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SECURE DYNAMIC CLOUD-
BASED COLLABORATION WITH
HIERARCHICAL ACCESS

Chris Piechotta, Adam Eng Jensen, Martin Grooss Olsen

Aarhus University, Department of Engineering

Abstract

In recent years, the Cloud'has emerged as an attractive way of hosting and delivering services
over the Internet. This has resulted in a renewed focus on information security in the case where
data is stored in the virtual space of the cloud and is not physically accessible to the customer.

Through this thesis the boundaries of securing data in a cloud context, while retaining the benefits
of the cloud, are explored. The thesis addresses the increasing security concerns of migrating to the
cloud and utilising it for data storage.

The research of this thesis is divided into three separate areas: securing data in an untrusted cloud
environment, ensuring data access control in the cloud, and securing data outside the cloud in the
user’s environment. Each area is addressed by separate conceptual designs. Together these
comprise a secure dynamic cloud-based collaboration environment with hierarchical access. To
further validate the conceptual designs, proof of concept prototypes have been constructed.

The conceptual designs have been devised by exploring and extending the boundaries of existing
secure data-storage schemes, and then combining these with well-known security principles and
cutting-edge research within the field of cryptography. The results of this thesis are feasible
conceptual designs for a cloud-based dynamic collaboration environment. The conceptual
designs address the challenges of secure cloud-based storage and allow the benefits of cloud-
based storage to be utilised. Furthermore, this thesis provides a solid foundation for further work
within this field.
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1.1.

Chapter

Introduction

This chapter introduces the context of this thesis by describing its background and goals. The
background material of this chapter directly informs the choice of concepts and technologies pre-
sented in in Chapter 2, and sets the context for all subsequent chapters.

Emergence of cloud services

The term cloud computing has been used in various marketing contexts and has been the subject of
much attention. As a result, it does not have a clear definition. These factors, in combination, have
been a cause of confusion. Although cloud computing is a term that has emerged within the last
decade, the concept itself has roots in the forty year old idea of computing as a utility [Parkhill66].
In recent years cloud computing has emerged as an attractive paradigm for hosting and delivering
services over the Internet. Cloud computing is attractive for businesses seeking scalability and
availability at relatively low cost [Mather&09, Zhang&10]. The hardware and software provided
by cloud computing is provided on an on-demand basis that, depending on usage, keeps the overall
costs low. Compared to the traditional approach where resource provisioning is based on peak
requirements, resources in the cloud can be acquired and released dynamically [Armbrust&09].
Furthermore, by outsourcing computing infrastructure, the challenges of its operation such as
hardware failures, data distribution, and backups are transparent to its users [Wu&10].

1.1.1 Cloud services

The services provided by cloud computing are usually partitioned into three primary services,
each with different levels of abstraction [Mather&09]. These services are:

Infrastructure as a Service (IaaS): At the lowest abstraction level, infrastructure providers have
access to and manage large data centres. They are responsible for managing hardware to
create pools of storage and computing resources by partitioning the hardware using virtual-
isation.

Platform as a Service (PaaS): Platform providers build upon an infrastructure service and pro-
vide operating systems and application frameworks which ease the burden of deploying
applications.
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Software as a Service (SaaS): Software as a service is at the highest level of abstraction and is
where cloud applications are executed. These applications can be accessed on-demand over
the Internet. Cloud applications are built to leverage the automatic scaling of the underlying
services.

Storage as a Service (StaaS) is another service that is common in cloud computing [Wu&10].
Cloud storage allows users to store and access data from any location. Cloud storage systems are,
in general, expected to have high availability, scalability, and performance [Vaquero&08].
Numerous other terms for services exist, in addition to the presented services, although the justi-
fication for some of them may be questionable. The phrase Anything as a Service (XaaS) spans
all of them [Schaffer09]. Figure 1.1 shows the three primary services together with storage as a
service in relation to the resource layers they govern. The figure also shows examples of services
that, at the time of writing, are offered for each layer.

Services Resources Examples

Google Apps,

(e Facebook,

| Youtube,
Application Salesforce.com

Business applications, Web services, Multimedia

Software as a
Service (SaaS)

Windows Azure,

rommm e Google AppEngine,
1 Platformasa Platf Nir\./anix,
| Service (Paas) atform Amazon SimpleDB/S3
| Software frameworks (Java/.NET), Storage (DB/File) AR
Storage as a Amazon EC2
Service (StaaS) GoGrid '
Infrastructure Flexiscale

Computation (VM), Storage (Block) YA

Infrastructure as a
Service (laaS)

Data centres

Hardware
CPU, Memory, Disk, Bandwidth

Figure 1.1: Cloud resources, services, and examples thereof.

A Cloud Service Provider (CSP) is an entity which supplies any of the mentioned services. Some
CSPs supply the services from the upper end of the service stack, others from the lower end. A
few CSPs supply services that span the entire stack. CSPs supplying services from the upper
layers who do not own an infrastructure rent one. Besides the services offered, a CSP can offer
better physical security than a typical organisation because they maintain and guard large server
farms. Some CSPs can also offer improved software security in the form of dedicated security
teams [Potoczny-Jones11]. Because cloud computing is still relatively new, standards defining
the requirements for cloud services are still nonexistent or not very widespread in the indus-
try [Kern12]. However, some of the major CSPs have such a large influence on the cloud comput-
ing domain, that their service levels are becoming de-facto standards [Mohagheghi&11, Fratto12].
Aside from the services they offer, clouds can also be categorised, with the two main categories
being public and private clouds [Armbrust&09, Mather&09, Zhangé&10]:

Public cloud: In a public cloud services are provided to the general public by a CSP. As such,
many consumers share the cloud. This helps keep down the cost for the individual con-
sumer. However, public clouds have disadvantages. At the physical level, cloud storage is
shared with others. Should a failure to separate the shared storage occur, the storage sharing
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could become a liability as it would allow consumers to access the data of others. Another
disadvantage is the fact that consumers are subject to the CSP’s security measures and have
no immediate way of influencing these.

Private cloud: A private cloud is used exclusively by a single organisation. The organisation, or
a third-party on their behalf, creates, runs, and maintains the cloud. Private clouds often
have a higher quality of service than a public cloud, but require massive investments and
are often compared to traditional server farms.

Combining a public and a private cloud results in a hybrid cloud where resources are split between
the public and private part. Another type is a virtual private cloud where the underlying commu-
nication is virtualised. A virtual private cloud runs in a public cloud, but has some of the benefits
of a private cloud.

1.1.2 Issues preventing cloud migration

There are many challenges for businesses considering migrating to the cloud. Security is one of
the core challenges. In a ranked list, the most important challenge is “Availability of Service”. The
second and third most important ranked challenges are “Data Lock-In" and “Data Confidentiality
and Auditability” [Armbrust&09].

A survey from 2008, made by the International Data Corporation (IDC), indicates security as
a primary challenge [Zhou&10a]. Among the businesses asked, 74.6% indicated security as a
challenge with regards to moving to the cloud. IDC has since, in December 2009, published
an update to this survey [IDC09]. Figure 1.2 shows an overview of the the challenges and their
importance, as indicated in the updated survey. Security is portrayed as a major challenge, but the
figure also shows that security is not the only one.

Q: Rate the challenges/issues of the 'cloud'/on-demand model

Security

Availability

Performance

On-demand payment model may cost more
Lack of interoperability standards

Bringing back in-house may be difficult

Hard to integrate with in-house IT

Not enough ability to customise

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of respondents indicating this as a challenge

Figure 1.2: Survey of the challenges of cloud migration.

The lack of widespread standards for cloud services may cause an organisation, which is migrating
to the cloud, to experience vendor lock-in. This results in the loss of the option of switching from
one CSP to another, unless the organisation is willing to put in a major effort to accommodate
already functioning cloud-based systems to the new CSP.

Another obstacle is the task of migrating to a cloud for the first time. This may be non-trivial
if an organisation has a substantial amount of legacy applications. Each application needs to be
analysed to determine its suitability, with regards to migration, as it must be scalable to properly
benefit from the cloud [Mohagheghi&11].
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1.3.

Chapter 1. Introduction

The remainder of this chapter is organised as follows: the motivation for the work of this thesis is
presented in Section 1.2, and the thesis goals are presented in Section 1.3. The relevance of the
work is supported by a case which is presented in Section 1.4. A reading guide for the thesis is
presented in Section 1.5, and the structure of the thesis is described in Section 1.6.

Motivation

The primary motivation for this thesis is the increasing usage of cloud-based systems. Several
large companies use highly scalable cloud storage and computation solutions internally, and some
also offer their cloud services for commercial use and as a product to individuals. This results
in the cloud being of significant importance in modern society with regards to how information
is stored and communicated. Therefore, we believe that the use and importance of cloud-based
solutions will be increasing significantly in years to come.

A few months prior to the writing of this thesis, we took the course: Advanced Pervasive Comput-
ing and gained preliminary insight into the domain of cloud computing, its benefits, and liabilities.
This insight has illustrated the need for a transparent security model which clearly states how data
is protected inside the cloud. This need is strengthened with the increasing popularity of cloud
based storage-applications, such as Dropbox [Dropbox12], Windows SkyDrive [SkyDrivel2], and
Google Drive [GoogleDrivel2].

Research papers have presented several schemes on how to store and protect data inside and out-
side of a cloud context. Some have been implemented as prototypes and others remain purely
theoretical schemes claiming to solve various issues and inconveniences. The main theme of most
schemes is the use of cryptographic measures to achieve data security. A tendency among these
schemes is the focus on specific technical functionality that offers little practical value by itself.
The reason for this is likely the high level of complexity of cryptography which limits the scope
of many research efforts to ensure adequate technical depth. We believe that these individually
researched schemes can be improved and/or combined into a larger and more generic solution
supporting the needs of a cloud-based collaboration environment.

Thesis goal, approach, and scope

1.3.1 Defining the goals
The goals of this thesis are:

1. To design a dynamic collaboration environment utilising the benefits of cloud storage while
ensuring strong data security and fine-grained data access.

2. To improve our skills and knowledge with regards to designing systems that leverage the
benefits of the cloud, improve our ability to research a scientific subject from different
perspectives, and to contribute to the scientific community.

Any system can be described by its properties. To enable the comparison of designs for a dynamic
collaboration environment, certain properties have been selected and will be the focus through-
out this thesis. The chosen properties are those which we consider the most important in terms
of addressing the issues preventing cloud migration. Furthermore, the dynamic collaboration en-
vironment should be as generic as possible to allow for its application in as many scenarios as
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possible. The properties are divided into three categories: security, access control, and perfor-
mance. The dynamic collaboration environment covers both the cloud and the local environment
at its users. However, the sets of important properties are not identical for both of these environ-
ments. Table 1.1 shows the properties selected for evaluating designs for a dynamic collaboration
environment. The table also shows the category of the properties and the environments in which
they are considered important.

Table 1.1: Properties for evaluating a dynamic collaboration environment.

Environment Category Property

User Data confidentiality
Data integrity
User . Data availability
Security —
Non-repudiation
Auditability
Cloud User-to-user anonymisation

User addition and revocation
User Fine-grained access control
Access control §
Access control delegation
Many-to-many file sharing
Scalability
Durability

Performance

1.3.1.1 Property description and justification

The properties selected have been chosen for various reasons, which are briefly introduced and
justified below:

Data confidentiality, integrity, and availability: As the surveys presented in Section 1.1 indi-
cate, security is of great concern. Therefore, the dynamic collaboration environment should
enforce security. Traditionally, security is understood as confidentiality, integrity, and avail-
ability. For the rest of this thesis the term security denotes these three properties, which are
given a full definition in Section 2.2.

Non-repudiation and auditability: Non-repudiation and auditability are important for domains
where errors or fraud might have large consequences, such as in the pharmaceutical industry.
To support such domains, these properties should be supported.

User-to-user anonymisation: To support usage scenarios where entities involved in the system
might attempt to collude or cartelise, user-to-user anonymisation should be supported.

User addition and revocation: The parties involved in a collaboration are often dynamic in na-
ture and change over time. Thus, the dynamic collaboration environment should support
addition and revocation of users.

Fine-grained access control: In most real-world scenarios users are trusted at different levels.
Furthermore, to perform their tasks, users often only need access to a subset of the resources
available. For these scenarios, fine-grained access control is essential.
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Access control delegation: Access control delegation allows the dynamic collaboration environ-
ment to have multiple users manage access control at different levels. This avoids the po-
tential bottleneck of having a single user manage access for all users.

Many-to-many file sharing: In general, a collaboration environment might be usable for some
scenarios even if it supports only one-to-many or many-to-one file sharing. However, to
avoid this constraint and remain generic, the dynamic collaboration environment should
support many-to-many file sharing.

Scalability: A collaboration environment is a dynamic entity, which varies in size with regards
the resources it stores and its amount of users. Therefore, it should support scalability.

Durability: Durability is important when storing large amounts of data for an extended period of
time. The storage is inevitably going to experience problems, such as power interruptions or
hardware failures. This could potentially cause data loss. Thus, the dynamic collaboration
environment should possess high durabilty.

1.3.1.2 Cloud and user environments

All the properties described above are important in a cloud environment, but only some are rel-
evant in a user’s local environment. Of the six properties categorised under security only con-
fidentiality and availability are considered relevant in the user’s environment. Of the remaining
properties only fine-grained access control is seen as relevant.

1.3.1.3 Additional properties considered

Several additional properties were considered for inclusion in the set of properties described
above. The properties and the reasons for omitting them are the following:

Reliability: Reliability is a measure of a system’s ability to perform its intended functions under
a set of conditions over a period of time. While this is important to a dynamic collaboration
environment, it is partly covered by availability and durability.

Maintainability: Maintainability is important for any system that is used over a longer period of
time as defects are bound to be identified and must be corrected. However, for the purpose
of devising a conceptual design for a dynamic collaboration environment, maintainability is
less of a concern.

Usability: Usability is important for a dynamic collaboration environment to be accepted by its
users. However, to a large extent this is something which can be addressed later and does
not influence the functionality of the collaboration environment.

Interoperability: While integrating a dynamic collaboration environment with other systems is
interesting, the dynamic collaboration environment, by itself, provides value to those con-
cerned with migrating to the cloud.
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1.3.1.4 Property rating scale

Solutions from related work and conceptual designs presented as part of this thesis are compared
by examining their characteristics to determine how well the individual properties presented in
Table 1.1 are supported.

Support for the described properties is rated at four levels. These levels are denoted by a single
minus or up to three plusses, where three plusses is considered best. The scale is designed to
make distinctions between designs presented in later chapters clear and to make the differences
considered important in this thesis as clear as possible. By rating the characteristics of designs
using the scale, and thereby comparing individual properties of the designs, an overall comparison
of the designs is possible.

Each level of the scale is strictly better than the previous by accumulating positive characteristics
of lower levels. This holds for all properties except user addition/revocation and scalability: these
are reversed in the sense that higher levels of support do not accumulate positive characteristics,
but instead eliminate negative characteristics. The characteristics required to attain a certain level
are specific to each property. All properties have four levels defined, except non-repudiation and
user-to-user anonymisation which have only two. Table 1.2 shows the granularity of the scale and
the characteristics required for the specific levels for each property. The Data Owner (DO) is the
entity administrating the collaboration environment and is described in further detail in Chapter 3.

1.3.2 Approach

The dynamic collaboration environment has been designed through several steps:

Inception: In this step, state of the art research, within the field of cloud-based collaboration
systems and their supporting technologies, was gathered and analysed. This enabled us to
evaluate the feasibility of the thesis goals and to improve on the rationale of the dynamic
collaboration environment by defining a supporting case.

