther Lauritsen

ISSN: 2245-2087

Reproduction permitted provided the source is explicitly acknowledged

SYSTEMS OF SYSTEMS

WITH SECURITY

Rasmus Winther Lauritsen

Aarhus University, Department of Engineering

Abstract

In this report we present two case studies with Systems of Systems modelling. One model illustrates
how Cryptographic parameter consistency can be checked using VDMPP for a System of Systems
uses encryption to enforce Digital Right Management. The other model shows how a new
formalism (CML) tailored specifically to Systems of Systems can express Multi-Party Computation
protocol. The idea of using Canetti simulation proofs from Multi-Party computation as a model
for refinement of models in CML is presented. Our goal is modest. We do not aim at proving
security through refinement but to assists modellers/developers in maintaining security properties
during refinement of a concept to designs.

Table of Contents

Table of Contents i

List of Figures ii

Chapter 1 Introduction 1

Chapter 2 Background 3
2.1 Systems Engineering . 3
2.2 System of Systems . 4
2.3 UTP and CSP . 4
2.4 Vienna Development Method . 5
2.5 The Overture Platform . 5
2.6 From Overture and VDM to COMPASS and CML 5
2.7 Multi-Party Computation . 6

Chapter 3 Modelling Digital Rights Management 8
3.1 Setting the Research Context . 8
3.2 The Core Model for DRM . 9
3.3 Modelling Security . 11

Chapter 4 Modelling Multi-Party Computation 15
4.1 The BeDOZa Protocol . 15
4.2 Case Study: Double Auction . 17
4.3 Single System Model . 19
4.4 Ideal Distributed Model . 21
4.5 Model for Double Auction Protocol . 24

Chapter 5 Conclusions and Future Work 30
5.1 Refinement . 30
5.2 Model Cryptographic Primitives . 31
5.3 Proof of Concept . 31

Bibliography 32

i

List of Figures

Fig. 2.1 Simplified Vee-model. 3
Fig. 2.2 Overture Architecture Overview . 6
Fig. 2.3 Screen shot of the Eclipse IDE running with the COMPASS compiler front-end 7

Fig. 3.1 DRM Model from Ku et al. 9

Fig. 4.1 Double Auction Overview . 20

ii

1 Introduction

With the presence of the Internet we have strong indications that successful systems will increas-
ingly rely on interaction with a number of existing systems. Hence the systems engineering chal-
lenges are moving towards those of System of Systems (SoS) [Mai98, NLF+13]. For Systems
Engineering there exists well-founded Model Based Systems Engineering (MBSE) technologies
for assisting the engineering process. These enable formal verification of desirable properties with
a system through a model describing the system at an appropriate abstraction level. An interesting
question is to which extent tools can support such MBSE also for SoS , which is the question that
this work will evolve around. More precisely, the overall goal for this PhD is the following:

This project aims at developing models, tools and processes for the development of SoSs.
In particular we will explore whether and to which extent security properties can be
captured and analysed in this SoS setting.

This report is mainly based on the work from [LL12] and on some ongoing work yet to be
published. Additionally, as part of my PhD project I have also worked extensively on developing
a type checker1 for the CML formalism. This is however not covered in detail as it is out of the
scope of this report. The report is structured as follows. The rest of this chapter gives an overview
of the overall project which this work is part of. Chapter 2 introduces the different concepts that
are needed. Then, in chapters 3 and 4 initial work on modelling security for two different kinds
of systems is presented. Chapter 3 covers work modelling systems with DRM components, and
chapter 4 is about modelling a secure protocol for multi-party computation. Finally, in Chapter 5
concrete suggestions for future directions are made.

SoS with Security

This work is a part of the European project Comprehensive Modelling for Advanced System of
Systems (COMPASS2) under the Seventh Framework Programme. COMPASS’s mission is to
create tools to support developers working with SoS. The vision is to support an MBSE process
that achieves a wide range of goals (for details of COMPASS see [COM11]) including but not
limited to:

I Understanding a conceptual system through a diagrammatic view for easy comprehension
by none experts (e.g. customers and users).

II Tool support for generating a formal model consistent with the diagrammatic model. (Pos-
sibly expert guided).

1CML type checker source – http://tinyurl.com/b4sydb3
2 http://www.compass-research.eu/

1

http://tinyurl.com/b4sydb3
http://www.compass-research.eu/

Chapter 1. Introduction

III Validation of System design at an early stage of the engineering process. E.g. early proof
of concept though model simulations of Use Cases and scenarios.

IV Validation of global functional as well as non-functional (e.g. security) properties through
theorem proving, model checking and test automation.

V Tool support for step-wise refinement through the design phase and evolution of the SoS.

To give a feeling of how the above goals are going to be achieved an overview of COM-
PASS tasks and partners is provided here: The COMPASS tool suite [CML+12] consists at
its core of a new modelling language, CML3. In Aarhus we are working on making an (Open
Source) Eclipse based platform for CML with an extensible front-end. Other tools and tech-
nologies will interact through CML: The COMPASS partner Atego4 provides their tool Artisan
Studio5 for modelling SysML6 (see [Sys10, Bal07]). An extension for their commercial tool
enables Artisan Studio to export SysML models to CML. At University of York work on inte-
grating the theorem prover Isabell/HOL into the project is in progress. UFPE7 is responsible
for creating a model checker for CML . At the University of Bremen a group working with Test
Automation that is being integrated into the COMPASS platform. Bremen has a commercial
tool for test case generation using constraint solvers (SMT8) to generate concrete test cases. An
extension to the test case generator is in progress such that test cases can be generated from
a CML model. A small website has been setup to provide resource referred to in this report:
http://www.cs.au.dk/~rwl/progrep.

3The COMPASS Modelling Language.
4http://www.atego.com/
5http://www.atego.com/products/artisan-studio/
6http://www.omgsysml.org/
7Universidade Federal de Parnambuco – http://www.ufpe.br/ufpenova/
8Satisfiability Modulo Theories – http://en.wikipedia.org/wiki/Satisfiability_Modulo_

Theories

2

http://www.cs.au.dk/~rwl/progrep
http://www.atego.com/
http://www.atego.com/products/artisan-studio/
http://www.omgsysml.org/
http://www.ufpe.br/ufpenova/
http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories
http://en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

2 Background

2.1 Systems Engineering

Systems Engineering is the general term covering the processes and activities carried out to cre-
ate or improve a system [HFK+10]. A branch of Systems Engineering is Model Based Software
Engineering (MBSE) which includes a modelling step to describe the shape and form for a sys-
tem or part thereof [Est08]. Modelling can be formal in the sense of a mathematical technique
for describing software specification, validation, development, and verification. Modelling can
also be informal through rigours diagrams and stories describing a system. This work considers a
process using Systems Modelling Language (SysML) [Sys10, Bal07] for informal modelling. To
put the tools and goal into the broader perspective consider how formal and informal modelling
can be utilised in different phases of a Systems Engineering process here described by the Vee-
model: The System Engineering process follows the line into the V going through the different

Figure 2.1: Simplified Vee-model.

phases: concept, design, detailed design and so on. In the concept and early design phases infor-
mal modelling like SysML is suited for defining system boundaries1. Then, formal techniques can
be involved as the design crystallises into logic, moving towards an implementable design. This
project seeks to contribute to this kind of engineering processes with theory backed by tools to
assist in validation of security properties. One benefit from such work is that inconsistencies in
security (between the specification and detailed design) can be caught before entering the imple-
mentation phase in a SoS setting.

1By drawing boxes and figures illustrating the environment of the conceptual idea identifying which elements are
going to be part of the system .

3

Chapter 2. Background

2.2 System of Systems

SoS Engineering is an emerging System Engineering discipline even though SoS goes back a long
time. SoS was mentioned for the first time in [Bou56]. A characterisation of a SoS by [Ber64]
is where SoS is described in terms of the cities on earth. A city can be characterised by the
same models as systems can. As such cities are subject to the general systems theory presented
by [Bou56]. Consequently, Berry describes “cites as systems within a system of cities” in which
different cities are constituents in a larger system. Work on SoS has appeared in the literature but
only gained significance up through the 90s with [Mai96] being one of the most cited taxonomies
for SoS.

The description of SoS adopted in this work is based on the eight characteristics identified
in [NLF+13]. These characteristics do not try to be a conclusive definition for SoS. One purpose
is to provide a measure for whether or not SoS modelling techniques are useful for a given Sys-
tems Engineering task. For more background and a careful history on SoS see [NLF+13].

Characteristic Description

Anonymity
Each constituent system is free and self-governing, also known as
managerial independence [Mai96].

Emergence of Behaviour
The combined system has increased capabilities arising from
synergistic collaboration between the constituent systems.

Independence

Each Constituent system is self sufficient and serves a purpose in
its own right, e.g. an existing system handling information like a
database with business logic on top.

Distribution

The combined systems do not share mass or energy. They are
physically detached and cooperate through communication, e.g. two
systems communicating over the Internet.

Evolution

The system evolves continually, but slowly, e.g. constituents may
acquire new functionality or lose functionality throughout the life
cycle of the SoS.

Dynamicity of Behaviour
Constituents systems may come and leave as the SoS continues to
function (albeit with reduced capabilities if constituents disappear).

Interoperability
The ability of the SoS to incorporate a wide range of heterogeneous
constituents into a collaborative collection.

Interdependence
Constituents rely on each other to achieve the common tasks of the
SoS.