Elaboration: In this step, the dynamic collaboration environment was designed based on related
works, existing technologies, and research.

Validation: In this step, the dynamic collaboration environment was validated by creating a proof
of concept prototype to demonstrate the feasibility and integration of critical parts.

Three iterations of the steps described above have been performed, and three designs, each with
its own focus, have been created. Although the designs have their own focus, they build upon
previous designs and thereby support for the thesis goals is strengthened.

1.3.3 Scope

The scope of this thesis is limited to the use of cloud storage systems where on-line storage is
supplied by a CSP and used to store data. This thesis does not deal with the cost of utilising a
cloud, only the properties of one solution compared to another is considered.

Many solutions described in this thesis apply cryptography to obtain properties such as confiden-
tiality. The properties and principles of these cryptographic schemes will be described and relied
upon, but the internal mathematical workings of these cryptographic schemes are considered out
of scope. Data is considered to be in either encrypted (ciphertext) or unencrypted (plaintext) form.
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Table 1.2: Scale for rating the properties of a dynamic collaboration environment.
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* For this property, the scale is reversed in the sense that higher levels of support do not

accumulate positive characteristics, but instead eliminate negative characteristics.



1.4.

Case study

Case study

1.4.1 A generic case

The generic case describes the need for a solution that allows data sharing between organisations of
various sizes as well as individuals. The solution should be based on a cloud service as the benefits
offered by such a service would, among other things, enhance availability and scalability. CSPs
are regarded as untrusted third-parties. Therefore, data should never appear as plaintext inside the
cloud environment. A selected group of users should be designated to control which users are
granted access to specific data. For example, users should only have access to the data they need
to fulfil their role, within their specific organisation. Adding new users and revoking access from
existing users is necessary to support the dynamic structure of a collaboration environment. Fine-
grained data access is considered an essential part of the desired solution. It should be possible to
grant some users read-only access to the data, while others are allowed full read-write access. It
should also be possible to audit which user has accessed data to track usage and operations on the
data. This makes the solution more attractive to industries that require a higher level of auditability
and traceability of their data.

Unauthorised backups and distribution of data should be prevented. As a consequence, security
measures must be extended into the users’ local environments to protect data once it is retrieved
from the cloud storage. Non-repudiation and auditing of data should be supported in case data is
leaked and later found in unauthorised distribution channels. This should enable the identification
of the origin of the data and help identify the cause, or the user, responsible for the leak.

1.4.2 A concrete case example

As a concrete example of the generic case, consider an organisation, BigCorp, that needs custom
mechanical parts built as a part of a larger project. To this end, they employ two separate contrac-
tors each of which delivers different mechanical constructs. The first contractor delivers a part that
is dependent on a part that the other contractor delivers. Therefore they need to share details about
how to interface with their respective parts. The first contractor needs to have read-write access,
while the other only needs read access. BigCorp, however, does not want to manage access for all
the workers working for the contractors. It wants to be able to give the contractors access based
on their roles in the project and then let the contractors delegate granular access to their workers
themselves.

BigCorp does not want the two contractors to have any detailed knowledge of each other. One
reason is to prevent cartelisation, which could potentially drive up the price of the mechanical
parts. BigCorp also wants to ensure that none of the project-plans end up in the wrong hands.
The contractors want to keep their proposals private until it is ready for publication. This means
strong security and protection of data in the contractors’ local environment. Once a contractor has
delivered his product, BigCorp wants to be able to revoke the access of that contractor without
affecting the access of the other contractor.
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1.5. Reading guide

Emphasis: Concepts, words, or sentences with special relevance are emphasised in the text by

the use of an italic typeface.

User naming convention: Throughout this thesis the names Alice, Bob, Carol, and Dave are used

when depicting users used to describe a conceptual design through diagrams and scenarios.
A DO is depicted slightly different than the other users and can be recognised by a red
user icon. The naming convention is used to keep consistency of diagrams throughout the
thesis. The only exception to this is Chapter 5 where the notations Consumer, Producer,
and Publisher are used due to the specific domain of this chapter.

Design comparison: Throughout this thesis, designs for a dynamic collaboration environment

10

are compared by evaluating their support for the thesis goals. The comparisons are pre-
sented by tables and diagrams. For each compared design, the tables contain indications
of how well the properties are supported. The diagrams used to present the comparisons
are spiderweb or radar diagrams. In the diagrams, each property has a dedicated axis origi-
nating from the center of the diagram and a design is illustrated by lines crossing the axes.
The area enclosed by the lines represents a design’s overall support for the thesis goals. An
example of a comparison between two designs can be seen in Figure 1.3.

Data confidentiality

== Design 1

== Design 2

Circles indicate
properties which are
equally well supported.

revocation

Figure 1.3: Example of a graphical comparison of two designs.
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Structure

Structure

This thesis is divided into seven chapters and two appendices. Figure 1.4 shows an overview of
the chapters and appendices along with lines indicating the suggested order in which chapters
and appendices should be read. Chapter 2 contains the general theory for the thesis, explaining
relevant security terms, concepts, and technologies.

Chapters 3, 4, and 5 each focus on subsets of the properties relevant to the dynamic collaboration
environment. The chapters begin with a detailed presentation of related work, continue with a
description of our contribution, in the form of a design for achieving the above mentioned proper-
ties, and a discussion thereof. These chapters are mostly independent, but should be read in lexical
order to fully understand the thesis.

Chapter 6 describes proof of concept prototypes constructed to verify the designs presented in
Chapters 3 and 4. Finally, Chapter 7 concludes the work of this thesis.

Appendix A presents the terminology used in this thesis and Appendix B contains details on the
proof of concept prototypes, presented in Chapter 6.

Chapter 2: This chapter focuses on examining general theory, terms, concepts, and technologies
relevant to the goal of the thesis.

Chapter 3: This chapter proposes a design for achieving confidentiality, integrity, and availability
for data stored in an untrusted cloud by examining and improving upon related work.

Chapter 4: This chapter proposes a design for achieving fine-grained access control and au-
ditability for data shared through a cloud.

Chapter 5: This chapter proposes a design for maintaining confidentiality, integrity, and avail-
ability when data is in a user’s local environment.

Chapter 6: This chapter validates the designs proposed in earlier chapters by proof of concept
prototypes.

Chapter 7: This chapter concludes the thesis, summarising, analysing, and discussing the results.
Areas for further work are also established.

Appendix A: This appendix presents the terminology used in the thesis.

Appendix B: This appendix contains details on the proof of concept prototypes presented in
Chapter 6.

11
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Figure 1.4: Overview of the thesis structure.
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2.2.

Chapter

Security elements

This chapter describes concepts and technologies used for achieving the thesis goals presented
in Chapter 1. The material of this chapter ranges from generally known and widely used to very
specific concepts and technologies. The content of this chapter forms the basis, and describes the
security terminology, of the work presented in Chapters 3, 4, and 5.

Overview

This chapter describes concepts and technologies necessary to understand the results of this thesis.
Section 2.2 gives a short introduction to the core principles of information security. Section 2.3
presents relevant cryptographic concepts, including cutting-edge research in cryptography. Fi-
nally, Section 2.4 describes concepts and schemes used to manage access control.

Information security principles

Information is an important asset and needs proper protection. The difference between information
and data is that data is a specific representation of information, enabling the storage, communica-
tion, interpretation and processing of information. Traditional definitions of information security
are based on three information security goals constituted by:

Confidentiality: Information that should only be disclosed to specific entities is considered con-
fidential. Thus, to enforce confidentiality, disclosing information should be avoided except
to the specific entities.

Integrity: Information integrity focuses on ensuring the fidelity of information with regards to
its creation. Unauthorised modification or destruction of information, either accidental or
deliberate, should be prevented. When examining data as the container for information,
integrity breaches can be divided into two categories: Primary corruption, which is the
modification of data when it is being transmitted, and secondary corruption, which is when
data is already loaded onto a computer system [Harn&92].
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Availability: Information availability refers to information being accessible to an authorised user
when it is needed. As an example, when trying to access data from a server that is offline,
there should be sufficient mechanisms in place to make this problem transparent to the user.

These three information security goals, Confidentiality, Integrity, and Availability, are by abbrevi-
ation referred to as CIA. When referring to security throughout this thesis the definition above is
used.

2.2.1 Authentication

There are two kinds of authentication relevant to this thesis:

o Entity authentication, which is the process of verifying the claimed identity of an entity.

e Data origin authentication, which is the process of verifying the source and integrity of a
message.

In general, authentication is based on any of the items below, or a combination thereof. Com-
bining multiple items decreases the probability that an entity is presenting false evidence of its
identity [Brainard&06]:

e Something you know: Password, PIN-code, etc.
e Something you have: Token, Certificate, Dongle, etc.
e Something you are: Fingerprint, Retinal pattern, DNA etc.

An example of authentication is challenge-response authentication where a user makes an ac-
cess request and the host receiving the request sends a challenge to the user, who in turn re-
sponds [Diffie&92]. Access is granted if the response matches the expectation of the server.
Using different challenges for each request helps prevent replay-attacks.

2.2.2 Authorisation

Authorisation is the process of determining access rights to a resource for an entity. Authorisation
relies on authentication to verify the identity of the entity requesting access to the resource.

2.2.3 Non-repudiation

In information security, non-repudiation focuses on creating evidence that an action has occurred
so that a user cannot falsely deny the action later. When working with data, this means that the
integrity and origin of data can be proved. An example of non-repudiation would be a user who has
modified a file, after which he can no longer deny that he was the one who made the modification.

2.2.4 Auditability

Auditability, in an information security context, refers to the ability to attribute actions on data to
the performing entity. Thus, auditability enables tracing of actions performed to the entity who
performed the action [Gerber&01].
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Relevant cryptography

Relevant cryptography

Many different approaches currently exist to ensure data confidentiality, and many of these ap-
proaches are cryptographic in nature. This section examines some of these approaches and goes
into further detail about those of significant relevance to the thesis.

2.3.1 Enforcing data secrecy

Encryption is a widely used technique for enforcing data secrecy, but other techniques exist which
may serve as a viable solution [Storer&09].

2.3.1.1 Secrecy by splitting

One approach towards secrecy is splitting of data into n parts in a way such that no combination
of k parts reveals any information about the data, while any combination of m parts restores the
data (k < m < n) [Storer&09]. However, splitting data into n parts is not without problems as
it introduces extra overhead and the need for n distinct storage locations. Data integrity can be
ensured by using Error-Correcting Code (ECC) mechanisms at the cost of extra distinct storage
locations. Figure 2.1 shows how data can be stored in this approach by splitting and storing data
at several different locations while adding parity as an ECC mechanism.

—
Uses Data
Transformer

Y

Data Owner Stores data alnd parities at
v v v v

‘ Archive 0 ‘ Archive 1 ‘ Archive 2 ‘ Archive 3

Shard 00 Shard 01 Shard 02 Parity 03

Parity 10 Shard 11 Shard 12 Shard 13

Shard n0 Shard n1 Parity n2 Shard n3

HIEHIG
LG
LI
HiEEIG

Figure 2.1: Data secrecy by splitting.
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2.3.2 Secrecy by encryption

Encryption is the process of transforming unencrypted data into encrypted data using an algorithm
and one or more cryptographic keys. Decryption is the reverse operation. Encryption is suitable
and often applied for ensuring data confidentiality. However, applying it effectively is not straight-
forward. A problematic aspect of cryptography is that once data is encrypted, the liability simply
shifts from protecting the confidentiality of the data to protecting the confidentiality of the cryp-
tographic keys [Diffie&76, Storer&09, Agudo&11]. Therefore, management of the cryptographic
keys add to the complexity of employing encryption schemes. The advantage of using encryption
is that, in general, keys are smaller and there is less to protect.

There is an on-going struggle between cryptographers and cryptoanalysists, where ciphers, once
thought to be secure, now are cracked with ease. Given enough time, all cryptographic algorithms
can be cracked and cryptoanalysis only assists in speeding up the process. The sole exception be-
ing one-time pads [Shamir83]. In the worst case, an inside attacker may gain knowledge of the key
required to decrypt the ciphertext and thereby circumvent the encryption entirely. Accordingly,
cryptography may be adequate for short term, but not long term storage [Storer&09].

There are two kinds of encryption: symmetric and asymmetric. Symmetric encryption has a single
key used for both encryption and decryption. Asymmetric encryption uses a key pair consisting
of a public key and a private key. The public key is used for encryption and the corresponding
private key is used for decryption. Generally, asymmetric encryption does not perform as well as
symmetric encryption because of the underlying mathematics used [Chen&10].

2.3.3 Searchable encryption

Searchable encryption is a scheme that allows search queries to be performed on a ciphertext. The
first attempts to develop cryptographic techniques for searching inside encrypted data resulted in
two schemes which form the basis of all subsequent work [Song&00]:

Sequential scan: In the sequential scan approach, the encrypted data is searched sequentially and
thus, search time is linear, O(n).

Index-based search: In the index-based search approach, a pre-computed index is used to im-
prove the speed of searching. The index is a map of keywords to data and makes it possible
to identify data associated with a particular keyword by performing a look-up in the in-
dex. A disadvantage of index-based search is that the index must be pre-computed and
any change to the data necessitates updating the index. Another disadvantage is that the
index takes up extra storage space. Even though index-based search has disadvantages, its
ability to efficiently handle large amounts of data makes it the more widely used approach.
Depending on the implementation, the search time can become logarithmic, O(logn).

To hide the meaning of keywords, encryption can be used to create tokens based on the key-
words [Song&00]. Thus, the index becomes a map between tokens and data entities. The tokens
are generated by the party wishing to search and are then sent to the storage provider which uses
the token to search the index. Neither the tokens nor the ciphertext reveal information about the
stored data or the keywords being searched for.

Even if data confidentiality is ensured during transmission and when data is stored, the access
patterns may leak information since token generation is deterministic. The storage provider can
over time, through statistical analysis, gain knowledge of the stored data. Obscuring these patterns
is desirable, but may prove difficult [Dong&11].
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Searchable encryption has, since its introduction, been improved with regards to efficiency, se-
curity, and flexibility [Chang&05]. Research has improved the efficiency and security, but also
extended searchable encryption to a multi-user scenario [Curtmola&06]. Symmetric Searchable
Encryption (SSE), Asymmetric Searchable Encryption (ASE), Multi-user Searchable Symmetric
Encryption (MSSE), and Efficient asymmetric Searchable Encryption (ESE) have, subsequently,
also been developed. For an overview of the properties of these searchable encryption schemes
see Table 2.1.

Table 2.1: Searchable encryption schemes.

Type | Underlying technique Scenario

SSE | Symmetric encryption Single Reader & Single Writer (SR+SW)

ASE | Asymmetric encryption Single Reader & Multiple Writers (SR+MW)
MSSE | Symmetric encryption & | Multiple Readers & Single Writer (MR+SW)
Broadcast encryption
ESE | Asymmetric encryption Single Reader & Multiple Writers (SR+MW)

SSE: This scheme is based on symmetric encryption and the key used for encryption and decryp-
tion is also used to generate search tokens. All known index-based SSE constructions can
use any underlying symmetric encryption scheme [Kamara&11].

ASE: This scheme is based on asymmetric encryption. ASE is not as efficient or secure as SSE,
but is more flexible with regards to expressiveness of search queries [Kamara&10]. ASE
was first introduced by [Boneh&04].

MSSE: This scheme utilises SSE to enable a central entity to encrypt a message to a dynamically
changing group of authorised users [Curtmola&06].

ESE: This scheme is based on ASE, but improves upon efficiency. The principle of ESE is to
encrypt plaintext using asymmetric encryption while deterministically generating a token
for each associated keyword [Bellare&07]. Because the tokens are generated deterministi-
cally they are suitable in a map of keywords and data entities. However, ESE is less secure
than ASE because of the deterministic tokens [Kamara&10]. An ESE scheme can generate
tokens by using hashing algorithms and this results in the ability to use any asymmetric
encryption scheme [Bellare&07].

Despite a sizable research effort in searchable encryption, all current schemes have severe lim-
itations. Several schemes do not support modifications to data once it is indexed [Song&00,
Curtmola&06]. Another limitation is that no existing scheme supports the scenario of Multiple
Readers & Multiple Writers (MR+MW). Also, all of the mentioned schemes support queries based
on a single keyword only [Song&00, Chang&05, Curtmola&06, Kamara&10].

Research in the area of searchable encryption remains active and has progressed significantly. The
authors of [Curtmola&06] have published a new version of their original paper which elaborates
on the details of their original work [Curtmola&11]. Additional progress was also made on SSE
to create a scheme that supports efficient addition and deletion of data [Kamara&11].

With regards to complex search queries, schemes supporting conjunction of search terms have
been developed and later disjunction has been added [Katz&08]. Support for concepts such as
multi-keyword ranked search have also been devised [Cao&11].

17



Chapter 2. Security elements

Searchable encryption is not a new concept and has been known for more than a decade. It has
come a long way since its conception by [Song&00], but many of the current schemes still need to
be improved with regards to performance, while support for some areas are still missing entirely.

2.3.4 Proxy re-encryption

The first description of Proxy Re-Encryption (PRE) is found in [Blaze&98]. PRE is based on
asymmetric encryption and is a cryptographic technique which enables the transformation of a
ciphertext encrypted by one key into a new ciphertext encrypted by another key. This is done
without revealing anything about the original plaintext or the cryptographic keys, and allows PRE
to be performed by a semi-trusted third party known as an encryption proxy.

The principle of PRE can be seen in Figure 2.2 and is as follows: two persons, Alice and Bob, each
have a key pair. Alice creates a special PRE token based on her private key and Bob’s public key
and gives this token to the encryption proxy. By using the PRE token, the encryption proxy is now
capable of transforming a message encrypted with Alice’s public key into a message encrypted
with Bob’s public key. Bob can later decrypt the ciphertext using his private key.

Alice s key Private key—3 ‘/Cryptogr?phlh —Public key Bob s. key
pair \\ operation / pair
h Generates >
Has H H
: \ S : Has
PRE token \
: Used by : Q
Alice Used to Used to Bob
§ Encryption :
: proxy :
— : —n Performs — :
v v \ /
Encrypt to > Re-encrypt to—p> Decrypt to——p>
Plaintext Ciphertext encrypted Ciphertext encrypted Plaintext
using Alice’s key pair using Bob’s key pair

Figure 2.2: Overview of proxy re-encryption.

The original work by [Blaze&98] only supports bi-directional PRE. Consider two persons, Alice
and Bob, the consequence is that it is not possible to transform a ciphertext from Alice to Bob
without also enabling transformation from Bob to Alice. Should uni-directional transformation be
required, this scheme is not usable [Ateniese&06].

Both transitive and non-transitive PRE schemes exist [Ateniese&06]. The principle of transitivity
in a PRE context is the following: three persons, Alice, Bob, and Carol each have a key pair and
the encryption proxy has a token to transform ciphertext from Alice to Bob and another token to
transform from Bob to Carol. Transitivity allows an encryption proxy to transform from Alice to
Carol by using both tokens and performing two transformations.
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Hybrid encryption

The properties of PRE schemes have improved in several ways since their introduction. One
improvement is support for uni-directional PRE [Ivan&03]. Further improvements along with a
comparison of PRE schemes are given in [Ateniese&06].

An inherent problem with PRE is the risk of any single user colluding with the proxy. In the
scheme proposed by [Blaze&98], collusion between a user and a proxy can reveal another users’
secret key. The collusion problem is partially solved in [Ateniese&06], but a general solution has
not been found [Dongé&11].

The performance of PRE may, for some purposes, be inadequate because it relies on relatively
inefficient public key cryptography. This can be fixed by applying hybrid encryption.

2.3.5 Hybrid encryption

Hybrid encryption combines symmetric and asymmetric encryption and is meant to fix the inher-
ent performance problems in asymmetric encryption. High-performance symmetric encryption
is used to encrypt the bulk of the data using a randomly-generated key. This key is afterwards
encrypted using asymmetric encryption. The resulting ciphertext is then the tuple of the symmet-
rically encrypted data and the asymmetrically encrypted key [Dongé&11].

2.3.6 Digital signing

Digital signing is based on cryptographic key pairs. In digital signing, a user’s signature for a
message M is a value which depends on M and the user’s secret key [Diffie&76]. Anyone is able
to verify the validity of the signature using the user’s public key. Digital signing is often used for
verifying integrity and to achieve support for non-repudiation.

Data access control

Access control is essential to ensure fine-grained access to resources. To further ensure that access
to resources can be managed and configured as necessary, a solid access control model, or a
combination of multiple models, is needed. To prevent unauthorised access to resources located
in multiple users’ individual local environments access control is needed, not on the space where
the resource is located, but on the resource itself. Insight into different access control approaches
is provided in the following sections.

2.4.1 Data access control models

Data access control models are standard approaches for solving the issue of providing manage-
able access schemes to resources as described by the National Institute of Standards and Tech-
nology [NISTIR7657]. Some models use cryptography while others do not. There are three
well-known security principles for access control models [Saltzer&75, Sandhu&96]:

Least privilege: A user is given only the permissions required for the user to perform his tasks.

Separation of duties: The objective of separation of duty is to prevent fraud and errors. This
is achieved by distributing the permissions for a sensitive task among multiple users. An
example from the financial world is when two persons must collaborate to sign a check.

Data abstraction: Abstract permissions, such as credit and debit for an account, are defined in-
stead of the permissions like: read, write, execute, etc.
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2.4.1.1 Access control by cryptography

Attribute-Based Encryption (ABE) is a type of fine-grained public key encryption where an en-
cryption is associated with an access control policy [Yu&10, Zhao&11, lon&11]. There are two
sub-schemes of ABE [Yang&11]:

Ciphertext-Policy Attribute-Based Encryption (CP-ABE): In CP-ABE a user’s private key is
associated with attributes. An access structure over attributes is associated with data when
it is encrypted and a user is only able to decrypt the data if the attributes of his private key
satisfy the access structure of the ciphertext.

Key-Policy Attributed-Based Encryption (KP-ABE): KP-ABE uses the same principle of at-
tributes and an access structure over attributes, but it is the reverse of CP-ABE. In KP-ABE,
attributes are associated with data and an access structure is associated with a private key.

ABE is capable of fine-grained access control, but user revocation, for solutions supporting it, is
inefficient as data must be re-encrypted [Singh&08, Yu&10].

2.4.1.2 Access control lists

Access Control Lists (ACLs) saw much use in the 1970s when multiple users using several ter-
minals needed to be restricted from accessing data on shared computers systems [Saltzer&75].
Windows and UNIX systems alike make use of ACLs to manage resource access with varying
degrees of complexity.

An ACL contains mappings between entities requesting access to a resource and the actions which
the entities are allowed to perform. For example, a user trying to read from a resource. The
resource has its own specific ACL specifying who has access to it and what actions are allowed.
Thus, when an entity tries to access the resource, the operating system checks the ACL of the
resource and determines whether actions requested by the entity are allowed.

In terms of performance and maintainability ACLs have limitations. The ACL for a particular
resource must be accessed every time the resource is accessed. This hampers scalability and
impedes performance. In a setting where many entities have different levels of access rights to
resource objects, keeping ACLs up to date can be error prone and time-consuming. Least privilege
is supported, while the other security principles for access control models are not inherent to ACL.

2.4.1.3 Role-based access control

Role-Based Access Control (RBAC) is an access control model that allows for grouping of differ-
ent entities into categories based on similar access needs to fulfil a particular role. By mapping
resource access to roles instead of individual entities, the need to maintain permissions for each
entity is eliminated. Furthermore, entities are not limited to a single role, but may be assigned
multiple roles granting them access to a broad array of resources. The downside to this, however,
is the removal of granular access control of individual entities.

RBAC supports the three well-known security principles for access control models. However, the
principle of least privilege is only supported if specific roles are created. Depending on the amount
of specific roles created this may negate the benefits of RBAC.

2.4.1.4 Attribute-based access control

Attribute-Based Access Control (ABAC) is an access control model based on attributes that are as-
sociated either with the requested resource or the entity which is requesting access. The attributes
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are used to determine access by comparing the attributes against a set of values [Wang&O04a].
Attribute-based access control can be seen as a generalisation of role-based access control. When
an entity requests access to a resource, the entity will either directly or indirectly provide a set of
attributes which will be checked against attributes required for permission.

An advantage of ABAC is that the entity requesting access does not need to be known in advance
to the system responsible for granting or denying access. As long as the supplied attributes meet
the criteria of the rules governing access to the resources, access is granted. This is useful in large
corporations where people may leave or join the organisation arbitrarily.

ABAC is rarely supported in operating systems, but commonly implemented at the application
level using the open and widely accepted eXtensible Access Control Markup Language (XACML)
standard [Priebe&06]. XACML is an eXtensible Markup Language (XML) dialect for defining
ABAC policies.

2.4.1.5 Policy-based access control

Policy-Based Access Control (PBAC) is a model that standardises the ABAC model with regards
to using ABAC at an enterprise level. Enterprise level organisations often need to be in compliance
with legislation and this results in a need for tighter policies that control what resources should be
available to whom and under what circumstances. Mechanisms that allow auditing of access to
these resources should also be in place.

PBAC, like ABAC, uses attributes, but combines these with a set of circumstances under which
access is requested. Rule-sets specify if access should be granted under organisational policy for
those attributes under those circumstances. PBAC is a complex extension of ABAC. The added
complexity is caused by extra maintenance of attributes and of enterprise level systems which
needs to be deployed across the organisation to accommodate for PBAC.

2.4.2 Digital Rights Management

A Digital Rights Management (DRM) system is a specialised system for managing data access
control. Most DRM systems offer a range of services used to publish, protect, and trace data.
Data protection often consists of cryptographic schemes which are used to ensure confidentiality
and integrity. DRM systems are often used as mechanisms for protecting digitally purchased
goods such as music or movies. A typical DRM solution involves three distinct roles which each
have different perspectives and goals [Michiels&05]:

Producer: The producer either produces or owns the right to data. He wishes to distribute data
among selected groups of users and determines the access rights for the data such as read-
only access.

Consumer: The consumer’s main interest is the consumption of data. Consumption is often
performed through a DRM client which is part of the DRM solution. By using a DRM
client, control and protection of DRM protected data is made easier since decryption and
details on decryption keys is hidden from the user.

Publisher: The role of the publisher is to manage the DRM system and perform distribution of
DRM protected data. The task of monitoring data usage and revoking consumer access is
also governed by the publisher. If unauthorised copies of data have been found in places
where they are not supposed to be, the publisher is also responsible for investigating data
leakage.
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2.4.2.1 Interoperability

DRM solutions use a Rights Expression Language (REL) to formalise data control within the
DRM system and unambiguously specify usage rules [Michiels&05]. As new methods for data
distribution have emerged, the RELs have been extended accordingly. This has resulted in com-
plex specialised extensions to some of the standard RELs. This increase in complexity and
non-standard extensions has resulted in several non-interoperable RELs [Jamkhedkar&09]. This
means, that although the common roles described in Section 2.4.2 can be identified in many DRM
systems, most of the functionality and services in these DRM systems cannot be reused in other
contexts. Furthermore, the implementation and semantics of the protocols used in most DRM solu-
tions are deeply integrated with the REL. Changes made to the REL would in these systems ripple
into the implementation of the specific DRM system [Jamkhedkar&09]. This problem, combined
with the proprietary nature of most DRM systems, makes interoperability and re-usability very
difficult.

2.4.2.2 Security

Licence Usage rights for DRM protected data are often expressed through licences assigned
to authorised users. To ensure proper data protection, these licenses should only be issuable by
a license service inside the DRM solution. If licenses can be forged, the protected data is no
longer safe from unauthorised access. Another issue is how to maintain the integrity of licenses
to prevent an authorised user, with a valid license, from editing the license to change their access
rights. Furthermore, to prevent users from distributing valid licences, each individual licence must
be uniquely associated with a specific user [Michiels&05].

DRM client When DRM protected data resides with a consumer, measures must be taken to
ensure data confidentiality and integrity. The encryption and decryption details within the DRM
client must be hidden from the user, as exposing these details could give away details which could
lead to breach of confidentiality. DRM protected data with time-limited access needs a viable time
keeping scheme to ensure access is granted only within the allotted time. This requires the time
keeping scheme to be based upon a trusted clock which cannot be tampered with by the consumer.
This can be achieved through the use of hardware clocks [Michiels&05].

Another concern is the way each individual DRM client is implemented. If all clients were to
use the same cryptographic method and a common keying scheme, a single point of failure is
introduced which would compromise the system if the cryptographic details were exposed on any
of the DRM clients.

Tamper resistance DRM clients located in an uncontrolled environment are vulnerable to ma-
licious users who might attempt to alter or tamper with the client to reveal the decryption process
or key. Reverse engineering of the DRM client to reveal the cryptographic details can be hin-
dered by obfuscating its implementation [Horne&02]. Individualisation of the DRM clients, so
that one successful attack does not compromise other DRM clients is another method [Horne&02,
Michiels&05].
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2.4.2.3 Offline usage

If a consumer cannot establish a connection to the publisher, then none of the DRM protected data
can be accessed if the DRM system does not support offline usage. An offline usage model allows
users to temporarily access and read data already present at the DRM client without requesting the
DRM publisher for permission. Offline usage requires the user and the environment, in which the
DRM client is located, to be uniquely identifiable in order to establish a trust relationship between
the DRM client and publisher.

2.4.2.4 Watermarking

The analog gap One of the biggest challenges in DRM is the analog gap or analog hole. Humans
in general, are not able to manually decode digital messages. Therefore it needs to be presented
in an analog environment, such as on a monitor as analog output. Because of this, it is vulnerable
as an attacker is able to record the content in its unprotected form [Wolf&07]. A tool employed to
tackle this problem is watermarking.

A watermark has two distinct properties: first, it is normally hidden from view and becomes visible
only when using a special viewing process; second, the watermark itself contains information
about the object it marks. A watermark usually has a record of its origin, when it was issued, who
it was issued to and who has the overall responsibility for the data at the time of issue.

Digital watermarking is a process of embedding an imperceptible message about multimedia con-
tent into that content [Cox&01]. This practice can also be applied to text documents to aid in
copyright protection [Jalil&09]. Watermarking is not able to prevent the original issuee of the wa-
termarked data from sharing it with an unauthorised party, but may help in identifying the original
issuee.

The ideal watermark leaves no perceptible difference between the watermarked and original data.
A straightforward way to provide an imperceptible watermark is to embed it into the perceptually
insignificant portion of the host data [Podilchuk&O01]. This approach, however, leaves the water-
mark vulnerable to attacks, as it can be removed or altered without affecting the perceptible part
of the host data.