2.3 UTP and CSP

Hoare’s Unified Theories of Programming (UTP2) captures denotational, operational and alge-
braic semantics in a combined framework for formally specifying designs and implementations
of programs [WC04]. UTP is founded on first order predicate calculus and consists of three main

2http://www.unifyingtheories.org

4

http://www.unifyingtheories.org

Chapter 2. Background

components: An alphabet, a signature and healthiness conditions enabling transformations from
designs to programs. Hence, for a language like CML that combines two programming paradigms,
UTP is a framework in which the meaning of both and the combination can be described . Commu-
nicating Sequential Processes (CSP3) is a process algebra for modelling concurrency of processes.
CSP is an integrated part of Hoare’s UTP [RHB97, Hoa85] as one paradigm of programming spe-
cialised in concurrency and as such it was created in terms of UTP semantics.

2.4 Vienna Development Method

The Vienna Development Method (VDM) is a formal method technique for specifying, modelling,
and evaluating software systems. VDM is one of the oldest formal methods, with its origin dating
back to the Vienna Definition Language (VDL) in the early 1970s [FLV08]. Through the addi-
tion and combination of multiple techniques, the approach was defined and named as the Vienna
Development Method in 1973 [Jon99]. Since then VDM has been applied to a range of industrial
projects [FLS08].

The basis of VDM is the ISO standardised VDM-SL notation [PL92, LH+96] which is a
language for modelling functional specifications of sequential systems [FL09]. In order to meet
new technology and the latest industrial challenges VDM has developed over time by introducing
several new language dialects with extended functionality. VDM++ is an object-oriented extension
of VDM in which the models consists of collections of classes [FLM+05].
The relevant VDM dialects to this project are:

VDM-SL an ISO standardised sequential language for defining software functionality;
VDM++ which includes the fundamental functionality of VDM-SL but extends it with concur-

rency and object oriented design.

2.5 The Overture Platform

The Overture project4 is aimed at the development of an open-source platform for constructing,
executing, and analysing VDM models. The project integrates a wide set of tools that include an
editor, syntax and type-checker, interpreter, debugger and proof obligation generator.
Figure 2.2 gives an overview of the current state of the Overture Architecture.
Overture consists of two main parts:

• an IDE based on the extensible Eclipse framework, and

• VDMJ [Bat09] an open-source command-line Java tool that contains a parser, syntax- and
type-checker, an interpreter, a debugger and a proof obligation generator for all of the VDM
dialects.

For further information on Overture and VDMJ please refer to [Bat09, Nie10, CMNL12].

3The book on CSP is freely available here http://www.usingcsp.com/cspbook.pdf
4Overture project web portal: http://www.overturetool.org

5

http://www.usingcsp.com/cspbook.pdf
http://www.overturetool.org

Chapter 2. Background

Figure 2.2: Overture Architecture Overview

2.6 From Overture and VDM to COMPASS and CML

CML combines VDM++ and CSP , bringing Jones’s three valued logic found in VDM++ and the
reactive behaviours of CSP together in one language. At the University of York people are working
on expressing VDM++ in UTP. Having both the UTP semantics for CSP and VDM++ forms a
formal semantics for CML. The CML language is under continuous development throughout the
project. The syntax and semantics so far are defined in [Col13] and [WBB+12] respectively.

The effort of making tool support for the CML formalism is spread on several PhD projects.
Our ongoing work is an extension of the Overture platform. That is, tool components like the type
checker for CML are extending the equivalent counterparts from Overture. This is made possi-
ble by parsing CML source into an extended version of the AST in Figure Figure 2.2 enabling
extensive reuse from Overture for analysis including proof obligation generation and interpreta-
tion/animation. The CML compiler front-end parser and type checker are well on the way. As part
of this work I have contributed with the development of the CML type checker. Figure 2.3 illus-
trates the type checker in action: A type error is found in the definition of the “Share” type. The
error is caused by “ClearValueID” being misspelled with a small d. This project has been working
on unpublished work describing the typing rules as implemented in the tool. The tool is an open
source project located at http://sourceforge.net/projects/compassresearch/.

2.7 Multi-Party Computation

In the seemingly nonrelated world of cryptography lies the notion of Multi-Party Computation
(MPC). Briefly explained, MPC enables a set of parties P1, ..., Pn to compute a function f (x1, ..., xn) =
y. Special to MPC is that each party holds the secret input xi and the function is computed such
that first of all the output is correct and secondly the output is the only new information that the
parties learn. Despite the different backgrounds MPC and SoS can have a very common structure.
In particular in the presence of privacy requirements; consider a typical SoS problem where a
number of organisations O1, ..., On want to cooperate in order to achieve some common task. If
for some Oi the common task requires sensitive information to the organisation an MPC solution
may be the answer.

6

http://sourceforge.net/projects/compassresearch/

Chapter 2. Background

Figure 2.3: Screen shot of the Eclipse IDE running with the COMPASS compiler front-end

The area of Multi-Party Computation (MPC) starts in 1982 with Andrew Yao’s initial pa-
per [Yao82]. Yao puts forward the Millionaires Problem: Two millionaires wish to know who is
richer; however, they do not want to find out any additional information about the others wealth.
How can they carry out such a conversation? Yao presents solutions to this problem and gener-
alises it into the general problem of MPC briefly introduced above. Another interesting problem
is that of a double auction of some commodity. In one flavor of a double auction a set of prices
is publicly known. Each buyer submits a bid in the form of a quantity he wishes to buy at every
price. Similarly each seller submits the quantity she wishes to sell at each price. The result of the
auction is computed as the price at which all buyers and all sellers are willing to buy and sell an
equal amount the commodity (or as close as possible to that given their bids). This price is known
as the market clearing price. The agreement is such that sellers get to sell the quantity they bid at
the clearing prices. Likewise, buyers get to buy the quantity they bid at the clearing price. The
MPC challenge for the double auction is for the sellers and buyers to find the market clearing price
without revealing their bids to anyone.

In this section the concepts and technologies used in this project has been presented. Initially
Systems Engineering was presented and this work (and COMPASS) was placed in that context.
Zooming in, this section briefly introduced UTP, CSP and VDM, that were the theories upon
which CML is founded. Additionally, a short account of the tools being used and developed
was included. Finally, a brief introduction to MPC with highlights of its similarity with SoS was
given.

7

3 Modelling Digital Rights Management

The work presented in this chapter is based on [LL12]. In [LL12] exploration with B&O was
carried out to find which elements should be in a reasonable model for a system required to handle
Digital Rights Management (DRM). DRM is a common term for a variety of methods to limit or
control the usage of digital premium content1 and the distribution mechanisms involved.

The work builds on previous work describing DRM in [WK04] and [PCC+04]. Section 3.1
below puts this work in context of the COMPASS project. The body of work is described in
sections 3.2 and 3.3, presenting the modelling carried out.

3.1 Setting the Research Context

As part of the COMPASS project, B&O is looking for ways of tackling some of the challenges
in a quickly moving Consumer Electronics market. In [LL12] it is argued that B&O’s situation is
a collaborative SoS. One interesting aspect of their SoS with respect to security is how DRM is
handled. Two very important properties for B&O is compliance with current DRM standards and
a smooth experience for the user. As an example consider the challenge of handing an update for
DRM requirements such that B&O equipments remain able to play future media. It is the idea that
having a rigorous model for DRM will assist in ensuring continuous operation of B&O products
while also supporting the task of documenting DRM compliance. To achieve the task above, this
work tries to come up with a generic model for DRM technology.

Motivated by B&O’s involvement in the COMPASS project, work on modelling DRM has
been carried out. The main goal is to create a general reusable core model for DRM upon which
trade-off studies of different DRM solutions can be made. For most users the understanding of
DRM is related to restrictions on the content. For example these restrictions could be on how many
playbacks are allowed, who can play it and where. Other common restrictions are copy-protection
and similar redistribution limiting mechanisms [Soh07]. Strict requirements are also imposed on
the entire chain of DRM entities, from copyright holder to consumer. The DRM system specifies
who authorises release of content, how it should be authorised, how to store key-material for ac-
cessing the content etc. [PCC+04, WK04]. Hence for the kinds of Home Entertainment Systems
that B&O manufactures, the engineering task of coping with DRM carries many of the character-
istics for SoS. The goal of tackling the challenge of maintaining DRM in a product line for Home
Entertainment Systems suggests an initial core model for capturing central DRM concepts. Then,
for proof of concept a model leveraging the core model for modelling cryptographic parameters is
presented.

1Premium content and services are those that the user explicitly pays for.

8

Chapter 3. Modelling Digital Rights Management

3.2 The Core Model for DRM

This section presents work carried out for creating a generic VDM-model representing the view on
DRM systems laid out in [WK04]. The VDM model is generic in the sense that it should comprise
the elements necessary (albeit they may need to be specialised) to model any concrete DRM sys-
tem as described by [WK04]. The following presents each of the model elements included in
this generic VDM model for describing a given DRM system. Then an example of how to utilize
the generic model elements to model a concrete (but simplified) DRM setup is presented. This
latter model enables the Overture Tool to check for cryptographic parameter consistency though
simulation of the model.

Figure 3.1: DRM Model from Ku et al.

In Ku et al. [WK04] DRM is viewed as shown in Figure 3.1. The interplay between these
elements is briefly summarised here:

1 The content owner inputs some new content to the content protection mechanism with a
description2 of how it may be used.

2 The content protection mechanism of the DRM System responds with a protected version
of the content and a license.

3 The content owner distributes the protected content through the distribution mechanism.

4 The content owner sends the licenses to the license broker which sells them to viewers.

5 The end user acquires material from the distribution mechanism and examines its meta-data
to figure out which license to acquire in order to play the content.

6 If the viewer does not already have a license for the acquired content, one can be bought
from the license broker.

7 When a viewer buys a license from a license broker two things happen, a license is trans-
ferred to the viewer and money is transferred to the license broker.