As an example, the last couple of seconds of the credits in a video is not a significant portion as
compared to the rest of the video content. A simple truncation of the video would remove such
a watermark without affecting the main content of the video. To ensure robust watermarking,
watermarks should be embedded in a important, but perceptually insignificant portion of the host
data.

Shortcomings While it is true that data can be embedded with a watermark, it is important
to notice that the watermark only provides traceability to the first issuee. It cannot identify
users who redistribute data without permission when they receive it without permission them-
selves [Steinebach&07]. Another shortcoming is the inability to register when data is leaked. The
only way to know if data is leaked is to find it somewhere it is not supposed to be. At this point,
the data has already been compromised and confidentiality cannot be restored. However, identifi-
cation of the issuee who leaked the data can help prevent future leakage of data from that source.
A framework that deals with locating watermarks in arbitrary search spaces such as P2P networks,
“Google spaces”, and eBay is proposed in [Wolf&07].
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3.1.

3.2

Chapter

Secure data in an untrusted cloud

This chapter describes a conceptual design used to ensure security of data stored in a cloud.
The design supports efficient addition and revocation of users and ensures that only authorised
users are able to access and modify data. These are core properties presented as thesis goals
in Chapter 1. To achieve this, some of the concepts and technologies described in Chapter 2 are
used. The conceptual design presented in this chapter provides the core for the extension proposed
in Chapter 4. The design is validated in Chapter 6 through a proof of concept prototype.

Introduction

When cloud storage is utilised in a dynamic collaboration environment the benefits of the cloud
are gained by exposing the stored data to security risks. Data security may be compromised when
data is stored in the cloud or during transmission to and from the cloud. Thus, when using cloud
storage, these security risks must be mitigated.

The assumptions made for this chapter are described in Section 3.2 and related work is described in
Section 3.3. Section 3.4 describes our conceptual design for a dynamic collaboration environment.
Finally, the conceptual design is discussed and compared to related work and the thesis goals in
Section 3.5.

Assumptions

When using cloud storage, the Cloud Storage Provider (CSP) of the untrusted cloud is assumed to
be honest but curious. This means that the CSP is expected to be curious to learn data content and
has full access to everything stored in the cloud, but will honestly follow any protocol provided
by the Data Owner (DO). Thus, the CSP will not actively manipulate data or communication. The
same is assumed for any user accessing the untrusted cloud.

These assumptions can be loosened by adding extra memory checking to provide a robust solution
at the cost of additional overhead [Curtmola&06]. Furthermore, it is assumed that the CSP may
attempt to collude with an arbitrary user to attempt to gain knowledge about the stored data or
queries of any other user.
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Related work

This section describes and analyses how others have approached the challenge of a dynamic col-
laboration environment using cloud storage. Multiple solutions are examined, after which an
overview is presented, comparing the properties of the solutions to the thesis goals.

3.3.1 Work by Kamara et al.

To ensure confidentiality of data stored in an untrusted cloud environment, a solution is presented
in [Kamara&10]. The solution uses the cloud to store encrypted data and key and access manage-
ment is handled by the Data Owner (DO).

The data stored in the cloud is encrypted by combining different encryption schemes. First, the
data is encrypted using Symmetric Searchable Encryption (SSE) using a random encryption key.
Then, the encryption key is encrypted using Attribute-Based Encryption (ABE). Finally, the en-
crypted data is stored in the cloud.

By using this encryption procedure, the data located in the cloud is made searchable to users with
proper access privileges. The data can then be decrypted once downloaded by a user.

Users who should be able to access data in the cloud are issued credentials matching their access
rights by the DO. These credentials are used to authenticate a user when he searches for data in
the cloud. A token generator service is used to handle search requests and in response, the user
is given a search token. The user then sends the search token to the cloud. Based on the search
token, the cloud identifies which encrypted data should be returned to the user. See Figure 3.1 for
an overview of the solution.
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receives search token using search token
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Data owner’s environment Ve \\/ \/’\\
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Figure 3.1: Overview of solution presented by Kamara et al.

This approach offers several benefits, especially from a security perspective, since the cloud con-
tains only encrypted data. Furthermore, the use of searchable encryption allows searching through
encrypted data without downloading and decrypting it first, which improves the performance of
the solution. Integrity is preserved by introducing a data verifier which the DO may use to verify
the integrity of data stored in the cloud.
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A rather large drawback of this solution is the fact that data cannot be altered. Data can be put into
the cloud only when initialising the system and remains immutable afterwards. Although data is
made searchable, the real benefits offered by a cloud are not utilised fully as it is used for storage
only. To preserve confidentiality encryption and decryption of data is performed outside the cloud.
Thus, it does not benefit from the computational power of the cloud.

The access management part of the solution is a potential bottleneck because it resides at the
DO and is required for all searches. This impacts availability negatively. Another problem is
that the encryption scheme used, does not offer support for a Multiple Reader + Multiple Writer
(MR+MW) scenario. To support a dynamic collaboration environment, support for multiple read-
ers and writers is necessary.

In [Kamara&11], an improved solution which builds on the work presented in [Kamara&10] is
presented. The main improvement is the support for editing and deleting encrypted data in the
cloud after its initialisation. Still, the suggested architecture lacks support for multiple writers. In
addition to improvements in the scheme, the solution has been implemented and analysed with
regards to performance.

The tokens used to request data from the cloud are generated deterministically and this could
lead to breach of confidentiality since access patterns can be analysed through observation. This
is a potential security flaw that the improved solution shares with the architecture presented
in [Kamara&10].

3.3.2 Work by Dong et al.

An approach to form a solution supporting MR+MW is to combine searchable encryption and
Proxy Re-Encryption (PRE). In particular, a uni-directional PRE scheme is combined with Effi-
cient asymmetric Searchable Encryption (ESE) [Dong&08]. It should be noted that the solution
presented here does not consider a cloud context.

Keys are handled by a separate and trusted Key Management Server (KMS). Introducing a trusted
server is clearly a disadvantage, but the role of the server is limited to issuing and revoking users
and can be put offline most of the time.
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Figure 3.2: Overview of solution presented by Dong et al.

27



Chapter 3. Secure data in an untrusted cloud

To begin with, the KMS generates a master key pair which is kept private by the KMS. When
adding a user to the system, the KMS generates and issues a new key pair to the user. Additionally
the KMS generates two PRE tokens.

When a user wishes to upload data, he associates the data with keywords and then encrypts the
data and keywords using his public key. The user then transmits the resulting ciphertext to the
server. The encryption proxy transforms the data and keywords to be encrypted by the master
public key by using the token given by the KMS.

When a user wishes to download data, he uses his public key to encrypt the keyword to search
for and transmits the search token to the server. The server transforms the search token to be
encrypted by the master public key and performs the search. The identified data is transformed
to the user-specific public key by using the second token generated by the KMS. Data is then
transmitted to the user and decrypted using the user’s private key. For an overview of the solution
see Figure 3.2.

Because all users have distinct keys, a user can be efficiently revoked by removing the token used
to transform ciphertext between the master public key and the user’s public key. Because there
are two tokens used for reading and writing data respectively, the solution also supports coarse-
grained access control as removing one of them will prevent a user from either reading or writing
data.

Overall the solution presented in [Dong&08] and in more detail in [Dong&11], which contains
cryptographic proofs and implementation details, combines two unrelated cryptographic primi-
tives to gain support for MR+MW while at the same time supporting efficient user revocation.
This is achieved at the cost of introducing a trusted third party. There are, however, still unsolved
issues such as support for integrity and fine-grained access control. Another significant issue
with the solution is the inherent risk of collusion which is present in all known PRE schemes.
To mitigate this the authors suggest splitting up the master key among several competing storage
providers. However, this increases complexity and is not guaranteed to prevent collusion.

3.3.3 Comparison of related work

The two solutions approach the concept of secure data sharing in different ways. A traditional
server is used in [Dong&08] while [Kamara&10] uses a cloud. By using a cloud [Kamara&10]
improves availability and durability. Scalability is usually improved when using a cloud, but in the
solution presented by [Kamara&10] all user authorisations are handled by the DO which limits
scalability. The solution described by [Dong&08] does not suffer from this as the KMS in that
solution can be offline while allowing users to access data.

The solution presented by [Kamara&10] has a significant limitation in that it does not support
MR+MW. This is solved by [Dong&08] using PRE, but introduces the liability of potential collu-
sion between the cloud and a user.

Both solutions provide confidentiality for data stored at a server or cloud, but neither support any
kind of confidentiality for data stored locally at the user. Furthermore, neither solution supports
non-repudiation, auditability, or access control delegation.

In the improved solution presented in [Kamara&11] data modification is supported, but this is
possible only for the DO. Users are still unable to modify data without the help of the DO. In the
solution by [Dong&08] only coarse-grained access control is possible. With regards to integrity,
the solution presented by [Kamara&10] has built-in support for integrity checking, although only
available to the DO. The solution by [Dong&08] does not support integrity checking. Both solu-
tions support user addition and revocation and user-to-user anonymisation.
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As Table 3.1 shows, the analysed proposals each have strengths and weaknesses. However, they
are both lacking characteristics required to completely support many of the properties defined as
goals in this thesis. A graphical presentation of the property rating can be seen in Figure 3.3.
Overlapping points are circled for easy identification.

Table 3.1: Comparison of solutions proposed in related work.

Environment Category Property Kamara | Dong
User Data confidentiality + +
Data integrity ++ -
User . Data availability ++ +
Security —
Non-repudiation - -
Auditability - -
Cloud User-to-user anonymisation +++ +++
User addition and revocation +++ +++
User Fine-grained access control - +
Access control i
Access control delegation - -
Many-to-many file sharing ++ +++
Scalability ++ +++
Performance e
Durability +++ ++

Data confidentiality

=4—Kamara

== Dong

Circles indicate
properties which are
equally well supported.

revocation

Figure 3.3: Graphical comparison of solutions proposed in related work.
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Secure Dynamic Cloud-based Data-sharing

3.4.1 Overview

This section describes Secure Dynamic Cloud-based Data-sharing (SDCD) which is our con-
ceptual design applying elements from the research and experiences of related work to form a
dynamic collaboration environment as described in Section 1.3. An essential part of SDCD is
based on cryptography and as with [Dong&08], PRE is combined with searchable encryption to
attain support for MR+MW while being able to search for data based on keywords. Searchable
encryption and PRE are explained in detail in Sections 2.3.3 and 2.3.4 respectively. This section
starts by giving an overview of the conceptual design. Afterwards the terms important to SDCD
are established and finally the dynamics of the conceptual design is described.

3.4.2 The conceptual design

SDCD uses ESE to enable searching on encrypted data as ESE is suitable to be combined with
PRE. Combining these cryptographic primitives enables the conceptual design to have all shared
data encrypted while at the same time supporting individual keys for users. Having individual
keys for users makes it possible to efficiently revoke users.

The concept of a DO is central to SDCD. The DO is responsible for generating keys and PRE
tokens for all users. This puts the DO in complete control of users having access to shared data.
Although the DO is central to the system, users access data directly from the cloud and users
depend only on the DO for being granted the initial access. Figure 3.4 gives a conceptual overview
of SDCD.
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Figure 3.4: Conceptual overview of SDCD.
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3.4.2.1 Data entity

In SDCD, a single unit of data is denoted a data entity. A data entity is essentially a wrapper for
a resource that should be stored. It has an identifier, a non-empty set of attributes, and a payload.
The identifier is randomly generated, but must be unique. The identifier is given to a data entity
when the entity is created and remains unaltered throughout the lifetime of the entity. An attribute
corresponds to a single keyword and contains two fields. The first is the encrypted keyword. The
second is an identifier for the attribute which is deterministically generated from the unencrypted
keyword. The payload is the resource that should be stored. To support hybrid encryption, the
data entity also contains a field for the key used by a symmetric encryption scheme. Finally, each
data entity contains the signature of the author. Table 3.2 gives an overview of a data entity.

Table 3.2: Overview of the fields in a data entity.

Field Description
Identifier Unique and immutable identifier.
é Attribute 1 Ei?r]lz(f)lﬁ (1) Fattribute 1 Set of attributes associated with the data en-
= tity. Each attribute is based on a single key-
5 word and contains the encrypted keyword and
i) - an identifier which is deterministically gener-
E Attribute n Keyword n ated from the unencrypted keyword.
Identifier of attribute n
Payload The resource that should be stored.
Symmetric encryption key The key used for hybrid encryption. The ac-
tual value depends on the applied scheme.
Signature The author’s signature of the whole data en-
tity.

3.4.2.2 Keys and tokens

The DO owns a single master key pair. Future data entities stored in the cloud are encrypted using
the master public key. Each user has two key pairs: a PRE key pair and a signing key pair. The
PRE key pair allows a user to decrypt data entities received from the cloud. The corresponding
PRE token is placed in the cloud.

The signing key pair is used by the user to sign data entities he creates or modifies. The signing
public key is located in the cloud which uses it to verify integrity of data entities. All keys are
generated by the DO and distributed to the user or cloud. In addition to the key pairs, each data
entity has a unique symmetric encryption key. Finally, a search token is used when a user searches
for data entities. Table 3.3 gives an overview of the keys and tokens used in SDCD.
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Table 3.3: Overview of encryption keys and tokens used in SDCD.

Key or token Multiplicity | Availability Purpose

Master public key | One The DO and all users | Encrypting data entities

Master private key | One The DO Generating PRE tokens

PRE public key One per user | A single user Generating PRE tokens

PRE private key One per user | A single user Decrypting data entities

Signing public key | One per user | The cloud and a user Verifying integrity

Signing private key | One per user | A single user Signing data entities

Symmetric encryp- | One per data | In a data entity Efficient encryption of the

tion key entity payload of a data entity

PRE token One per user | The cloud Re-encrypting data entities

Search token One for each | The cloud and a user Identifies data entities match-
search ing a keyword

3.4.2.3 Dynamics

Data entity communication When a user uploads a data entity to the dynamic collaboration
environment, the data entity is encrypted in the user’s environment. When the data entity subse-
quently is accessed, it is re-encrypted in the cloud and decrypted at the receiving user’s environ-
ment. This means that the data entity is never available in the cloud as cleartext. This scenario is
depicted in Figure 3.5. In the figure, the steps are:

1.
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The user, Alice, wishes to upload a data entity and prepares the data entity by encrypting it
with the master public key.

. Alice uploads the data entity to the cloud.
. The cloud uses Bob’s PRE token to re-encrypt the data entity.
. The re-encrypted data entity is sent from the cloud to Bob.

. Bob decrypts the data entity using his own private key.
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Figure 3.5: Overview of how data flows in SDCD.



Dynamics

Operations The conceptual design offers support for a range of operations. These are described
below and some of them are supported by sequence diagrams, showing the flow of the operation.

System initialisation: The DO generates a master key pair and permanently takes the role of DO

by initialising the system.

User addition: When the DO decides to add a user to the system, the DO generates a new PRE
key pair and a new signing key pair for the user. The DO also generates a single uni-
directional PRE token. The DO uploads the PRE token and the public key of the signing
key pair to the cloud. The DO gives the generated PRE key pair, signing key pair and the

DO public key to the user. Figure 3.6 shows the process of adding a user.

Signing key storage

Encryption proxy
Encryption proxy token storage

Add use|

Generate user PRE
and signing key pair

N

I
Give master public key
and user key pairs | !

7]

Generate PRE token

[ ]
[\ - 4

Store token and user signing public key
T

Store token N
L4

Store signin:g public key

D,

|
|
I
I
I
I
I
I
I
I
I
4
|
|
|
|
I

K-=-=-=-=-=-="=====---

_—— e = =

----- 1

Figure 3.6: Dynamics of how the data owner adds a user in SDCD.

User revocation: When the DO decides to revoke a user, the DO removes the user’s PRE token
from the cloud. The user’s signing key is kept for later verification of integrity. Figure 3.7

shows how user revocation is performed.
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| Data owner | | Encryption proxy
T T
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Figure 3.7: Dynamics of how the data owner revokes a user in SDCD.

Data entity creation: To share resources with others, a user selects a resource and associates it
with at least one keyword. The resource is then wrapped in a data entity which is assigned
a randomly generated identifier and a randomly generated symmetric key. Identifiers are
generated for all attributes. The payload and keywords inside attributes are encrypted using
the symmetric key which is then encrypted using the master public key. The user then signs

the data entity using his private signing key.

The data entity is uploaded to the cloud which checks that the user is authorised to upload
data by verifying the existence of the PRE token for the user. Finally, the cloud stores the

data entity. For an overview of data entity creation, see

Figure 3.8.
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Figure 3.8: Dynamics of how a user creates a data entity in SDCD.

Data entity modification: Modification of a data entity is performed much like data entity cre-
ation. The only difference is that the identifier of an existing data entity indicates the entity
to modify. When modifying a data entity, the modifying user becomes the author of the data

entity.

Data entity deletion: To delete a data entity, a user uses the identifier of an existing data entity.
The identifier is then sent to the cloud and indicates the data entity to delete.
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Data entity searching: Data entity searching is based on a single keyword and performed by a
user. An identifier is generated from the keyword to create a search token which is sent to the
cloud. The cloud finds data entities by matching the search token to identifiers of attributes
for all stored data entities. The cloud re-encrypts the found data entities by using the PRE
token for the user performing the search. The found data entities are then returned to the
user who decrypts the received data entities by using his private PRE key. The dynamics of
data searching can be seen in Figure 3.9.
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Figure 3.9: Dynamics of data entity search in SDCD.

Data entity integrity verification: Any authenticated user can at any point in time request the
cloud to verify the integrity of any data entity. The cloud verifies the integrity by using the
public signing key of the user who is the author of the data entity.

Data entity author authenticity verification: The DO can use the cloud to determine and verify
the identity of the author of a data entity. The cloud knows the identity of the user creating
a data entity as the user was authenticated, but to prove the identity, the cloud performs an
integrity verification using the public signing key of the user. If the integrity verification
succeeds, the authoring user cannot repudiate creating or modifying the data entity.

3.4.2.4 \Verifying Integrity

To enable the cloud to verify the integrity of data entities, SDCD applies digital signing. A data
entity is signed by its author so the integrity can be verified in the future. The integrity verification
scheme makes it possible for any authenticated user to request the cloud to verify the integrity of
any data entity, independent of who the author was. This is accomplished while keeping all users
anonymous to each other. To verify integrity, digital signing is used resulting in added support for
non-repudiation.
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The cloud must retain all public keys used for verifying signatures, even after a user has been
revoked. This remains the case as long as a user is the author of any data entity. Furthermore, a
user may have multiple signing keys if he has been added, revoked, and added again. However,
from the user’s perspective, only a single signing key exists as he is unaware of the multiple
signing keys kept by the cloud.

Discussion

SDCD combines searchable encryption and PRE in a way similar to [Dong&08] to ensure data
confidentiality while supporting many-to-many resource sharing and being able to add and revoke
users. SDCD further applies digital signing to obtain support for integrity verification and non-
repudiation while hybrid encryption is applied to improve performance.

Users communicate directly with the cloud. This ensures availability and scalability as data shar-
ing only depends on the cloud. A potential bottleneck is that only the DO is capable of granting
and revoking access for users. User additions and revocations are less frequent events, compared
to data entity creation and search. In large scale deployments, it is nonetheless a potential problem.
SDCD provides only coarse-grained access control: either a user has no access or complete read-
and write-access. Another limitation is the focus on securing data inside the cloud which means
that data security is not ensured when data is located locally in the user’s environment. SDCD does
not require users to know each other and no information provided by SDCD helps to determine
the identity of another user. As such, SDCD supports scenarios where all users are anonymous
towards each other. Only the DO needs to know the identity of users. This prevents collusion
between users.

When the DO decides to add a user to the system, the DO must authenticate the new user and the
user’s newly generated key pairs must be transferred in a secure manner. Furthermore, everyone
communicating with the cloud must be authenticated. None of these problems are addressed by
SDCD which requires other means of secure key distribution and authentication in general.

3.5.1 Comparison to related work

SDCD is designed to work in a cloud context which [Dong&08] is not. The cloud context increases
availability, scalability, and durability. When users are added to the system, no further interaction
with the DO is required. This enables users to share data entities even if the DO is not available.
Another important difference between SDCD and [Dong&08], is that SDCD does not re-encrypt
data when it is uploaded to the cloud. Instead the master public key is used directly by users. The
disadvantage to this approach is that read and write access cannot be distinguished. An authorised
user has either full read and write access or no access. A benefit of this change is reduced com-
plexity and improved performance in the cloud when data is uploaded. Another important benefit
is that digital signing can be applied. Because re-encryption changes the binary layout of a data
entity the approach presented by [Dong&08] would invalidate the signature created by a user.

By using PRE, SDCD introduces the risk of collusion between the cloud and a user similar to
that of [Dong&08]. However, the benefit of using PRE is support for many-to-many resource
sharing which outweighs this concern. The solution presented by [Kamara&10] does not share
the concern for collusion, but on the other hand does not support many-to-many file sharing.
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3.5.2 Comparison to thesis goals

SDCD supports many of the properties set as goals in this thesis. However, notably missing from
SDCD is support for auditability, access control delegation, and security in general for resources in
the users local environment. Support for this can be achieved and this is described in the following

chapters.

Table 3.4 summarises and compares SDCD and the related work analysed earlier in this chapter
to the thesis goals. Figure 3.10 is a graphical representation of the same comparison and a quick
glance at the figure shows that we exceed the schemes of both [Kamara&10] and [Dong&08] as
judged against the defined properties.

Table 3.4: Comparison of SDCD and solutions proposed in related work.

Environment Category Property Kamara | Dong | SDCD

User Data confidentiality + + +
Data integrity ++ - +++

User . Data availability ++ + ++

Security —

Non-repudiation - - +++

Auditability - - -
User-to-user anonymisation +++ +++ +++

Cloud

User addition and revocation +++ +++ +++

User Fine-grained access control - + +

Access control -

Access control delegation - - -
Many-to-many file sharing ++ +++ +++
Scalability ++ +++ +++

Performance o
Durability +++ ++ +++
Data confidentiality
+
Durabilitym> Data integrity
"
Scalabilityz Data availability
i
== Kamara

Many-to-many file sharingI“ 2 Non-repuduation =#—Dong
SDCD

Access control delegation

Fine-grained access control

,_“User—to—user
A\ anonymisation

User addition and

revocation

Auditability

Circles indicate properties
which are equally well
supported by SDCD and one
of the others.

Figure 3.10: Graphical comparison of SDCD and solutions proposed in related work.
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Chapter

Data access control

This chapter presents a conceptual design that achieves fine-grained data access and provides a
manageable access control scheme, while allowing authorised users to delegate granular access
control to other users. These are properties defined as thesis goals in Chapter 1. This chapter
uses some of the concepts and technologies described in Chapter 2 and builds upon the design
presented in Chapter 3. Chapter 5 further improves upon the design presented in this chapter and
Chapter 6 validates the design.

Introduction

Fine-grained data access control is essential in any system where data is shared among multiple
users with different levels of trust. To ensure data security, highly trusted users may be allowed
full access while others are allowed only partial access to the shared data. In a system where users
with different access rights exist, effective management of these rights becomes important.

The assumptions made for this chapter are described in Section 4.2. Related work is described in
Section 4.3 and Section 4.4 describes a conceptual design for achieving fine-grained access. Fi-
nally, the design is discussed and compared to the related work and the thesis goals in Section 4.5.

Assumptions

This chapter assumes an existing data sharing design to build upon, and that this design has prop-
erties similar to the design presented in Chapter 3. The data sharing design is assumed to support
many-to-many data sharing in a secure manner including support for confidentiality, integrity,
availability, and non-repudiation. It is also assumed that an authentication mechanism is avail-
able.

39



4.3.

Chapter 4. Data access control

Related work

As described in Section 2.4.1, several different access control models exist. This section describes
two access control models which are relevant to this chapter.

4.3.1 Role-Based Access Control

Role-Based Access Control (RBAC) is a common scheme used to control data access. The main
purpose of this model is to group permissions into entities that can be reused and assigned to
users with similar needs. The general concept is described in Section 2.4.1.3. To facilitate use
of this scheme, a National Institute of Standards and Technology (NIST) RBAC standard has
been proposed. The purpose of the standard is to provide a mutual common ground for enabling
and facilitating collaboration across organisations. From a consumer’s viewpoint a benefit of the
standard is the ability to compare different RBAC solutions, assuming they all follow the NIST
standard [Ferraiolo&01]. The standard proposes a reference model used to define the terminology
used in the context of RBAC. Interoperability between RBAC solutions that follow the standard
is also increased, if not directly by the standard, then through potential Application Programming
Interfaces (API) based on the standard.

The basic NIST RBAC functionality is called RBAC Core and describes the minimal requirements
needed to conform to the standard. The RBAC Core requires implementation of roles, users, and
permission. It also requires support for a many-to-many relation between roles and permissions
and a many-to-many relation between roles and users. Another requirement is the ability to look-
up the roles assigned to a user and vice versa. Similarly, the ability to look-up the permissions of
a specific role and the roles having a specific permission is required. The requirements also state
that users must be able to exercise multiple roles simultaneously [Ferraiolo&01]. An overview of
the entities in the core part of the NIST RBAC standard can be seen in the Entity-Relationship
diagram shown in Figure 4.1.

User Has Role Has Permission

Figure 4.1: Core entities and their relations in the NIST RBAC standard.

In addition to the core aspects of RBAC, the NIST RBAC standard describes packages. Figure 4.2
depicts these packages, their purpose, and options for each package. Each package can be op-
tionally selected, with exception of the mandatory Core RBAC package, and added to the final
requirement package defining the access control model. The purpose of this package selection is
to ease customisation of the RBAC to better support different usage scenarios and environments
with different requirements [Ferraiolo&01].
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Figure 4.2: Overview of NIST RBAC standard.

Hierarchical RBAC: The Hierarchical RBAC describes the requirements needed for supporting
definition of role hierarchies. These can be defined either as General Hierarchical RBAC,
supporting arbitrary hierarchies and allowing multiple inheritance, or Limited Hierarchical
RBAC, limiting the hierarchy to tree-structures.

Static Separation of Duty: The purpose of Static Separation of Duty (SSD) relations is to en-
force constraints, imposed on roles, in such a way that users cannot be assigned roles that
conflict with the ones they are already assigned. For instance, if roles have conflicting per-
missions or negate one another. The SDD can be used in combination with a hierarchical
RBAC structure, where constraint enforcement is performed on all inherited roles in the role
hierarchy, when attempting to assign new roles to a user.

Dynamic Separation of Duty: Where SSD relations limit the roles at the time of assignment,
Dynamic Separation of Duty (DSD) relations, which are variants of SSD relations, allow
users to have potentially conflicting roles assigned, as long as the permissions that conflict
are not activated at the same time.

The proposed standard enables interoperability and common understanding among solutions fol-
lowing this standard. The standard can be implemented at different levels which allows for cus-
tomisation.

To enable automatic role assignment to individual users, a modified version of the original RBAC
model has been proposed [Al-Kahtani&02]. This Rule-Based Role-Based Access Control (RB-
RBAC) model automatically assigns permissions to users based on a set of attributes each in-
dividual user possesses. Rules are created to analyse these attributes and assign permissions to
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the user accordingly. This RB-RBAC model uses Seniority Levels to enable comparison of rules
which makes it easier to automatically assign permissions. It is also used to ensure rules follow a
predefined role hierarchy and does not violate the constraints associated with this hierarchy.

A dedicated language is used, alongside the model, to express rules and related constraints.
The primary benefit achieved through this automatic permission assignment is the dynamic role-
permission assignment that allows large organisations to automatically assign roles to users. It is,
however, important that the rules are defined properly to avoid accidentally assigning permissions
to the wrong users.

4.3.2 Distributed Access Control in Clouds

An approach to access control in the cloud, different from the previous RBAC approaches, uses
Attribute-Based Encryption (ABE) with Key Distribution Centres (KDC) [Ruj&11]. This scheme
is called Distributed Access Control in Clouds (DACC) and allows data sharing and storage in
a cloud environment, while the cloud is not able to access the data in unencrypted form. In
this scheme, the cloud environment is assumed to be honest but curious. DACC claims to be
collusion-proof in the sense that users cannot combine their decryption keys to access data that
none of them are allowed to access. In addition, DACC also offers a user revocation scheme that
allows revocation of users without having to redistribute cryptographic keys to its remaining users.
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Figure 4.3: Overview of the DACC model.

The DACC model is depicted in Figure 4.3. The model allows data owners to place encrypted data
in the cloud environment and define a set of attributes associated with the data. These attributes
are assigned to users and determines what data they are able to access, i.e. a user gets the same
attributes assigned as the data he has access to. The KDCs generate secret keys for users based on
the individual user’s attributes. These keys are used to decrypt the encrypted data users request
from the cloud. To further increase data confidentiality, a secure protocol is used to transfer secret

42



Comparison of related work

keys from the KDC to users. The same protocol is used when the cloud transfers encrypted data
to the users [Ruj&11].

The user revocation scheme used in the DACC model seems infeasible for general purpose usage
scenarios. Whenever a user has his access revoked, the attributes he has been previously assigned
are noted and data owners that own data containing one or more of these specific attributes are
notified. These data owners are then responsible for assigning new attributes to their data and
notifying remaining users with access to their data that an updated version is available [Ruj&11].
This scheme does not require reassignment of decryption keys, but a potential re-encryption of
data is required along with other users being required to request the updated data from the cloud.
Also, if user revocation is performed on a regular basis, the list of revoked attributes could po-
tentially become very long. This requires data owners to use attributes different from the ones
already revoked.

4.3.3 Comparison of related work

This section presents an overview of the related work by rating the properties of each analysed
solution to the thesis goals according to the levels described in Table 1.2. The DACC scheme,
presented by [Ruj&11], and the NIST RBAC scheme, presented by [Ferraiolo&01], approach
access control in different ways.

As the NIST RBAC scheme is a standard and not an actual solution, the scheme is not applicable
to most of the properties defined as goals in this thesis. Similarly, some of the properties are not
considered by DACC.

DACC offers a different approach to access control than the ordinary role-based models. The
attribute encryption scheme allows a more fine-grained access model than the role-user assign-
ment used in RBAC. However, the user revocation approach in the DACC model is infeasible and
cannot be used effectively in the context of generic usage scenarios. As user revocation impacts
existing users in the DACC scheme, the rating is reduced accordingly. Another inconvenience
concerning DACC is the use of off-cloud KDCs. The overall scalability is decreased as users need
to interact with the KDCs to receive secret keys and attributes and the KDCs do not benefit from
a cloud deployment. However, DACC benefits from the availability and durability of the cloud. A
comparison between DACC and the NIST RBAC standard can be seen in Table 4.1.