8 All or some of the money transferred to a license broker is subsequently transferred to the
appropriate content owner.

2Such description are the rights granted on the content by the resulting license and are typically expressed in a
Rights Expression Language (REL). In this model we have a quite simple version of REL which may be subject to
future work.

9

Chapter 3. Modelling Digital Rights Management

Ku et al. focus on six important areas that a DRM model typically covers. In the following focus
is on one of them, namely the concept in DRM of “Secure Containers” which covers means of
restricting access to the content, for instance by encrypting it. The other areas are briefly treated
as well in [LL12].

The DRM Model

The approach for creating this model follows techniques in Larsen et al. [LFW09]. Thus, in addi-
tion to the DRM entity classes a World class for entry points and an Environment class modeling
interaction with entities outside the core-DRM system are added. For a comprehensive treatment
of VDM++ see Fitzgerald et al. [FLM+05]. Figure 3.1 on the previous page describes the prin-
cipal elements in the Ku et al. view on DRM. From this figure the following VDM++ classes
immediately spring out: ContentOwner, ContentProtection, Content, ProtectedContent, License,
LicenseBroker, Viewer which is depicted as user on the figure, Distribution, and Money. To de-
termine which properties and operations to include for each of the entities above, the following
sections derive their requirements based on their operations described in Section 2.2 of Ku et
al. [WK04].

The content owner initially has some “raw content”. The DRM system might require this raw
content to be formatted. Optionally, the content owner may add a watermark to the content. As
part of entering their content to the DRM system a set of rights must be specified for the content.
The DRM system will produce a set of licenses and a protected version of their content. These
will be disseminated to relevant license brokers and a distribution channel respectively. Upon
a purchase of a license between a license broker and a viewer, the content owner may receive
payment. These operations give rise to the following operations and instance variables on our
VDM ContentOwner class.

The content protection component in the DRM system encrypts and packages content for
distribution. This component also creates licenses for accessing protected content. The fact that
viewers need to access the protected content creates a link between the ContentProtection and
Viewer elements. This link is not made visible in Ku et al.. As a first attempt to capture this link
the model implements the idea of a Protection Domain in the VDM++ class ProtectionDomain.
Viewer’s and ContentProtection classes are both instantiated with a ProtectionDomain instance.
Enforcement of access limitations are implemented in the Viewer class that makes sure only to ac-
cess un-protected content or ProtectedContent instances created by a ContentProtection instance
having the same domain as it self.

The content represents raw content before protection. Content has two properties namely
its Format and Watermark. Naturally, our VDM++ class Content carries these two properties.
Otherwise ontent is abstract, only carrying an additional id for comparison.

The protected content is content which has entered the DRM system and has been protected
by some content protection entity. Protected content is modeled using aggregation rather than
inheritance here to reflect the fact that the content is “inside” the protected content. Our Protect-
edContent classes therefore carries two instances variables, one for its content and one for the
protection domain that protects this content.

The License grants access to perform a set of actions with a piece of content on a Viewer in
some Protection Domain. Therefore, the License class naturally carries a pointer to an instance of
the ProtectedContent class and an instance of RELInstance. The license is basically an immutable
data carrier and its values could be public. However to, facilitate open behaviour for extension
models it is a design choice to have accessors methods instead.

The License Broker receives Licenses from ContentOwners and set these available for sale.
This enables the LicenseBroker to serve a Viewer with a License for a given piece of ProtectedCon-

10

Chapter 3. Modelling Digital Rights Management

tent. Transferring a license to a Viewer given an instance of Money and an identifier for content
is the operation SellLicense. SellLicense may fail if no license can be found and in such cases it
returns the value <None>. One interesting detail unclear in the Ku et al. article is how and when
money is transferred from the LicenseBroker to ContentOwner’s. In this model it is captured with
the method GetPayment to be called by a ContentOwner in case money is relevant.

A Viewer is capable of playing back content protected by a content protection instance in a
Protection Domain the Viewer can access. Hence, Viewer’s carry a list of Protection Domains from
which they can access Content. In order to actually access Content (or try to), a Viewer has a Play
operation which takes a piece of content as argument and returns a Boolean stipulating whether
access was successful or not. The Viewer also carries a set of licenses that have been acquired
through invocation to its BuyContent operation. To support playback of Content a viewer has a
PlayContent operation.

Distribution allows ContentOwners to publish Content and allows Viewers to browse all pub-
lished content. Hence, the Distribution has a PublishContent operation and a BrowseContent
operation.

The complete model can be downloaded from http://www.cs.au.dk/~rwl/progrep/
kumodel.zip and executed using the Overture tool suite (see Section 2.5).

3.3 Modelling Security

In this section the core model above is tested on a simplified DRM system where symmetric
encryption is utilised. The key distribution is assumed to be handled by actors outside the model.
The goal for this section is to describe the model created that allows a system designer to model
different kinds of encryption for DRM protection while still accessing content in the Viewer.
The kind of encryption used is stipulated by parameters such as: Cipher Algorithm, Mode of
Operation, Padding and the Key used (inspired by [Dam11]) see Listing 3.1.

The aim is to extend the generic VDM++ model only when needed, using the inheritance fea-
ture of the language. Otherwise the generic components can be used. This is illustrated in Listing
3.2. Instances of each kind of element needed to DRM like Ku et al. are created. For distribution,
content, content owner and license broker the generic elements could be used without alteration.
With the generic model describing how components are interacting it became clear from creat-
ing the example, that the protected content, the content protection, and the viewer needed to be
changed. The ProtectedContent needed to be extended with parameters telling which encryp-
tion parameters with which it was protected. The ContentProtection needed to know which kind
of parameters it is using and finally the Viewer needed to be setup with the set of encryption-
mechanisms it can handle. These considerations gave rise to three new elements specialising ex-
isting ones: CryptoContentProtection, CryptoProtectedContent and CryptoViewer enhanced with
the information just discussed.

11

http://www.cs.au.dk/~rwl/progrep/kumodel.zip
http://www.cs.au.dk/~rwl/progrep/kumodel.zip

Chapter 3. Modelling Digital Rights Management

�
1 class CryptoParameters
2 types
3
4 public EncAlg = <AES> | <TDES> | <DES> | <...>
5 public ModOpr = <CBC> | <ECB> | <RAW>;
6 public BlkSiz = <bs8> | <bs16> ;
7 public PadAlg = <ZeroPad> | <Pkcs7> | <...>
8
9 public SymmetricMechanism ::

10 cipher : EncAlg
11 mode : ModOpr
12 pad : PadAlg;
13
14 public ProtectionDomainType = <Top> | ProtectionDomain;
15
16 public ProtectionDomain ::
17 parent : ProtectionDomainType
18 cryptoCapability: CryptoCapability
19 domain: seq of char;
20
21 functions
22 public checkAccess: Viewer * ProtectionDomain *
23 SymmetricMechanism * Content -> bool
24 checkAccess(viewer, key, mech, content) == <...>
� �

Listing 3.1: Modelling of cryptographic-parameters.

In Listing 3.1 the function checkAccess encapsulates the logic of computing whether or not access
for a given viewer can be granted. Below is a listing for the scenario which also illustrates how a
DRM system is set up, here with the Crypto extensions elements created for this example.�

1 class CryptoExample
2 values
3 public www : Distribution = new Distribution();
4 public aes_cbc_zeropad_content_protection :

ContentProtection =
5 new CryptoContentProtection(mk_SymmetricMechanism(<AES>,<

CBC>,<bs16>,<Pkcs7>));
6 public phil_collins_against_all_odds: Content =
7 new Content(mk_token("Against all odds"));
8 public virgin : ContentOwner =
9 new ContentOwner(mk_token("virgin music inc."),

10 {phil_collins_against_all_odds});
11 public virgin_enabled_viewer =
12 new CryptoViewer(mk_SymmetricMechanism(<AES>,<CBC>,<bs16

>,<Pkcs7>));
13 public amazon_shop : LicenseBroker = new LicenseBroker();
� �

Listing 3.2: A Correct cryptographic parameters setup.

In Listing 3.2 is a scenario describing a situation where the cryptographic parameters are
correct. The scenario in Listing 3.4 will successfully simulate play back of a piece of music.

12

Chapter 3. Modelling Digital Rights Management

�
1 class CryptoExample
2 values
3 public www : Distribution = new Distribution();
4 public aes_cbc_zeropad_content_protection : ContentProtection

=
5 new CryptoContentProtection(mk_SymmetricMechanism(<AES>,<CBC

>,<bs16>,<Pkcs7>));
6 public phil_collins_against_all_odds: Content =
7 new Content(mk_token("Against all odds"));
8 public virgin : ContentOwner =
9 new ContentOwner(mk_token("virgin music inc."),

10 {phil_collins_against_all_odds});
11 public virgin_enabled_viewer =
12 new CryptoViewer(mk_SymmetricMechanism(<DES>,<CBC>,<bs8>,<

Pkcs7>));
13 public amazon_shop : LicenseBroker = new LicenseBroker();
� �

Listing 3.3: An incorrect cryptographic parameters setup.