Table 4.1: Comparison of models presented in related work.

Environment Category Property NIST RBAC | DACC
User Data confidentiality N/A +
Data integrity N/A N/A
User S . Data availability N/A ++
ecurity -
Non-repudiation N/A N/A
Auditability N/A N/A
Cloud User-to-user anonymisation N/A N/A
User addition and revocation N/A ++
User Access control Fine-grained access control ++ ++
Access control delegation N/A N/A
Many-to-many file sharing N/A ++
Performance Scalability N/A ++*
Durability N/A +++

* The DACC uses KDCs for user authorisation.
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Cloud-based Hierarchical Access Control

441 Overview

This section describes Cloud-based Hierarchical Access Control (CHAC) which is our design for
an access control model suitable for a dynamic collaboration environment. CHAC builds upon
SDCD and adds support for fine-grained access control, access control delegation, and the ability
to audit stored data. CHAC is partly inspired by the research presented in Section 4.3. CHAC will
be presented in a top-down manner by first establishing key concepts and terminology and then
defining the structure of the access control model. Finally, details regarding the management of
entities in the access control model as well as auditability are described.

4.4.2 Access control

CHAC uses a Role-Based Access Control (RBAC) model to manage permissions that are used
to access data stored in a cloud-based storage. The permissions are mapped onto roles that are
assigned to users. The terms used in CHAC are as follows:

User: A user seen in the context of CHAC is a person or entity authorised to interact with the
dynamic collaboration environment through one or more assigned roles. When a user is
created, he is assigned a role granting him access to the dynamic collaboration environment.
Users with no assigned roles have no access. A user may have multiple roles assigned.

Role: A role seen in the context of CHAC is an entity governing a user’s allowable actions.
Table 4.2 shows the definition of a role. A role has an identifier, a name, a number of
permissions, and two flags indicating the type and status of the role. Furthermore a role
grants access to a set of identifiers. The identifier uniquely identifies the role.

The permissions of a role grant users the right to access data entities and perform actions on
these or to perform administrative actions. The flags indicate if the role is a normal role or
a root role and if the role is active. A single role can be assigned to multiple users.

Root Role: A root role is a special kind of role that is invisible to other roles. This allows for
creation of independent collaboration environments. A root role is the topmost role of a
hierarchy. All of the actions for managing roles, explained later, do not apply to root roles.

Permission: A permission governs the ability to perform an action. Table 4.2 shows the permis-
sions defined in CHAC. Users are granted permissions through role assignment.

Data Entity: A data entity as defined in Section 3.4.2 represent and encapsulates data that is to
be shared with others using the dynamic collaboration environment. Access to a data entity
is protected by permissions of roles and changes made to a data entity is visible to all users
permitted to access the data entity.

Private Hierarchy: Private hierarchies can be created to have co-existing, independent role hier-
archies. A Private hierarchy is managed by the root role located at the top of this hierarchy.
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Table 4.2: Definition of a role and its fields.

Field

Description

Identifier

Unique and immutable identifier.

Name

The name of the role.

Manage sub-roles

Permission to create sub-role with subset of the current
role’s permissions and update and deleting existing sub-
roles.

Create private hierarchy

Permission to create private hierarchies and adding a root
role as the top-most role. The newly created root role is
assigned to the user performing the action.

Assign and unassign roles

Permission to assign and unassign sub-roles to users.

Add users

Permission to create a new user and assign a role to him.

Set of data entity identifiers

Set of data entity identifiers which indicates the data enti-
ties that this role grants access to.

Data entity permission level

Indicates whether the role grants read-only or read and
write access to data entities. Write access includes per-
mission to create, update, and delete data entities.

Active flag Indicates if the role is active or inactive. Inactive roles are
suspended and cannot be used to access anything.
Root flag Indicates if the role is a root role. If it is not a root role it is

considered a normal role.
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An overview of the conceptual structure of the CHAC design for accessing data can be seen in
Figure 4.4.

1.

2.

First a user, Alice, requests a data entity from the cloud.

The access control manager validates the request against the roles that Alice is currently
assigned. If Alice is authorised, the access control manager fetches the data entity from the
data storage.

The data entity is then passed to the encryption proxy to be re-encrypted.

. The encryption proxy fetches Alice’s Proxy Re-Encryption (PRE) token from the encryption

proxy token storage and re-encrypts the data entity to match her key pair.

The re-encrypted data entity is returned to the access control manager.

. Finally, the access control manager returns the requested data entity to Alice.
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Figure 4.4: Overview of the conceptual design of CHAC.

4.4.2.1 Access control structure

Role structure The roles in CHAC are structured as a hierarchy, more specifically a tree-
structure. Figure 4.5 shows how roles are associated with each other. The permissions of each
role is a subset of its parent’s permissions. This structure allows inheritance of permissions while
at the same time preventing child nodes from ever having permissions not held by the parent. The
role at the root of this hierarchy is called a root role. When initialising the dynamic collaboration
environment only a single root role exists, this role is assigned to the Data Owner (DO). The DO
is responsible for creating the hierarchy by defining new roles. The creation of lower levels of the
role hierarchy can then be delegated to the newly created roles. An example of this is shown in
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Figure 4.5 where the root role creates Role A and Role B, then Role A can create Role AA and
Role B can create Role BA and Role BB.

{’/Root\
\_ role
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/ Role \ / Role \ Role AA C Role A C DO

A /’ . B Role BA C Role B C DO
l f "” Role BB C Role B € DO

(Rl [Role) [ Role)

A /’ | BA /’ . BB /’

Figure 4.5: Overview of the role hierarchy.

To preserve user-to-user anonymisation, CHAC has rules determining visibility of roles and users.
A role can, given the right permission, be used to see and manage all roles further down the tree
on the same branch. That is, the role’s sub-roles and their sub-roles, recursively. This also entails
that a role can be managed by its parent roles, recursively. Thus, root roles can see and manage
all roles and users assigned to those roles in the tree. For any sub-role that can be seen, the users
assigned to the role can also be seen. Those rules apply to all normal roles. A root role cannot be
managed by any role other than itself and is always invisible to all other roles.

A normal role cannot manage itself, only sub-roles can be managed. Thus, a user assigned to a role
cannot assign that role to others. However, assuming a user has permission to manage sub-roles
and assign sub-roles, he can create a sub-role with identical permissions to his own role and then
assign this role to a user. An important consequence of this is that the user remains in control. He
can see and manage the sub-role and unassign users again if desired. Root roles behave differently
and can be used to manage themselves. This enables a user who is assigned to a root role to assign
and unassign other users to the role and to delete the role.

The visibility rules can be seen in Figure 4.6 which illustrates role and user visibility from the
perspective of Alice. Users and roles with dashed lines are invisible to her while users and roles
with solid lines are visible. The users and roles invisible to Alice are also indicated by the dashed
square surrounding them. In the figure, Alice can see her own role and its sub-role, role BB. She
can also see Carol because Carol is assigned to role BB. However, she cannot see Bob, parent
roles of her role, other branches of the hierarchy, or users assigned to those parts. In that same
figure, the data owner can see everything.
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Users and roles invisible to Alice
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Figure 4.6: Example of the visibility rules in CHAC.

User structure The users in CHAC are kept in a pool of users. A user can be assigned roles,
which govern the permissions the user has. Figure 4.7 shows a possible user-role relationship as
a graph, where users are assigned to roles. Notice that users may have multiple roles assigned on
multiple branches within the role hierarchy.

‘y/ Root\
% role
(oo P
\\ A / :- - - -Has role-}\\\ B /{-Has role- -
~ ] -
l E Bob l Alice
— Has role .
/Role\ : ‘/Role\

N A

Figure 4.7: User-role relationship, with a user being assigned more than one role.

When data is submitted to the cloud it is encrypted with the DO’s key pair and stored in the cloud.
However, in order to retrieve and read data from the cloud, the data needs to be encrypted with
the retrieving user’s key pair for him to be able to decrypt it. Therefore, when retrieved, it must
be re-encrypted. This results in users having an indirect hierarchical relationship in terms of their
cryptographic key pairs.

In the scenario where more users are subsequently added, data is re-encrypted multiple times.
Figure 4.8 shows how this affects the re-encryption process with n users. In the figure, Alice has
added Bob who subsequently added another user ending with user n being added. When user
n requests data, the data is first re-encrypted from being encrypted by the master public key to
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being encrypted by Bob’s public key, using Alice’s PRE token. Then it is re-encrypted to being
encrypted by the next user’s public key, using the corresponding PRE token, until it is encrypted
with user n’s public key, enabling him to decrypt the data.

> Ciphertext encrypted
1. Encrypt / using the master public key

Alice’s environment \/Cloud\/
G 2. Uploads

Alice Plaintext Ciphertext encrypted // \
using the master public ke Used to \
£ B Y Re+encrypt to | ---meeeere e ees M ‘
\ Alice’s PRE |
token /
/ Ciphertext encrypted <
[ using Bob’s public key

A
n. Rﬁcrypt to :4—---------}'-'??-4}2 -------- 6’ J

, ) User n’s PRE
User n’s environment token
=
< < n+l. Downloads‘ Ciphertext encrypted
n+2. Decrypt Usmg User n’s public key
Usern Plaintext Ciphertext encrypted

using User n’s public key /\w

Figure 4.8: Re-encryption flow with n users.

4.4.2.2 Role management

When managing normal roles, several actions are available to users with sufficient permissions.
The actions described here do not apply to root roles as they are invisible. The actions for normal
roles are the following:

Create: When creating a new role, the user performing the action must choose which of the roles
assigned to him, or a sub-role of those roles, to base the new role on. The permissions of
the new role must be a subset of the chosen role and the new role will become a child of the
chosen role. The newly created role can later be assigned to users.

Update: A role can be updated by all its parents, recursively, provided it has the required permis-
sions. If a role has its permissions altered and some permissions are removed, these changes
are cascaded down the role hierarchy. This is done to ensure that the permissions of all child
roles remain a subset of their parent’s permissions. If a role had previously been permitted
to create child roles and this permission is revoked, the existing created child roles are pre-
served. If a role is given wider permissions, this is not cascaded to sub-roles. Figure 4.9
shows how a role is updated and how the changes made to its permissions are cascaded to
its child roles:
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1. The figure shows the roles with associated permissions before an update is performed.
Role A is subject to a role update.

2. The permissions to be removed are indicated using red text colour. The cascading
effect of this update is shown with orange text colour in Role AB.

3. Finally, the result of the update operation is shown.

Permission set Permission set Permission set

- Permission X - Permission X - Permission X
“/ROO'( _______ Permission Y Root \ | Permission Y Root \ | Permission Y
role Permission Z role Permission Z role Permission Z
Data Entity Access: Data Entity Access: Data Entity Access:
Item A, Item B, Item C Item A, Item B, Item C Item A, Item B, Item C
Permission set Permission set Permission set

/i Permission X PermissionX
/ Role o Role e Role .
| A ST Permission Y A ST Permission Y A ST Permission Y
Data Entity Access: Data Entity Access: Data Entity Access:
Item A, Item B, Item C ltem-A, Item B, Item C Item B, Item C
Permission set Permission set Permission set

“/Role ﬁole __ |permission X ﬂole ﬁole o “/Role ﬂole -
\\AA AB Data Entity Access: QA AB Data Entity Access: \\AA AB Data Entity Access:

Item A, Item B ,ltem B Item B
Step 1 ~_ 4 Step 2 ~_ .4 Step 3
Update Role A permissions Cascaded result of permission update

Figure 4.9: Flow of update role operation.

Delete: A role can be deleted only by the parent of the role or roles higher up in the role hierarchy.
If the role being deleted has child roles, these roles are attached to the parent of the role
being deleted. This scenario is shown in Figure 4.10:

1. Here the role hierarchy is shown before the delete operation is performed.
2. Here Role B is marked for deletion showing the affected relationships.

3. This last step shows the updated relationships where Role BA and Role BB are now
direct children of the parent of Role B which in this case is the root role. Role B is
completely removed from the hierarchy.

role
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role role
/ Role / Role / Role @
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Step 1 \ / Step 2 \ / Step 3

Delete Role B Update parent

Figure 4.10: Flow of delete role operation.
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Assign/Unassign: Roles can only be assigned to existing users. When a new user is added, that
user is always assigned a role, but this is considered a different action which is described in
Section 4.4.2.4 focusing on user management. To assign a role, a user chooses the desired
role and the user to assign it to. Only roles and users visible to the user performing the
action are eligible. If a user is unassigned from a role and has no more roles assigned to
him, his access is effectively revoked and the user is removed.

Private hierarchy: In addition to ordinary role management CHAC offers the concept of multiple
private hierarchies. The operations related to private hierarchies are explained in the next
section.

4.4.2.3 Private hierarchy management

A private hierarchy is an independent role hierarchy that is detached from other role hierarchies.
This private hierarchy is only associated with the original hierarchy through the user who created
the private hierarchy and the role used for this purpose. Data entities cannot be shared between
role hierarchies.

Create: Creation of private hierarchies requires a specific permission. When a private hierarchy is
created, a root role is also created. The created root role is always granted full permissions
and not a subset of its creator-role’s permissions. This does not violate the original role
hierarchy as data entities cannot be shared between separate role hierarchies. When creating
a private hierarchy, the root role is always assigned to the user performing the creation.
Figure 4.11 shows the scenario of a user capable of creating a new private hierarchy.

1. The initial role hierarchy is shown.

2. Alice creates a new private hierarchy with a root role as the topmost role of this new
separate role hierarchy.

3. Alice now chooses to add an additional role to the new private role hierarchy.
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Figure 4.11: Flow of private hierarchy creation.

51



Chapter 4. Data access control

Delete: To delete a private hierarchy the root role of this hierarchy must be removed. This results
in the entire role hierarchy, attached to the root role, being deleted. Note that this behavior
is required by the fact that a root has no parent. If a private hierarchy is to be deleted two
different options can be chosen to accomplish this operation as depicted in Figure 4.12:

1. The initial two role hierarchies are shown with a user assigned to Role A and the
“Other Root Role”.

2a. If the “Other Root Role” is deleted, the entire associated private hierarchy is also
deleted.

2b. If the last user is removed from the “Other Root Role”, the entire associated private
hierarchy is also deleted.

3. Finally, the result of the delete operation is shown where only one role hierarchy re-
mains.
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Figure 4.12: Flow of private hierarchy deletion.
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An alternative scenario is shown in Figure 4.13:

1. First the original two role hierarchies with a user associated to Role A and the “Other
Root Role” is shown.

2. Next, Role A, which was used to create the private hierarchy and is the child of the root
role, is deleted. This results in a cascaded deletion of the private hierarchy associated
with the “Other Root Role”. If Alice has no other roles associated she is revoked as
well. This is necessary as the remaining root role cannot see and manage Alice if she
is only associated with the private hierarchy.

3. Finally, the remaining entities after the delete operation is shown.
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Figure 4.13: Alternative flow of private hierarchy deletion.

4.4.2.4 User management

When managing users, several operations are available to users with sufficient permissions. These
operations are described below:

Create: Users are managed directly by other users only when being created, and are always
assigned to a role when created. At the time of creation the user is issued a key pair for
decrypting data, a signing key pair and a PRE token as defined in SDCD. In the event that
a user already exists, but is created again, for example for the purpose of being assigned
a role on a different branch in the role hierarchy, the system assigns him to the role and
automatically links his existing user identity to the new role. When a user is created multiple
times, he will be assigned multiple key pairs and PRE tokens. These are all valid and are
kept to ensure that someone adding a user cannot tell that the user was already added by
someone else. The user will then have multiple keys meant to be used for the different roles
he is assigned.