In Listing 3.3 the cryptographic parameters are incorrect because the Viewer is using <DES>
encryption and hence this setup makes the scenario fail to play back the content.�
public static PublishAndPlayScenario: () ==> ()

PublishAndPlayScenario() ==
(dcl rights: RELInstance := virgin.SpecifyRights({<Play>});
dcl a : Content := virgin.FormatContent(

phil_collins_against_all_odds);
dcl b : Content := virgin.AddWatermark(

phil_collins_against_all_odds);
dcl c : ProtectedContent * License

:= virgin.EnterContent(phil_collins_against_all_odds,
rights,
des_cbc_zeropad_content_protection);

virgin.DisseminateContent(www);
virgin.SendLicenses({amazon_shop});
virgin_enabled_viewer.BuyLicense (amazon_shop,

phil_collins_against_all_odds.id); --Acquire
license

if (virgin_enabled_viewer.PlayContent(
phil_collins_against_all_odds.id,

www))
-- Acquire content and play it

then
IO‘println("Crypto is ok, we are able to play.")

else
IO‘println("There is a mistake in the model, unable to

play")
);

end CryptoExample
� �
Listing 3.4: Code listing for an example checking for consistence of cryptographic-
parameters.

13

Chapter 3. Modelling Digital Rights Management

The significant aspect of this model is that it leverages the core model elements described
in the previous section. The model above extends the core model components to capture new
properties of DRM, namely cryptographic parameter consistency. Hence, the core model for
DRM as described in Ku et al. seems like a reasonable starting point when modelling specific
properties with a given DRM setup. In comparison with the model from Popescu et al. the Ku
et al. model aims at being a complete overview for DRM , whereas the Popescu et al. model
details the User situation. For the purpose of finding a common set of elements that could define
a terminology for modelling DRM-like systems, elements from both models are needed; It turns
out that for B&O as a manufacturer of consumer electronics the model Ku et al. model needs to
be refined for the user’s situation, shereas the Popescu et al. model captures the whole range of
entities (e.g. content owners are not captured). An immediate continuation of this work would be
to extend the model with the granularity at the user’s site found in [PCC+04].

14

4 Modelling Multi-Party Computation

This section presents the work in [Lau13] made in preparation for submission to the 11th Inter-
national Conference on Software Engineering and Formal Methods (SEFM20131). The systems
engineering approach for MBSE using VDM++ in [FLM+05] is applied to the first industrial scale
application of MPC found in [BCD+08].

The section starts out by motivating the choice of protocol modelled in this work. Then follows
a short description of the protocol in Section 4.1. Section 4.2 describes the motivating industrial
application. The body of work is described in sections 4.3, 4.4 and 4.5 presenting three models,
gradually and informally refined towards a secure solution to the industrial application.

To base this work on state of the art and because of new developments in MPC since 2008
the BeDOZa protocol named after its creators in [BDOZ11] is modelled. A feature with BeDOZa
is that its on-line phase is secure in the presence of so-called active adversaries. Security against
active adversaries captures the case where the protocol tolerates that the corrupted parties deviate
from the protocol. This scenario is believed to be more realistic than assuming all parties always
follow the protocol to the letter.

The goal is to show feasibility of the SoS MBSE formalism CML to describe MPC. The ap-
proach here starts with the modelling approach for VDM++ , resulting in a comprehensible and
easily verifiable single system model in Section 4.3. Inspired by the Universally Composable
framework [Can00] the model for the full protocol is derived through a model for an idealised
situation. The purpose with this is two-fold. First, it is easier to comprehend and verify correct-
ness on the idealised model. Secondly, it ignites the idea of using modelling to assist proving
protocols secure: Can analysis on an idealised model against a protocol model show results re-
lated to indistinguishability between the real and ideal scenarios in the UC-framework? Note,
that the refinement steps resulting from this approach are relatively crude and do not entirely fol-
low the “normal” formal methods sense of the word. However, this is intended as an attempt
to use the principle idea of comparing an idealised scenario to an implementable one from the
UC-framework in the world of modelling.

4.1 The BeDOZa Protocol

In MPC the description of what a protocol achieves is described by a so-called ideal functionality.
This functionality is ideal in the sense that it takes inputs securely from the parties and always
computes the function correctly. The goal in proving a protocol secure is to show that the real
world protocol has the same characteristics as the ideal functionality. The BeDOZa protocol re-
alises the Arithmetic Multi-Party Computation (AMPC) ideal functionality. AMPC can evaluate
arithmetic circuits described by the four operations: Input, Add, Mul and Output.

1http://antares.sip.ucm.es/sefm2013/

15

http://antares.sip.ucm.es/sefm2013/

Chapter 4. Modelling Multi-Party Computation

MPC typically relies on heavy cryptographic machinery with computationally expensive prim-
itives. One trick to make MPC fast when it is needed is by using pre-processing to handle the more
heavy computations. Pre-processing means that the protocol is divided in two phases: An off-line
phase and an on-line phase. BeDOZa uses pre-processing where the goal is to precompute some
values in the off-line phase that enables efficient comptations in the on-line phase. These values
are independent of the function to be computed and the inputs to the function, and hence the pre-
processing can be run as preparation anytime. Then, in the on-line phase an actual computation on
sensitive information is going on, where the parties agree on the function (expressed by an arith-
metic circuit in terms Input, Add, Mul and Output) and each party provides his secret input to
the protocol computing the function. In this work only the on-line phase is modelled. The on-line
phase is described in [BDOZ11] pages 11 – 15. For completeness it is summarised here.

Additive Secret-Sharing. The goal of the protocol is to compute a circuit with values in Zp. A
key technique is to additively secret-share the values between the parties. Assume there are N
parties P1, ..., PN , then a value a ∈ Zp is additvely shared as

x = x1 + · · ·+ xN ,

such that each Pi holds a random xi . Note that a single party has no idea about what x is since
he only knows a single share and even if all but one of the players go together this does not reveal
information about x . [x] will in the following denote this setup.

Linear Compuations. Now linear computations on secret-shared values can be done simply by
local computations on the shares. Hence, it makes sense to write [x] + [y] = [x + y], where each
party computes xi + yi , and similarly follows multiplication by a constant δ: δ · [x] = [δ · x]. A
public constant δ can be added by letting a single party, say P1 add that constant to his share, so
δ + [x] = [δ + x], where P1 computes δ + x1 and other parties do nothing.

Input Sharing. To begin the computation each party Pi wants to provide his input x to the
circuit. Here the pre-processing comes to play. Assume it provides a secret-shared random value
[a]. Now this a is privately revealed to the party providing his input. This is done by letting
every other party Pi send his share ai to P1 and then P1 can compute a = a1 + · · · + aN (this
is a private opening of a to P1). Finally P1 publishes δ = a-x as a public constant and parties
compute [x] = δ + [a]. Note that the random a masks x so that δ reveals no information on x .

Multiplication What is left is a way to compute [x · y], for secret-shared values [x], [y]. For
this purpose the pre-processing provides 3 secret shared values [a], [b], [c] where a, b are random
values and c = a · b. Similarly as in the case of input, two constants are computed and publicly
opened (all parties broadcast their shares): compute and open [x]-[a] call it ε, and compute and
open [y]-[b], call it δ. By the computations described above it can easily be seen that [x ∗ y] =
[c] + ε · [b] + δ · [a] + ε · δ.

Message Authentication Codes. If it is assumed that the parties follow the protocol, the above
would be enough. However, the protocol should be secure against corrupted parties that might
want to deviate. Hence, some kind of authentication is needed. This is done by so-called in-
formation theoretic Message Authentication Codes (MACs). A MAC on a value x is defines as
mK (x): = α · x + β, for a key K = (α,β), where α,β are randomly chosen, and α is "global".
This means, that to authenticate another value y the MAC will be mK ′(y) = α · y + β′, for key
K ′ = (α,β′). The setup will be such that one party holds a value, and a MAC, and then the key

16

Chapter 4. Modelling Multi-Party Computation

is held by another party. Authentication now follows since for a party to be able to cheat with
a value, he essentially has to guess α. This he cannot do better than by just guessing at random
since β hides α in m.

It is possible to compute with this kind of authentication. Addition of keys is defined as the
addition of the second component: K = (α,β), K ′ = (α,β′), K + K ′: = (α,β + β′). Now
it is easy to verify that mK (x) + mK ′(y) = mK+K ′(x + y). For addition with a constant and
multiplication something similar can be done. Then, the idea is to augment the [·]-notation with
these MACs. Pi has a MAC mK j

ai
(ai) on ai towards every other party Pj . Also, for Pi to be able

to check the MAC on aj from Pj , Pi has a key K i
aj for every Pj . In summary each share will have

N -1 MACs and each party will hold N -1 keys to verify the MACs of the other parties’ shares.
Furthermore, all the keys a party Pi holds towards Pj will have the same first component in order
to enable computations as described above.

The protocol now assumes a sufficient number of single random values [a] (Single) and triples
[a], [b], [c] (Triple) given from the pre-processing where MACs and keys are contained in [·]. Then
computing is done as described above, computing with the MACs along with the shares. In the
final step when the output is opened (all the shares of the result are revealed), each party will need
to convince every other party about the correctness of his share.

4.2 Case Study: Double Auction

This section summarises the first industrial application of MPC as described in [BCD+08]. In
Denmark thousands of farmers produce sugar beets which are sold to one company, Danisco.
There is a pricing scheme and individual contracts are negotiated between the farmers and the
company. The farmers are allowed to trade these contracts with each other. A contract describes
an amount of sugar beets the farmer is allowed and obligated to sell to Danisco at the price given
by the publicly available pricing scheme. As EU were reducing subsidisation for sugar beets
the government decided to regulate the market. The goal was to find a fair market price for a
commodity given the existing supply and demand in the market. The best way to do so was found
be a so called double auction.

For an overview on auctions see [Kle99] in particular Section 12 for double auctions. The
double auction in [BCD+08] is carried out is the following way:

• A fixed set of prices is made publicly available to everyone before the auction starts.

• Each sellers creates an ordered list of numbers with one number for each price. This number
is the quantity of beets he is willing to sell at the given price.

• Each buyer creates an ordered list describing the quantity of beets he is willing to buy at the
given price.

• With the list of numbers from sellers and buyers above it is possible to compute market
supply (summing the sellers quantities) at each price and market demand (summing the
buyers quantities) at each price.

• The price at which demand and supply is minimal is known as the market clearing price,
and the result of the double auction.

• Each seller having a non-zero quantity at the market clearing price is allowed to sell their
quantity at that price.

17

Chapter 4. Modelling Multi-Party Computation

• Likewise each buyer having a non zero quantity at the market clearing price is allowed to
buy that quantity at that price 2.

Mathematically put we wish to compute the following function:
Let N ∈ N be the number of prices, P1, ..., PN be the possible prices, S > 0 be the number of
Sellers and B > 0 be the number of buyers.

dj =
B∑

i=0
buyeri [j] Demand at price j.

sj =
S∑

i=0
selleri [j] Supply at price j. (4.1)

min
j∈{1,...,N}

(| dj-sj |)

Here buyeri is the bid (e.g. wanted quantities at each price) given by the ith-buyer. Likewise
selleri is the bid (e.g. quantities supplied to the market at each price) given by the ith-seller.

According to [BCD+08] an MPC solution was chosen because no such system existed before-
hand and a “cheap” computerised solution seemed attractive. Additionally, MPC short-circuits
discussions and concerns about which parts of the data are sensitive and what common security
policy one should have for handling the auction data.

Eight characteristics for SoS are listed in [NLF+13]. The double auction as in the setting
of [BCD+08] has interdependence, distribution and anonymity. However evolution, indepen-
dence, dynamicity of behaviour and interoperability is not necessarily achieved in that the system
is constructed for a very specific purpose. However, it is reasonable to argue that the system is
likely to acquire some of the missing characteristics. Still, this scenario has the most interesting
SoS characteristic for modelling security in SoS, namely anonymity. Recall anonymity entails
that each constituent system is a self-governing institution possibly having competing goals with
other constituents in the SoS. This tension is clearly present for a the double auction considered
here. To see why e.g. independence might be likely in the sugar beet scenario consider the task
of automating the process of inputting the bids. These data (for the bids) must be coming from
computations in some kind of accounting/bookeping system. This accounting system has a self-
sufficient purpose (accounting) and thus independence is achieved.

Recent developments in MPC provide general purpose protocols that are independent of the
function being computed, where efficiency has improved since 2008. Hence, these protocols are
more interesting to model in this work. The BeDOZa protocol computes arithmetic circuits and
therefore does not have a primitive to compute the min(x, y) operation. This primitive is necessary
to compute the result of a double auction. Luckily it has been shown that min can be computed
efficiently based only on black-box access to AMPC[Tof07]. This will be included in the full
paper but in the following the min(x, y) operation assumed to be present.

Next, three CML models are presented. The first one is a single system model describing the
ideal situation where a single computer takes as input all the quantities and the lists of prices,
and computes the market clearing price. Then, a refinement of that is presented where an ideal
functionality, AMPC, is communicating with the parties in the auction. Finally, yet a refinement
into the full protocol description is presented where the double auction is realised without any
by-all-trusted components.

2In [Kle99] Buyers input a bid whereas sellers input an “ask”s. Bids and Asks concretised in [BCD+08] in terms
of Quantity per Price.

18

Chapter 4. Modelling Multi-Party Computation

4.3 Single System Model

CML consists of VDM++ and CSP elements where CSP provides interactive behavioural elements
whereas VDM++ provides the structural ones. Creating the single system of a double auction we
consider the method tailored for VDM++ described in [FL98] pg. 20. The first step is to determine
the purpose of the mode.

Model Purpose The purpose with this model is to describe a double auction at a level of abstrac-
tion that is easy to comprehend and manually verify that it is functionally correct. A reasonable set
of requirements for security are made but treated outside the model for the single system model.

The second step is to read the requirements. From [BCD+08] the central requirements for the
double auction are elicited and the result is given in the list below:

R0 A double auction should consists of a set of participants.

R1 It should be possible to make a set of prices known to all participants in the auction.

R2 Each participant should be either a seller or a buyer.

R3 Buyers should be able to input a negative quantity for each price (e.g. the number of sugar
beets that buyer is willing to buy off the market at that price).

R4 Sellers should be able to input a positive quantity for each price (e.g. the number of sugar
beets that seller is willing supply to the market at that price).

R5 When all sellers and buyers have provided input it should be possible to compute the market
clearing price according to the definition in Equation 4.2.

R6 No seller should learn another seller’s bid (except from what follows from the result of the
auction).

R7 No seller should learn another buyer’s bid (except from what follows from the result of the
auction).

R8 There is only one buyer, Danisco. The buyer should not learn any sellers bid (except from
what follows from the result of the auction).

The third step is to analyse functional behaviour for the requirements. Requirement R0 indi-
cates that there should be some way of introducing a set of participants corresponding to real world
entities (persons or organisations) to the system. With R2 the set could be partitioned in sellers
and buyers. R1 hints at a functionality that facilitates a set of prices to be made publicly known to
all participants. Requirement R3 states that buyers should be offered the option of inputting a set
of none-positive numbers. Implicitly it requires this list having the same number of elements and
the cardinality of prices made publicly known by R1. Similarly, the sellers are offered the option
of inputting a set of non-negative numbers by requirement R4. Requirement R5 implies that when
all participants have provided their input, the system computes the market clearing price. Notice
that the privacy related requirements R6 – R8 are not addressed yet for reasons that will become
clear shortly.

One straightforward way to represent the conceptual functionality in Figure 4.1 is by repre-
senting the box in the double auction as a CML-class and having the edges going in and out of the
box represented by operation calls. Sellers and buyers are represented by their bids and only the
accumulated quantity for sellers and buyers are needed. The result is the model in Listing 4.1.

19

Chapter 4. Modelling Multi-Party Computation

Figure 4.1: Double Auction Overview

The Model The model (Listing 4.1) uses implicit operations which are merely pre-conditions
and post-conditions leaving out implementation details. Security is abstracted in an idealised way:
It is assumed that the parties can only interact with (and cannot look inside) a system realising the
described operations though the public operations and states. No party can access the private
members of such a system. Also, input to the constructor is publicly known and agreed upon
before instantiating the system. It is assumed that input given to public operations are handed to
the system in a private and secure way. In effect, at the level of abstraction used here the operation
and state qualifiers can be used to model the privacy concerns addressing requirements R6 - R8.

class DoubleAuction =
2begin

types
4public Quantity = int

public Price = rat inv p == p >= 0
6

state
8public numberOfBuyers : nat;

public numberOfSellers: nat;
10-- seller bids contains the accumulated bids for sellers

private sellerBids : seq of Quantity
12-- buyer bids contains the accumulated bids for buyers

private buyerBids : seq of Quantity
14public prices : seq of Price

inv
16len(sellerBids) = len(buyerBids) and

len(sellerBids) = len(prices)
18

operations
20-- Constructor initialises sellerBids, buyerBids and the list of

prices
-- for the auction.

22DoubleAuction: seq of Price, nat1, nat1 ==> ()
DoubleAuction(ps, noBuyers, noSellers) == (

24prices := ps;
for all i in set inds ps do sellerBids := sellerBids ^ [0];

26for all i in set inds ps do buyerBids := buyerBids ^
[0]

numberOfBuyers := noBuyers; numberOfSellers :=
noSellers;

28)

20

Chapter 4. Modelling Multi-Party Computation

30public AnnouncePrices () r:Price
pre true

32post r = prices

34public AddSeller(bid: seq of Quantity)
pre len(bid) = len(prices) and forall b in set elems bid @ b

>= 0
36and numberOfSellers > 0

post (forall i in set inds prices @ sellerBids(i) = sellerBids
~(i) + bid(i))

38and numberOfSellers = numberOfSellers~ - 1

40public AddBuyer(bid: seq of Quantity)
pre len(bid) = len(prices) and forall b in set elems bid @ b

<= 0
42and numberOfBuyers > 0

post (forall i in set inds prices @ buyerBids(i) = buyerBids~(
i) + bid(i))

44and numberOfBuyers = numberOfBuyers~ - 1

46public AnnounceMarketClearingPrice () r:Price
pre numberOfBuyers = 0 and numberOfSellers = 0

48post (exists j in set inds prices @
(forall i in set inds prices @

50sellerBids(j) + buyerBids(j) <= sellerBids(i) +
buyerBids(i))

and r = prices(j))
52

end

Listing 4.1: Single System Double Auction

Correctness in requirement R5 is handled by the AnnounceMarketClearingPrice oper-
ation, and the two state-variables numberOfBuyers and numberOfSellers which are set
initially by the constructor. Requirements R0 and R2 are implicitly represented in that multi-
ple sellers and buyers can be added. In fact, this model and description of the requirements are
slightly more general than necessary for the sugar beet auction because it allows multiple buyers.
Requirements R1, R3 and R4 are met by defining the functions AnnoucePrices, AddSeller
and AddBuyer.

4.4 Ideal Distributed Model

The single system model presented in the previous section focuses on describing correct function-
ality. In this section the single system model is refined into a reactive model where users interact
through one device each. In turn, their devices communicate with an idealised functionality over
perfectly secure channels.

Model Purpose In the single system model requirements R6 – R8 are achieved by assumptions
on the environment external to the system. The purpose with that model was to demonstrate a
functional overview. The purpose with this model is to demonstrate the behavioural aspects of the
protocol, i.e. focus is on highlighting communication aspects.

21

Chapter 4. Modelling Multi-Party Computation

Level of Abstraction In this section security is shown by assuming an incorruptible ideal func-
tionality AMPC as in the ideal execution of [Can00]. In this setting the party process instances
communicate securely with the functionality which behaves ideally (e.g. it is the specification of
how the protocol should behave).