Update: Users cannot be updated. However, the roles which they are assigned can be changed
through the operations described under role management, see Section 4.4.2.2.
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Delete: Users cannot be deleted directly, but the roles assigned to a user can be removed and
when a user has no more roles assigned he is deleted. When a user is deleted his access is
revoked, but a shadow of the user is retained. The shadow consists of the user’s name, the
PRE token, and the public part of his signing key. The name is required when performing
audits to identify actions performed in the past. The PRE token is required to re-encrypt
data entities for users the revoked user has added and the public part of his signing key is
required to check the integrity of all data entities he is the author of. If the user is added to
the system again later, he will be associated with his shadow.

Other considerations To handle situations where a leak occurs, such as a user sharing data with
unauthorised entities, the active flags of roles are used. Users who can manage the roles suspected
to be the origin of a leak can suspend those roles by making the roles inactive. This leaves the
role hierarchy and user-role relationships intact, but prevents the users in the suspended roles from
accessing the system through those roles.

In the case where a user has been assigned two roles with different permissions, for example a role
granting read-only access to a data entity and another role granting read/write access to the same
data entity, the role allowing read/write access takes precedence.

User-to-user anonymisation is retained through the user-role associations. Users are only able
to see users in roles that are sub-roles, recursively, of their own roles. This effectively makes
users assigned to a parent role and users assigned to roles in other branches of the role hierarchy
anonymous to a user assigned to a child role.

4.4.2.5 Data entity management

All data entities are stored separately from the information stored for roles and users. This means
that for a role, which grants access to a set of data entities, a reference exist to each data entity.
Multiple roles can reference the same data entity. When creating a sub-role which has access
to data entities of its parent, an additional reference is created for each of the data entities they
share. Thus, the relationship between references to a data entity and the roles giving permission
to access that data entity is linear. It also means that any change made to a data entity through one
role is visible when accessing the same data entity through another role. Figure 4.14 shows a Venn
diagram of how data entities are shared between roles. In the scenario depicted, data entity #5 has
four references.

4.4.3 Auditability

In the context of CHAC, auditability can be used to view actions performed by users. Auditing is
an important security aspect, as it can be used to review events associated with a specific role, data
entity, or user. It can determine what has occurred, when it occurred, and who was responsible.
Sufficient information must be stored in an audit log to ensure precise auditing. This means that
whenever entities within CHAC are changed or new entities are created, these actions must be
logged along with information about which user performed the action and through which role
this action was performed. The logging is an automatic procedure performed by CHAC and it is
transparent to users when they perform actions.

Auditing is performed through a root role as these are the only roles with the capability of access-
ing information on all entities in their respective hierarchies. If other roles were granted the ability
to perform auditing, they would not have sufficient knowledge of the users in the hierarchy to see
a complete audit log. Figure 4.15 illustrates a scenario where neither of the two users are able to
construct a complete audit log for data entity #1. The roles that they each posses are incapable of
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obtaining sufficient information of the role structure due to the anonymisation aspect of CHAC.
Alice has no knowledge of Bob and vice versa and thus, they cannot see the other user’s actions.
If these users, through their roles, were granted access to view all other users associated to the
role hierarchy then either user-to-user anonymisation would be lost or the viewed audit log would
become incomplete.

In CHAC, audit logs are stored and maintained for users, roles, and data entities. Audit logs are
kept even if an entity is deleted. This helps provide a complete picture of actions associated with
even deleted entities and allows auditors to see when the entity was deleted and by whom. The
audit logs are stored in the cloud storage in encrypted form using similar cryptographic techniques
and keying schemes as the ones used to protect data entities.
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Figure 4.15: Users incapable of auditing a data entity.
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Discussion

CHAC provides an access control model that allows fine-grained user access control and auditabil-
ity. SDCD only offers coarse-grained access control that either allows complete access or no ac-
cess to data entities. To improve this and fuse the two designs together, CHAC is designed as an
extension of SDCD. Together they form a generic collaboration environment offering confiden-
tial cloud storage capable of enforcing fine-grained user access control and permission delegation
through the use of a role hierarchy. This results in a transparent access control model with a clear
set of rules defining how permissions are granted to users.

4.5.1 Private hierarchies

The purpose of private hierarchies is to support generic usage scenarios where users can create
their own private areas within the dynamic collaboration environment. These can be shared with
a selected group of users, which may remain a part of other role hierarchies. When created, a
private hierarchy contains no data entities.

The root role, in a newly created private hierarchy, would be of little value if less than a full set
of permissions were granted to it. Mainly because private hierarchies initially consist of only the
root role itself.

If a root role of a private hierarchy is deleted, without deleting its sub-roles, the private hierarchy
becomes unreachable with no administrating entity associated. Likewise, if the last user assigned
to a root role is removed, the root role becomes unreachable as no other roles or users have
knowledge of it. Therefore, in these situations, the hierarchy of a root role is always deleted
in CHAC. The disadvantage of this approach is situations where a user or role is accidentally
removed as this would cause data to be lost unintentionally.

Finally, if a role used to create a root role is deleted, then the root role and its private hierarchy is
also deleted. If the root role was not deleted, then the DO who initialised the dynamic collabora-
tion environment would have no way of ever deleting the root role, its hierarchy, and all the data
entities accessible from roles of the hierarchy.

4.5.2 Anonymisation

The property of user-to-user anonymisation is preserved through the use of a role hierarchy. The
hierarchies allow top-down knowledge of associated users and roles, which means that the differ-
ent branches in the role hierarchy are invisible to each other. This helps preserve anonymisation.

4.5.3 Auditability

The introduction of auditability in CHAC could potentially negatively affect anonymisation as
users performing audits require knowledge of all users within in the dynamic collaboration envi-
ronment to get a complete audit. To deal with this issue only root roles are eligible to perform
audits. However, this introduces the side-effect of auditors needing to be DO’s and thereby be
granted permissions which they should not have.

4.5.4 Life cycle management

A potential issue in CHAC is the life cycle management with regards to user keys and Proxy
Re-Encryption (PRE) tokens. As can be derived from Figure 4.8 the user at the n' level in the
key pair hierarchy will require n re-encryptions to be able to decrypt requested data. This results
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in the need to retain every PRE token for users having added him or his parents, which in turn
results in the key pair hierarchy potentially becoming very deep. For instance, a user is added as
a normal worker with his key pair being key pair n in the hierarchy. The user is then promoted
and becomes project manager and needs to add more users to his team. The key pairs for these
users would become key pair number n + 1. This may result in unchecked growth of the key pair
hierarchy throughout the life cycle of CHAC and will degrade performance.

Another issue regarding key pair growth is the number of signing key pairs and PRE tokens asso-
ciated with a single user. The PRE token and the public key of the user’s signing key pair are kept
as a shadow after he is revoked from the role hierarchy. The retained PRE token is used to allow
other users, added by the revoked user, to retain access to data entities in the cloud. The retained
signing key is used for verifying integrity of data entities created or edited by the revoked user. If
this user is added again later, he will be assigned a new key pair, a new signing key, and a new
PRE token. If this add-and-revoke process is repeated continuously the number of public signing
keys and PRE tokens, stored in the cloud, will grow unckecked. This will render the cloud unable
to determine what PRE token to use when the user requests data. Whenever an integrity check is
requested for data, created or edited by this user, the cloud will, potentially, have to iterate through
all public signing keys stored for the user. Currently this issue is not addressed by the design of
CHAC. This is a subject for future work.

Whenever a user is revoked and then later added again the process of assigning new key pairs and
PRE tokens should be transparent to the user. It must, nonetheless, be handled by the system.

4.5.5 Data versioning

When receiving a data entity, a user receives a copy of the requested data entity. The original copy
of the data entity, which is stored in the cloud, can then be updated by someone else. If the user
submits changes made to the data entity, the changes made by others are overwritten. This is not
handled by CHAC, but could potentially be avoided by using a version control scheme.

4.5.6 Comparison to related work

The entity structure presented in the NIST RBAC standard [Ferraiolo&01] has been followed and
implemented in CHAC. Furthermore, the use of a hierarchy to organise and relate roles to each
other has also been used. The use of either Static Separation of Duty (SSD) or Dynamic Separation
of Duty (DSD), as proposed by the NIST standard, has also been considered for CHAC. DSD is
used for situations where a user is assigned two different roles; one allowing read-only access to a
data entity, and another allowing read and write access to that same data entity. In situations like
this, the role which permits read and write access takes precedence.

The user management of the DACC scheme, presented by [Ruj&11], is infeasible due to the fact
that attributes assigned to revoked users can never be reused. This limits other users from using
revoked attributes. In CHAC this issue is avoided and revoked users only leave a shadow. This is
transparent to other users.

The DACC and CHAC concepts are compared in Table 4.3 and in Figure 4.16 along with the NIST
RBAC standard. As DACC does not consider all of the aspects of CHAC, the two conceptual
designs cannot be compared on all aspects. The Key Distribution Centres (KDCs), proposed
in DACC, lowers the solution’s overall scalability as they are not cloud-based. In CHAC access
control is performed in the cloud environment and does not require off-cloud services. Availability
and durability both benefit from the cloud deployments used in DACC and CHAC. Neither of the
two designs consider data confidentiality in the clients’ local environments.
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Table 4.3: Comparison of CHAC and related work.

Environment Category Property Ruj | CHAC
User Data confidentiality + +
Data integrity N/A | +++
User . Data availability ++ ++
Security —
Non-repudiation N/A | +++
Auditability N/A | +++
Cloud User-to-user anonymisation | N/A | +++
User addition and revocation | ++ +++
User Fine-grained access control ++ ++
Access control :
Access control delegation N/A | +++
Many-to-many file sharing ++ +++
— -
Performance Scalab.ll'lty ++ +++
Durability +++ |

* Ruj uses KDCs for user authorisation.

Data confidentiality

Durabilitymy> Data integrity
()

Scalability Data availability

== NIST RBAC (Ferraiolo)

Non-repuduation == DACC (Ruj)
CHAC

Many-to-many file sharing

Access control delegation Auditability

Circles indicate properties which

User-to-user
are equally well supported.

Fine-grained access control L
anonymisation

User addition and
revocation

Figure 4.16: Graphical comparison of CHAC and related work.
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4.5.7 Comparison to thesis goals

The presented conceptual design of CHAC adds support for fine-grained access control, access
control delegation, and auditability. This is a significant improvement to the dynamic collabo-
ration environment. Table 4.4 summarises and compares SDCD and CHAC to the thesis goals.
Figure 4.17 is a graphical representation of the same comparison.

Table 4.4: Comparison of SDCD and CHAC.

Environment Category Property SDCD | CHAC
User Data confidentiality + +
Data integrity +++ +++
User . Data availability ++ ++
Security —
Non-repudiation +++ +++
Auditability - +++
Cloud User-to-user anonymisation +++ +++
User addition and revocation | +++ +++
User Fine-grained access control + ++
Access control i
Access control delegation - +++
Many-to-many file sharing 4+ +++
Scalability +++ +++
Performance .
Durability +++ +++
Data confidentiality
+
Durability‘,\//\ﬂata integrity
/ b /++/\ 7 \
/ / \
Scalability‘.\ Data availability
I
" i [ ——5DCD
any;thz-ﬂany & —Q)Non-repuduation
& CHAC
Access co.ntrol Auditability
delegation
Fine-grained acces }, User-to-user Circles indicate properties
control \}' - anonymisation which are equally well
User addition and supported.
revocation

Figure 4.17: Graphical comparison of SDCD and CHAC.
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5.1.

5.2.

Chapter

Data access control outside the cloud

This chapter presents a conceptual design focusing on ensuring the security of data once the data
is in a user’s local environment. This is accomplished by extending the support for the properties
of confidentiality, availability, and fine-grained access control, defined in Chapter 1, to encompass
the local environment of the user. This chapter relies on concepts and technologies presented in
Chapter 2 and builds upon the design presented in Chapter 4 which in turn builds upon the design
presented in Chapter 3.

Introduction

This chapter builds upon the designs presented in the two previous chapters and extends the secu-
rity aspects of Cloud-based Hierarchical Access Control (CHAC). To extend these aspects outside
the cloud requires an off-cloud data protection scheme. Without such a scheme, users would be
able to distribute data in its decrypted form to unauthorised entities. Therefore, to ensure the
protection of data and allow for the detection of the origin of data leaks, a scheme capable of
enforcing security locally in the user’s environment and tracing copies of data is required.

The assumptions made for this chapter are described in Section 5.2. Existing schemes within in
the field are presented in Section 5.3. Section 5.4 presents our conceptual design for ensuring
protection of data in the user’s local environment. Finally, Section 5.5 discusses and compares the
conceptual design to the thesis goals.

Assumptions

The user is considered a potential liability to the confidentiality of the data he handles. The user
might disregard the responsibility that comes with handling confidential data and distribute it to
unauthorised entities. Thus, the user is a potential source of a data leak. As a consequence data
stored in the user’s local environment must be kept secure.

Data handled locally in the user’s environment is vulnerable to the analog gap. It is assumed
that the user does not exploit the gap, for example by taking pictures of a document shown on a
monitor or by printing it and distributing it in its analog form. Thus, this chapter will only address
security of the data in its digital form.
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Related work

Over the last decade various schemes and technologies have been developed and suggested to
prevent data from being distributed by entities authorised to access it, to entities not authorised to
access it. One of the prominent methods is the utilisation of Digital Rights Management (DRM)
systems. This approach is often used as a distribution mechanism to publish data from a data
producer to a selected consumer or group of consumers. The producer specifies the terms by which
data is distributed, often including cryptographic schemes to protect data once it is distributed
to the consumer’s environment. Various implementations and variations of DRM systems exist,
offering different services, enforcing and supporting the terms of use such as payment services,
limitations on usage, or time-based access to data [Guth03].

DRM solutions offer a large variety of services and ways of distribution. They have been used for
many years and have been thoroughly tested in the industry. Because the properties of DRM sys-
tems are well-understood, DRM is a prime candidate for extending the cryptographic protection
scheme of SDCD, described in Chapter 3, and integrate with CHAC described in Chapter 4.

The following sections describe some DRM solutions and their required properties. Section 5.3.1
describes the required properties of a solution which addresses the thesis goals of securing the data
in a user’s local environment. Existing concepts and solutions conforming to the presented prop-
erties is examined, starting with a typical DRM solution in Section 5.3.2 followed by a short com-
mercial DRM solution comparison in Section 5.3.3. Finally, presentations of several schemes that
are essential for ensuring support of the required properties are presented in Sections 5.3.4, 5.3.5,
and 5.3.6.

5.3.1 Required properties
To add significant value to the envisioned dynamic collaboration environment, a potential DRM

solution must have certain properties. The properties in Table 5.1, listed in arbitrary order, must
be satisfied in order for the DRM solution to conform to the thesis goals:

Table 5.1: Properties which a DRM solution must have.