The Model This model is created to model the situation in an ideal execution of the BeDOZa
protocol in [BDOZ11]. In Listing 4.3 the ideal functionality is modelled as a process. This
process is instantiated with the circuit to be computed. The circuit is described by a sequence of
records Inp, Add, Mul, Min, Out. In Listing 4.2 this instantiation takes place on line 1.
It is instantiated with the circuit to compute the double auction for four players, one buyer and
three sellers. The encoding of the double auction in the MpcInstructionSet can be found in
Listing 4.6. This scenario is set up in lines 7 – 12 of Listing 4.2. The construct || partyID
in set ... is known as a generalised replicated parallelism and means one instance of the
process Party is instantiated and run in parallel for each party id in 0, 1, 2, 3. The union channel
construct in lines 9 and 10 sets up a synchronisation between the ideal functionality IdealF
and the party with id partyID, allowing the ideal functionality and each party to communicate
(privately) on dedicated channels.

1process IdealF = AMPC(ThreePartyDoubleAuction)

3values
inputs : seq of (seq of int) = [[8,4, 2],[3,5,6],

5[0,1,10],[2,4,8]]

7process Auction = || partyID in set {0,1,2,3} @ [{ }]
(Party(partyID,inputs(partyID),1)

9[| {| input.i | i in set {partyID} |} union
{| output.i | i in set {partyID} |} |]

11IdealF
)

Listing 4.2: Auction setup

The ideal functionality AMPC in Listing 4.3 takes as input a Circuit (line 8) and then im-
mediately enters the Ready action/state (line 35). The body of the AMPC process is its Ready
action. The Ready action functions as an execution loop, executing one instruction from the
circuit at a time. The Inp instruction is carefully explained in the following. For the remaining
instructions see the full model3. An input instruction Inp is a record of two values: The id of the
party (pid) from whom input is coming and the id (vid) by which the input can be referred in
following instructions (lines 3 – 5). The first step AMPC does for an Int instruction is to receive
input from the party with the id specified in the instruction (line 24). For Add, Mul and Min oper-
ations no communication is needed. The AMPC functionality stores the values in its own memory
enabling it to compute these instructions without interaction.

3Available at http://www.cs.au.dk/~rwl/progrep/bedoza.zip

22

http://www.cs.au.dk/~rwl/progrep/bedoza.zip

Chapter 4. Modelling Multi-Party Computation

process AMPC = val circuit : Circuit @
2begin

state
4memory : map ValueID to Value

mycircuit : Circuit := circuit
6

operations
8NextInstr: () ==> MpcInstructionSet

NextInstr() == <...>
10

actions
12Ready = if (len(mycircuit) = 0)

then Skip -- Computation done
14else (dcl curinstr : MpcInstructionSet := NextInstr() @

cases curinstr :
16-- Input instruction

mk_Inp(pid,vid) ->
18input?pid?v ->

memory(vid) := v ; Ready,
20-- Output instruction

<...>
22-- Add instrucion

mk_Add(vid1,vid2,vid3) ->
24(dcl v1 : Value := memory(vid1),

v2 : Value := memory(vid2) @
26memory(vid) := v1 + v2,

-- Mul instruction
28<...>

others -> Stop
30end

)
32@

Ready
34end

Listing 4.3: The Ideal functionality.

Informal Refinement of the Single System Model The refinement considered here is for the
property of indistinguishability inspired by [Can00]. The goal is to show that by “executing”
the idealised model above, no more information is revealed about the inputs (the secure ones
indicated by requirements R6 – R8) and the intermediate states than in an “execution” of the
single model. In this case it is not hard to see intuitively. However, mapping the operations
AddSeller and AddBuyer from the single system model to the model above is not trivial. Each
invocation of AddSeller is mapped into a small cirtuit of Inp, Add instructions. Finally the
AnnounceMarketClearingPrice is mapped into two min invocations in the concrete case here of
three prices. Also interesting to observe here is that in the specification of AddSeller, another
party is implicitely added to the computation. When this happens the arithmetic circuit needs to
be rebuilt and the “Raw Material” needs to be generated again.

This model is very different from the Single Model system. The fundamental approach is dif-
ferent in that the Single Model System is specialised towards solving the double auction directly.
This model, on the other hand, has the flavor of an interpreter. The Double Auction is encoded
in the data given as input to the model rather than having the operations explicitly. This indicates
some interesting challenges since the kind of refinement required would not only put restrictions
on the refined system being built but also determines the allowed inputs.

23

Chapter 4. Modelling Multi-Party Computation

4.5 Model for Double Auction Protocol

In this section the idealise distributed model is refined further into the real protocol description
from [BDOZ11]. For simplicity only the on-line phase will be modelled. The full result from
modelling the on-line phase of the BeDOZa protocol can be downloaded from http://www.
cs.au.dk/~rwl/progrep/bedozamodel.zip. The current refinement is done by hand
and is informal.

Model Purpose The purpose with this model is to illustrate feasibility of modelling the on-line
phase of the BeDOZa protocol in CML and use this modelling for better comprehension. Also, as
part of the ongoing process the purpose is to show that the requirements R6 – R8 are both in the
model and fulfilled by this protocol. In summary the purposes are:

1 Demonstrate feasibility of modelling the BeDOZa protocol in CML, through argumentation
for the security requirements R6 – R8.

2 Provide a good benchmark model for CML tools to analyse. The intention is to run simula-
tions on this model when the simulator is matured enough. Therefore, some readability and
simplicity is scarified as all actions, functions and operations are made explicit.

Level of Abstraction In this model the focus is on the actions and communications going on in
the protocol and the conceptual correctness of the values sent. To capture this goal, the level of
abstraction chosen here will compute on “small” values represented by the nat data type in CML.
The underlying assumption is that there exists methods and tools for computing on large numbers.
Hence, for some translation of this model into code realising BeDOZa , basic operators of the
model like +, ∗, - need to be translated into appropriate use of a library for large numbers in Zp.
With this it is a choice that low level integer computations are not in the scope for this model.

The Model Any of the details not included here can be found in the paper [Lau13] or in the
comments of the model which can be downloaded from http://www.cs.au.dk/~rwl/
progrep/bedozamodel.zip. At top level, the protocol is described in terms of a generic
party process able to execute the instruction Inp, Add, Mul, Min, Out (Listing 4.5). Four
instances of the generic party process are created, see Listing 4.4. The entry point of a model is a
process. In the Auction process is the entry point for the model in this work. Auction is the
parallel composition (on all channels) of the three sellers and the buyer process instantiated.

process Buyer = Party(0,ThreePartyDoubleAuction,[8,4, 2],
2singles,triples, keys, {0,1,2,3})

process Seller1 = Party(1,ThreePartyDoubleAuction,[3,5, 6]),
4singles, triples, keys, {0,1,2,3})

process Seller2 = Party(2,ThreePartyDoubleAuction,[0,1,10],
6singles, triples, keys, {0,1,2,3})

process Seller3 = Party(3,ThreePartyDoubleAuction,[2,4, 8],
8singles, triples, keys, {0,1,2,3})

-- ENTRY POINT, RUN Auction
10process Auction = Buyer || Seller1 || Seller2 || Seller3

Listing 4.4: Double Auction Circuit

24

http://www.cs.au.dk/~rwl/progrep/bedozamodel.zip
http://www.cs.au.dk/~rwl/progrep/bedozamodel.zip
http://www.cs.au.dk/~rwl/progrep/bedozamodel.zip
http://www.cs.au.dk/~rwl/progrep/bedozamodel.zip

Chapter 4. Modelling Multi-Party Computation

The Party process is the main component and represents either a seller or a buyer, deter-
mined by the circuit and its inputs. The structure of the Party is presented in Listing 4.8. As
arguments it takes:

• A party id making this party uniquely identifiable

• A circuit to compute

• A sequence of input values for the circuit

• A sequence of singles (shared representations from the pre-processing phase)

• A sequence of triples (shared representations from the pre-processing phase)

• A key map mapping MAC keys to shares and triples (from pre-processing)

• The set of all parties

PartyIDs are represented by nat’s. However, for readability one could consider using the token
type instead. Each arithmetic instruction in the circuit is described by a record. The information
needed in an input instruction is the id of the player that is instructed to input a value and the
id under which the value should be stored. In Listing 4.5 the input instruction Inp is displayed
with the definition of MpcInstructionSet and Circuit. Notice that since the parties are stateful, a
sequence of instructions can describe a binary circuit referencing “memory” (ValueIDs) locations
rather than building a tree-like structure. To see how this works out for the double auction consider
Listing 4.6.

-- [*] vid - is the id the inputted value shall have
2-- [*] pid - is the party inputting the value

Inp ::
4vid : ValueID

pid : PartyID
6

-- An MPC circuit consists of any combination of the
8-- above instructions.

MpcInstructionSet = Inp | Out | Add | Mul | Min
10

-- An MPC Curcuit is defined to be a sequence of
12-- MpcInstructionSet

Circuit = seq of MpcInstructionSet

Listing 4.5: Definition of MpcInstructionSet omitting Out Add Mul and Min instructions

The circuit in Listing 4.6 computes the double auction for four parties: one buyer and three sellers.
The circuit is defined as a sequence of instructions. The circuit starts with twelve input instructions
three for each of the four parties. The Inp instruction takes two operands: the id by which future
computation can refer to the value and the id of the party who should provide the input, i.e.
mk_Inp(vid,pid) instructs the protocol to let the party with id pid input his next value under
id vid. In this way, the input values for the four parties are stored with ids 0 through 11 such
that later instructions can refer to these ids as operands. The following two addition instructions
compute the total supply at price 10 (line 9). The addition instruction takes three parameters:
id of the left operand, id of the right operand and an id for the result. In this way the market
deficiency (i.e. the difference between total supply and demand at each price, representing supply
not bought or buying power not utilised) 4 is stored in the three values with ids 20, 21 and 22.

4For simplicity it is assumed that buyers and sellers supply negative and positive inputs respectively. This is
different than from [BCD+08].

25

Chapter 4. Modelling Multi-Party Computation

Line 20 computes two min operations5 storing the final result that is 24. The following four out
instructions open this value to each of the four parties.

1 ThreePartyDoubleAuction: Circuit =
[

3 -- instruct parties to input values
mk_Inp(0,0),mk_Inp(1,0),mk_Inp(2,0),

5 mk_Inp(3,1), mk_Inp(4,1), mk_Inp(5,1),
mk_Inp(6,2), mk_Inp(7,2), mk_Inp(8,2),

7 mk_Inp(9,3), mk_Inp(10,3), mk_Inp(11,3),
-- Compute the total supply for price 10:

9 mk_Add(3,6,12), mk_Add(12,9,13),

11 -- Compute the total supply for price 20:
mk_Add(4,7,14), mk_Add(14,10,15),

13
-- Compute the total supply for price 20:

15 mk_Add(5,8,16), mk_Add(16,11,1
-- Compute sum of demands and supplies

17 mk_Add(13,0,20), mk_Add(15,1,21), mk_Add
(17,2,22),

19 -- Compute minimum distance
mk_Min(20,21,23), mk_Min(23,22,24),

21
-- Everybody learns the output

23 mk_Out(24,0), mk_Out(24,1), mk_Out(24,2)
mk_Out(24,3)

25]

Listing 4.6: Double Auction Circuit

5In [BCD+08] binary search is used to compute as few min operations as possible. This optimisation is not
included in this description.

26

Chapter 4. Modelling Multi-Party Computation

The instructions are carried out as the protocol between the four parties. Consider Listing 4.8
showing an overview of the Party process. It has the form of an execution loop taking in-
structions from the circuit until there are no more (lines 10 – 14 and 21). The cases construct
branches on the kind of instruction to be executed (line 15 – 20). In the following, operation of
the input instruction (mk_Inp) from Listing 4.5 is carefully described .

1process Party =
-- Inputs: partyID, circuit, inputs, singles, triples, keys,

parties
3<...>

@
5begin

state: -- myid, mycircuit, myinputs, mysingles, mytriples, mykeys
,

7-- memory
operations -- helper functions

9actions
ExecuteInstr = if (len(mycircuit) = 0) then Skip else

11(dcl instr : MpcInstructionSet := (hd mycircuit)
@

13mycircuit := tl mycircuit ;
ExecutionStep.instr ->

15cases instr :
mk_Inp(vid,pid) -> <...>

17mk_Out(vid,pid) -> <...>
mk_Mul(op1id, op2id, rid) -> <...>

19mk_Add(op1id, op2id, rid) -> <...>
mk_Min(op1id, op2id, rid) -> <...>

21) ; ExecuteInstr
@ ExecuteInstr

23end

Listing 4.7: Overview of the party process

The input instruction is asymmetric in that one Party is providing input whereas the remain-
ing parties assist. The behaviours are conditioned on whether the pid of the Inp instruction is
the same as the id of the process instance (line 2).

Consider the case for the process providing input. In lines 11 – 13 the private input x is
computed by taking the next available input from the input sequence. Then, an opening of one of
the pre-processed singles is carried out. In line 7, the input providing party is in parallel waiting
for a share shij and its MAC shijmac. If the MAC check in line 11 passes, the share is stored
in the map receievdShares. If the MAC check does not pass, the party stops and the system
is deadlocked. If the CheckMac parses for all parties, then the mapping receivedShares
contains all the shares necessary to construct the clear value of the single, which is done on line
20. The δ (delta) is computed as in the protocol and broadcast to all players in parallel in lines
22 – 23 via the SendValue channel. Now each party can update their state to represent [x].

The case where a party participates in letting another party input a value is carried out in lines
41 – 48 of Listing 4.8.

27

Chapter 4. Modelling Multi-Party Computation

1mk_Inp(vid,pid) ->
if (myid = pid) -- I am the one inputting x

3then
(dcl x : Value := NextInput(),

5receivedShares : map PartyID to Value,
single : Share := NextSingle() @

7(([| {RequestOpen} |] i in set parties \ {myid} @ [{
receivedShares }]

(dcl j : ValueID := single.id @
9RequestOpen?i?myid?shij?shijmac ->

(dcl a : Value := shij @
11if (CheckMac(shij,shijmac,mykeys(i)(j)))

then
13receivedShares(i) := a

else
15Stop

))
17)

;
19(dcl

openedSingle : Value := ComputeClearSingle(single,
receivedShares)

21@
([| {SendValue} |] i in set parties \ {myid} @ [{

openedSingle }]
23SendValue!i!(ComputeDeltaForAdd(openedSingle,x))

-> Skip
) ; UpdateStateInp(vid,single,ComputeDeltaForAdd(

openedSingle,x))
25)

)
27)

else -- I’ll participate in inputting x
29(dcl

single : Share := NextSingle()
31@

RequestOpen?myid!pid!(single.value)!(single.mac(pid)) ->
33SendValue!pid?delta ->

AddConstantToKey(pid,single.id,delta)

Listing 4.8: The Input Instruction

Informal Refinement of the Ideal Model The ideal AMPC functionality is replaced by a pro-
tocol such that only the Party process remains. The actions are significantly more complex than
for the ideal versions: Addition and multiplication are now also handled directly as a result of
communications between the parties. The circuit and party ids are exactly the same. The pa-
rameter for the number of expected outputs is replaced by the “raw material” needed to conduct
the computation, which also captures the fact that the number of parties that can participate is
determined in the off-line phase.

To show that the protocol model here is a secure refinement of the idealised distributed model it
is argued that anyone observing an “execution” of the protocol model attains no more information
about the secret inputs than could be attained from observing the ideal distributed model. The
input instruction causes a quadratic number of shares and MACs to be communicated initially
for the opening of a single. These values are guaranteed to be random and thus conveys no

28

Chapter 4. Modelling Multi-Party Computation

information. The party providing the input then broadcasts δ with his input masked by subtracting
the value of the random single6. No more communication is carried out during the input phase.
The communication is asymmetric in the sense that the party providing input is not sending any
messages. However, this only conveys the information that this party is the input provider which
is already public information that can be derived from the circuit. A similar argumentation can be
made for the multiplication instruction.

The kind of refinement needed for this work should be able to show that the protocol model
reveals no more information about the secret input than the ideal model. One idea is to introduce a
three valued judgement G = Public, Random, Secret for every state in the program. All (private)
inputs in both models are initially judged as Secret. In the ideal model everything else is judged
as Public. In the protocol model Singles and Triples are judged Random and everything not input
or Triple/Single are judged Public. Then, if some analysis on the models could maintain this
judgement step by step for every language construction, one could check whether inputs judged
as Secret in the ideal model is a subset of the inputs judged as Secret in the protocol model. For
example, the main reasoning above is that the result of adding or subtracting a random value with
a secret reveals nothing about the secret to someone ignorant of the random value. Hence, a taste
on how the analysis above could be realised through a structured operation semantics [Plo81] is
the following rules for addition and subtraction:

[SUB] Γ ` exp1: Random Γ ` exp2: Secret
Γ, exp1: Secret ` (exp1-exp2): Random

[PLUS] Γ ` exp1: Random Γ ` exp2: Secret
Γ, exp1: Secret ` (exp1 + exp2): Random

The SUB rule is read bottom-up and states: In the variable environment Γ extended with
the judgement exp1: Secret it is the case that (exp1 + exp2) looks random to anyone ignorant
of Secret values. The PLUS rule is read in a similarly way. Analysis with the similar flavor of
reasoning can be found [Mor07].

6Note that the share of the party providing input has not been sent on any channel and therefore the value of the
single is still unknown to anyone except for the party providing the input.

29

5 Conclusions and Future Work

An MBSE process is a branch of System Engineering where wanted properties with a system
can be validated before attempting an implementation. Tools supporting a modelling formalism
can assist in such processes by helping engineers check their designs for consistency and perform
validation against requirements on models. The results from Chapter 3 show that modelling can
help in bringing the combinatorial hassle with cryptographic parameters under control. Lifting
this work to a CML model is an obvious next step for the collaboration with B&O. The result
from Chapter 4 demonstrates that the COMPASS tool suite is ready to support MBSE processes
and to be extended for further analysis. This section presents three ideas for future directions
based on the experience in the previous sections.

5.1 Refinement

Refinement enables program construction via a number of separate correctness-preserving stages,
which ideally can be understood in isolation. This is attempted informally in Chapter 4 through
the construction of three models. The idea is to formalise an approach such that for some notion
of executing the models, the following can be shown on the model level: the information about the
private inputs and the intermediate states that can be deduced from observing the protocol model
is at most what can be deduced in the idealised distributed model. Also, what can be deduced
about the private inputs and the intermediate states in the idealised distributed model should be at
most what can be deduced from the single system model.

Work on ignorance preserving refinement by Carroll Morgan in [Mor07] seems promising as
he presents a weakest precondition calculus for preserving ignorance during refinement. As an
example he describes a simple specification of another cryptographic primitive called Oblivious
Transfer. He uses his logic to establish, via refinement, the correctness of Rivest’s construction of
Oblivious Transfer.

A natural and relevant next step is therefore to try to apply Morgan’s techniques to reach
the refinement expressed above for the work in Chapter 4. Then, another intriguing challenge is
to generalise this to support an analysis on CML models in general (possibly by annotating the
language). In recent work by Banks [Ban12], related work to this idea is done for Circus1 where
also the ideas by Morgan are lifted to UTP. As CML has a UTP semantics, carrying over Banks
work to CML looks promising.

1Circus is very much like COMPASS combining another formalism (Z) with CSP http://www.cs.york.
ac.uk/circus/index.html

30

http://www.cs.york.ac.uk/circus/index.html
http://www.cs.york.ac.uk/circus/index.html

Chapter 5. Conclusions and Future Work

5.2 Model Cryptographic Primitives

The MPC protocol presented in Chapter 4 is rather complex. To get a better understanding of
modelling the underlying ideas, another future task would be to model simpler cryptographic
primitives and/or other MPC protocols. Concrete constructions to look at could be protocols for
Commitment Schemes or Oblivious Transfer (Oblivious Transfer is actually complete for MPC).
Other constructions for MPC could for instance be the Yao construction MPC [Yao86] . Also,
modelling well-established protocols like SSL/TLS would show immediate relevance for these
tools in industry.

5.3 Proof of Concept

Yet another natural step would be to look at some applications, for instance of MPC (preferably an
industry-driven ones), and capture requirements for a system with SoS characteristics. The idea
would be to compare two developments, one using the COMPASS technologies developed here
and one using established technologies in order to measure the effect of COMPASS methodology.
People at Alexandra Institutet in Aarhus have already implemented the sugar beet auction and they
are continuously implementing cryptographic (mostly MPC) protocols. A collaboration with some
of these people has already been established so that the COMPASS technology can be tried out
(and evaluated) for future implementations.

31

Bibliography

[Bal07] Laurent Balmelli. An overview of the systems modeling language for products and
systems development. 2007.

[Ban12] Michael J. Banks. On confidentiality and formal methods. 2012.

[Bat09] Nick Battle. VDMJ User Guide. Technical report, Fujitsu Services Ltd., UK, 2009.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgaard, Martin Geisler, Thomas
Jakobsen, Mikkel Kroeigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas Toft. Secure multiparty
computation goes live. 2008.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In EUROCRYPT, pages 169–
188, 2011.

[Ber64] Brian J.L. Berry. Cites as Systems within System of Cites. Papers and Proceedings
of the Regional Science Association, 13(1):149–163, January 1964.

[Bou56] Kenneth E. Boulding. General Systems Theory–The Skeleton of Science. Manage-
ment Science, 2(3):197–208, April 1956.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. 2000. http://eprint.iacr.org/.

[CML+12] Joey W. Coleman, Anders Kaels Malmos, Peter Gorm Larsen, Jan Peleska, Ralph
Hains, Zoe Andrews, Richard Payne, Simon Foster, Alvaro Miyazawa, Cristiano
Bertolini, and André Didier. COMPASS Tool Vision for a System of Systems Collab-
orative Development Environment. In Proceedings of the 7th International Confer-
ence on System of System Engineering, IEEE SoSE 2012, volume 6 of IEEE Systems
Journal, pages 451–456, July 2012.

[CMNL12] Joey W. Coleman, Anders Kaels Malmos, Claus Ballegaard Nielsen, and Peter Gorm
Larsen. Evolution of the Overture Tool Platform. In Proceedings of the 10th Overture
Workshop 2012, School of Computing Science, Newcastle University, 2012.

[Col13] Joey W. Coleman. Second release of the COMPASS tool — tool grammar reference.
Technical report, COMPASS Deliverable, D31.2c, January 2013.

[COM11] Description of Work: Comprehensive Modelling for Advanced Systems of Systems,
2011. Grant agreement no: 287829.

[Dam11] Ivan B. Damgaard. Definitions and results for cryptosystems. Lecture Notes for
CRYPTOGRAPHY Course at Computer Science Aarhus University., 2011.

32

http://eprint.iacr.org/

Bibliography

[Est08] Jeff A. Estefan. Survey of model-based systems engineering (mbse) methodologies.
2008.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FL09] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools and
Techniques in Software Development. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, Second edition, 2009. ISBN 0-521-62348-0.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat, and Marcel Verhoef.
Validated Designs for Object–oriented Systems. Springer, New York, 2005.

[FLS08] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDMTools: Advances in
Support for Formal Modeling in VDM. ACM Sigplan Notices, 43(2):3–11, February
2008.

[FLV08] J. S. Fitzgerald, P. G. Larsen, and M. Verhoef. Vienna Development Method. Wiley
Encyclopedia of Computer Science and Engineering, 2008. edited by Benjamin Wah,
John Wiley & Sons, Inc.

[HFK+10] Cecilia Haskins, Kevin Forsberg, Michael Krueger, David Walden, and R. Douglas
Hamelin. SYSTEMS ENGINEERING HANDBOOK. 2010.

[Hoa85] Tony Hoare. Communication Sequential Processes. Prentice-Hall International, En-
glewood Cliffs, New Jersey 07632, 1985.

[Jon99] Cliff B. Jones. Scientific Decisions which Characterize VDM. In J.M. Wing, J.C.P.
Woodcock, and J. Davies, editors, FM’99 - Formal Methods, pages 28–47. Springer-
Verlag, 1999. Lecture Notes in Computer Science 1708.

[Kle99] Paul Klemperer. Auction theory: A guide to the literature. Microeconomics, Econ-
WPA, 1999.

[Lau13] Rasmus Lauritsen. A case study applying systems of systems modelling to multi-
party computation. In preparation for the 11th Internation Conference on Software
Engineering Formal Methods, 2013.

[LFW09] Peter Gorm Larsen, John Fitzgerald, and Sune Wolff. Methods for the Development
of Distributed Real-Time Embedded Systems using VDM. Intl. Journal of Software
and Informatics, 3(2-3), October 2009.

[LH+96] P. G. Larsen, B. S. Hansen, et al. Information technology – Programming languages,
their environments and system software interfaces – Vienna Development Method
– Specification Language – Part 1: Base language, December 1996. International
Standard ISO/IEC 13817-1.

[LL12] Rasmus Lauritsen and Lasse Lorenzen. Towards an extensible core model for Digital
Rights Management in VDM. In Proceedings of the 10th Overture Workshop 2012,
School of Computing Science, Newcastle University, 2012.

[Mai96] Mark W Maier. Integrated modeling: A unified approach to system engineering.
Journal of Systems and Software, 32(2):101–119, 1996.

33

Bibliography

[Mai98] Mark W. Maier. Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267–284, 1998.

[Mor07] Carroll Morgan. The shadow knows: Refinement and security in sequential programs.
2007.

[Nie10] Claus Ballegaard Nielsen. Dynamic Reconfiguration of Distributed Systems in
VDM-RT. Master’s thesis, Aarhus University, December 2010.

[NLF+13] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and
Jan Peleska. Model-based engineering of systems of systems. In preparation for
submission to ACM Computing Surveys, January 2013.

[PCC+04] Popescu, Bogdan C., Crispo, Bruno, Tanenbaum, Andrew S., Kamperman, and Frank
L.A.J. A drm security architecture for home networks. In Proceedings of the 4th
ACM workshop on Digital rights management, DRM ’04, pages 1–10, New York,
NY, USA, 2004. ACM.

[PL92] Nico Plat and Peter Gorm Larsen. An Overview of the ISO/VDM-SL Standard.
Sigplan Notices, 27(8):76–82, August 1992.

[Plo81] Gordon D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, 1981.

[RHB97] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of Con-
currency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[Soh07] David Sohn. Understanding drm. Queue, 5:32–39, November 2007.

[Sys10] OMG Systems Modeling Language (OMG SysMLTM). Tech-
nical Report Version 1.2, SysML Modelling team, June 2010.
http://www.sysml.org/docs/specs/OMGSysML-v1.2-10-06-02.pdf.

[Tof07] T. Toft. Primitives and applications for multi-party computation. PhD thesis, Aarhus
University, 2007.

[WBB+12] Jim Woodcock, Victor Bandur, Jeremy Bryans, Ana Cavalcanti, and Andy Galloway.
Compass modelling language definition 1 (d23.2). 2012.

[WC04] J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs in
Unifying Theories of Programming. In E. A. Boiten, J. Derrick, and G. Smith, editors,
IFM 2004: Integrated Formal Methods, volume 2999 of Lecture Notes in Computer
Science, pages 40 – 66. Springer-Verlag, 2004. Invited tutorial.

[WK04] Chi-Hung Chi William Ku. Survey of the technological as[ects of digital rights man-
agement. LNCS(3225):391–403, 2004. National University of Singapore.

[Yao82] Andrew C. Yao. Protocols for secure computations. pages 160–164, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
pages 162–167, 1986.

34

Department of Engineering
Aarhus University
Edison, Finlandsgade 22
8200 Aarhus N
Denmark

Tel.: +45 4189 3000

Rasmus Winther Lauritsen, Systems og Systems with Security, 2013

	report.pdf
	Table of Contents
	List of Figures
	Introduction
	Background
	Systems Engineering
	System of Systems
	UTP and CSP
	Vienna Development Method
	The Overture Platform
	From Overture and VDM to COMPASS and CML
	Multi-Party Computation

	Modelling Digital Rights Management
	Setting the Research Context
	The Core Model for DRM
	Modelling Security

	Modelling Multi-Party Computation
	The BeDOZa Protocol
	Case Study: Double Auction
	Single System Model
	Ideal Distributed Model
	Model for Double Auction Protocol

	Conclusions and Future Work
	Refinement
	Model Cryptographic Primitives
	Proof of Concept

	Bibliography