Property Name Property Requirement Description
Access control Protected data must be inaccessible to unauthorised users
Granular access Read-only and read/write access rights must be supported

n resource types A wide range of resource types must be supported

Tamper resistance | Robustness and resilience of the system must be ensured

Offline data usage | Protected data must be accessible while offline

Tracing of data Data must be traceable to identify the origin of a leak

Utilise cloud The benefits of a cloud deployment must be leveraged

Due to the proprietary nature of DRM systems, finding an existing DRM solution that supports all
of the above mentioned properties is unlikely. Although there might be some systems that partially
support the properties. However, to conform to all of them, an existing system is likely to require
customisation to fit into the context of the dynamic collaboration environment.
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5.3.2 A typical DRM solution

A typical DRM solution ensures access control of protected content in the user’s local environ-
ment. Typically, this is achieved by using licenses and through the use of cryptographic schemes
combined with an authentication entity, which is often a server [Liu&03]. Such a solution is de-
picted in Figure 5.1. It shows the flow of acquiring content and is comprised of four entities, each
with distinct roles [Liu&03, Michiels&05]:

Consumer: The consumer is the entity desiring to make use of DRM protected content, as de-
scribed in Section 2.4.2.

DRM client: The DRM client is responsible for negotiating with the content service and license
service and presents the requested content to the consumer. Thus, the client must offer
support for the content type to present it.

Content service: The content service handles incoming requests for content from the DRM client
and returns protected content to the client to be presented to the consumer.

License service: The license service handles incoming requests from the DRM client for licenses
to previously requested content and returns a license specifying the usage rights of the spe-
cific content, as described in Section 2.4.2.2. Content can only be consumed after acquiring
a license from the license service.

—— 2. Content request » ¥

Content|service

{@—— 3. Return protected content
—1. Content request—> i
DRM client

6. access granted/rejected— |———————4. License reques
Consumer

5. Return license

(a4

License service

Figure 5.1: Typical DRM system structure.

As described above, and shown in Figure 5.1, a typical DRM solution adheres to the properties of
access control in the form of the employed cryptographic schemes, the authentication entity, and
granular access rights which are specified by the acquired license.
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5.3.3 Commercial DRM solution comparison

Currently many different commercial DRM solutions exist. A common constraint on all of them
is the fact that they only offer support for certain resource types, such as file formats, operat-
ing systems on the client side, and operating systems on the server side. To illustrate this, a
short comparison of the Oracle Information Rights Management from Oracle Corporation, the
Microsoft Windows Rights Management Services for Windows Server 2003 from Microsoft Cor-
poration, and the Documentum IRM Services from Authentica can be seen in Table 5.2. For a full
comparison of the above mentioned DRM systems as well as additional products, see [Zeng&10].

Table 5.2: Comparison of some Digital Rights Managements solutions.

Supported file formats Oracle | Microsoft | Authentica

Adobe Acrobat
Microsoft Word
Microsoft Excel
Microsoft PowerPoint
Microsoft Outlook
Microsoft Access
HTML

XML

eRoom

Lotus Notes

e-mail X

| | | <

ikl aikelbe

iR llalls

| >

P R R PR R

b

OS support client side

Windows Vista X
Windows XP X
Windows 2003
Windows 2000 X
Windows NT
Windows 98
Linux
Macintosh OS
BlackBerry Phones X

OS support server side

| >

ikl iRk

| | | R | R

Sun Solaris

Microsoft Windows
Microsoft Windows Server 2003 X X
Apple Macintosh

| | | <

As Table 5.2 clearly portrays, no single commercial DRM system conforms to the property of
supporting n resource types. Thus, separate implementation to support each additional resource
is required.

64



Tamper resistance

5.3.4 Tamper resistance

The main topic in [Horne&02] is the use of self-checking mechanisms to verify the system’s
integrity. Two types of self-checking are depicted: static self-checking which provides integrity
checks once, at program start-up, and dynamic self-checking which offers continuous integrity
checking during program execution. The dynamic self-checking being the main focus, is achieved
using three components. The main component, which is the tester, is used to map large sections
of executable code into smaller sets. The sets undergo a hashing process to scramble readability
and pass the values on to a corrector acting as storage for the mapped and hashed values. The
tester continuously recalculates and stores the hashed value of the code section. If changes should
occur to the code section, the tester will detect the change in the hashed value compared to the
stored value in the corrector. If the two hashed values differ, the tester contacts a tamper response
component responsible for taking proper actions. The executable code is divided into sections and
associated with several testers that store the hashes in individual correctors.

Several measures are used to protect this self-checking mechanism against attacks that either re-
veal or disable the mechanism. Obfuscating the testers to make them look like ordinary exe-
cutable code and customising their individual implementations are some of the countermeasures
used. Protection against the self-checking mechanism being detected by off-the-shelf debuggers
is also added [Horne&02]. Custom made debuggers, however, cannot be prevented from stepping
through the code and potentially discovering the self-checking mechanism. The components of
the self-checking mechanism have been separated and designed in such a way that discovering
one does not aid in locating others.

5.3.5 Offline usage scheme

An offline DRM scheme involving a Consumer role, a Publisher role and a DRM server is de-
scribed in [Sankar&11]. Figure 5.2 shows the process of the offline DRM scheme:

1. In the registration phase, the consumer initially registers himself with the DRM server and
requests a certificate granting him access to content. The DRM server generates two differ-
ent certificates: one identifies the user and another identifies the machine from which the
request originated. This is necessary to establish a trust relationship between consumer and
publisher. Afterwards the certificates are sent back to the user and copies of the certificates
are stored at the DRM server.

2. In the publication phase, the publisher encrypts and uploads content to the DRM server.

3. In the consumption phase, the consumer’s DRM client uses the machine certificate to au-
thenticate the platform on which protected data is to be accessed. The user certificate is
then used to verify that the user has been granted permission to access the protected data.
Along with the data, the consumer also requests a DRM user license to allow for offline ac-
cess to protected content. This license can either be distributed directly from the publisher
or through other sources, such as a physical media if the consumer is offline. The license
associated with the protected data ensures that the machine identifier, which is described in
the license, matches the one on the machine it is now located on.
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DRM server

1. Registration phase 2. Publication phase

<4 3, Comsumption phase——>» Q

Consumer Publisher

Figure 5.2: Offline DRM model.

5.3.6 Watermarking strategy

Currently there are two general usage strategies for the application of watermarking for assisting
DRM systems [Wolf&07]:

Public watermarking: In public watermarking, the DRM system running on a consumer’s com-
puter embeds a watermark in the content when the content leaves the DRM system. That is,
when the content is sent to an analog output channel. If the data re-enters the DRM domain,
the watermark is retrieved and the DRM rules are re-assigned to the content. This is prone
to attack, as an attacker may be able to perform operations on the content and see if the
DRM rules are re-assigned to it. When this is no longer the case a successful attack has
been identified.

Private watermarking: In private watermarking, the producer embeds the watermark and pays
all of the computational costs. In this case, the watermarking is transparent to the consumer.
The weakness described in the public approach is still present, however, only the producer
is able to determine whether an attempt to remove the watermark has succeeded or failed.
This effectively eliminates the quick and easy testing mechanism.

66



Comparison of related work

5.3.7 Comparison of related work

This section presents an overview and comparison of the related work by rating the properties
of each presented scheme. The schemes are rated to the thesis goals, according to the levels
described in Table 1.2, by their ability to support data confidentiality, data availability, or fine-
grained access control in the user environment. The schemes presented above covers a typical
DRM system, tamper resistance, offline usage, and watermarking. Each scheme covers a different
aspect of ensuring confidentiality in the user’s local environment and in combination they provide
significant coverage. They are therefore considered important for the conceptual design which will
be presented in Section 5.4. Table 5.4 shows a comparison of the presented schemes and shows
that only the schemes presented by [Michiels&05] and [Sankar&11] cover fine-grained access
control in the user’s environment. This is achieved through the use of licenses and certificates to
enforce access control at a granular level. Availability is only covered by [Sankar&11] through
the use of an offline DRM scheme, which allows the user to access protected data without being
forced to communicate with the DRM server.

Table 5.3: Comparison of schemes proposed in related work.

Environment Category Property Horne | Sankar | Wolf | Michiels
User Data confidentiality ++ ++ ++ ++
Data integrity N/A N/A N/A N/A
User S . Data availability N/A +++ N/A N/A
ecurity —
Non-repudiation N/A N/A N/A N/A
Auditability N/A N/A N/A N/A
Cloud User-to-user anonymisation N/A N/A N/A N/A
User addition and revocation | N/A N/A N/A N/A
User Access control Fine-grained access control N/A +++ N/A +++
Access control delegation N/A N/A N/A N/A
Many-to-many file sharing N/A N/A N/A N/A
Performance Scalability N/A N/A N/A N/A
Durability N/A N/A N/A N/A
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User-Centered Data Security

5.4.1 Overview

This section describes our conceptual design for User-Centered Data Security (UCDS). It uses the
topics and technical methods described in Section 5.3. The topics and technical methods are used
to achieve the required properties a DRM solution should conform to, as described in Table 5.1.
The generic DRM role definitions presented in Section 2.4.2 match the entities contained in the
conceptual design of CHAC which is presented in Chapter 4 and can thus easily be mapped to the
context of this thesis. These mappings are depicted in Figure 5.3 and are described as follows:

Produces
content ) -
Producer \’/"4 Cloud \
(User with read and write access) Sends/Recei N
en:rn s/Receives ~>»  Publisher
ypted content \

Q—» DRM Client <
Consumes

content
Consumer
(User with read-only access)

Figure 5.3: A DRM solution in a cloud environment.

Producer: Seen in the context of this thesis, the users with read and write access rights are as-
signed the role of producers. They are the entities producing data to be shared.

Consumer: The consumer role is assigned to all users who need to access shared data stored in
the cloud. Depending on which access rights they have been assigned, they can access a
selected amount of data and perform their allowed operations on the data. A consumer can
also be a producer, however, only if he has read and write access rights. Otherwise, the user
only has a consumer role.

Publisher: The publisher role is assigned to an entity residing in the cloud environment. This
role is the most active, with a need for high availability. Therefore, the availability offered
by a cloud environment is very beneficial.

5.4.2 The conceptual design

Introducing a commercial DRM solution to the dynamic collaboration environment seems infea-
sible due to the lack of control of the cryptographic mechanics within these DRM solutions. This
poses a problem as the data located in the cloud is already encrypted by the specific cryptographic
scheme described in Section 3.4.2.

Furthermore, adding a commercial DRM solution would require data to be decrypted in the cloud
and re-encrypted by the DRM solution. This would inevitably leave the data unencrypted in
an untrusted environment. Putting together parts of existing DRM solutions is also considered
infeasible due to the proprietary nature and lack of interoperability of most DRM solutions, as
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described in Section 2.4.2.1. The preferred approach would be to utilise the cryptographic schemes
and access control models introduced in Chapters 3 and 4 to implement similar functionality in a
generic DRM solution.

5.4.2.1 Architecture

UCDS is implemented using an existing data protection scheme in conjunction with an access
control model, such as the design presented in Chapter 4. UCDS reuses these aspects and extends
them into the user’s environment. This requires implementation of a DRM client located locally
in the user’s environment, controlling the decryption of content received from CHAC. The DRM
client acts as a reader and editor where a user can perform his permitted actions on data. UCDS
also supports access revocation and watermarking.

The drawback of such a design is that every resource type must be supported by the DRM client.
This would necessitate specific implementations inside the DRM client for each individual re-
source type. Alternatively, a DO could chose not to use DRM protection on selected resource
types. For instance, if the DRM client does not support a given type, the users would be presented
with an unprotected copy once they have been authorised by the access control mechanism. By
introducing the DRM solution, the control of cryptographic key management of CHAC would be
handled within the DRM client and becomes transparent to the user.

The conceptual design is shown in Figure 5.4.

1. The flow begins at the DRM client where a request for content is made to the cloud.

2. The access control manager validates the request against the roles that Alice is currently
assigned and, if validated, fetches the content from the data storage.

3. The content is then passed to the encryption proxy to be re-encrypted.

4. The encryption proxy fetches Alice’s Proxy Re-Encryption (PRE) token from the encryption
proxy token storage and re-encrypts the content to match her key pair.

5. The re-encrypted content is returned to the access control manager.

6. The access control manager returns the content to the DRM client and from this point two
options are available.

7a. If the requested content is supported by the DRM client and the DO has specified that the
content should be accessed through DRM protection, it is presented to Alice through the
DRM client. Through this approach, content never leaves the DRM client in unencrypted
digital form.

7b. If the content is not supported by the DRM client or the DO has specifically decided not to
DRM protect it, the content is in its unencrypted form when in Alice’s environment. This
approach mitigates lacking support for resource types by sacrificing security locally in the
user’s environment.
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Figure 5.4: Integrated DRM solution with DRM Client.

5.4.2.2 DRM client tamper resistance

Once data has been stored in the cloud, the DRM client is the only part of the dynamic collabora-
tion environment that is responsible for decrypting data and operating on data in its unencrypted
form. This, along with the DRM client being located locally in the users’ environments, makes
the DRM client a target for potential malicious users wanting to circumvent the data protection.
For a DRM client to effectively enforce data access control and prevent unauthorised data access,
tamper resistance must be implemented within the client. The approach, mentioned in [Horne&02]
would provide the DRM client with a dynamic self-checking mechanism capable of detecting tam-
pering attempts and triggering proper response actions. The triggered response can be integrated
with other software protection solutions which would make the tamper resistance approach highly
customisable. This is a desirable quality in the context of the dynamic collaboration environment,
due to the support for specifying what response measures to take if the DRM client should detect
a tampering attempt.

5.4.2.3 DRM client offline usage

The offline DRM model described in [Sankar&11] relies primarily on certificates. CHAC does
not rely on certificates in its access control model, and would thus require additional support for
certificate management. Data access restriction is already supported by CHAC. As described in
Chapter 3, once the encrypted data is received in the user’s local environment, the data decryption
only requires the user’s private key. By storing encrypted data locally in the user’s environment,
the DRM client could access this data instead of retrieving it from the cloud storage, decrypt it
with the user’s private key and present it to the user. This would grant the user offline access to the
local encrypted data. However, it would not prevent him from accessing the data on other devices,
though he would still need a DRM client with the exact same private key for decryption.

Data access restriction to a single device Restricting access to a single device could be achieved
by introducing certificates identifying the device on which the data is to be decrypted. Another
approach is to re-encrypt data under a new key consisting partly of unique identifiers from the
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given device, such as unique hardware serial numbers. Both approaches would introduce addi-
tional computational overhead, but the re-encryption approach would primarily require changes
to the DRM client and would not require the additional implementation of certificate storage and
management in the cloud as the first approach does. Figure 5.5 shows the re-encryption approach.
It shows how encrypted data is received at the DRM client from either the cloud, through e-mail
or from a physical media. The decryption and re-encryption process where encrypted data is de-
crypted and then encrypted using another scheme is also shown. This scheme encrypts data using
a combination of the user’s public key and a unique identifier which identifies the local environ-
ment on which the DRM client is located. This prevents the DRM protected data from being
decrypted and accessed in other users’ environments. Once the re-encryption process is complete,
data is stored locally to enable later offline access. When a user chooses to access this specific
data it is decrypted and presented to him by the DRM client.

5.4.2.4 Watermarking

To ensure traceability of data issued to a consumer, a watermarking scheme needs to be incorpo-
rated into the UCDS design. However, just as with existing commercial DRM solutions, existing
commercial watermarking solutions are constrained. They only offer support for certain resource
types and operating systems [Zeng&10]. Thus, to effectively integrate a watermarking scheme
with the presented design it would be advantageous to select a watermarking scheme that supports
watermarking of resource types supported by the design. Watermarking would then serve as a
“second line of defence” by making resources under DRM protection in the users’ local environ-
ments traceable. It would help identify the user who is leaking data, should a leak occur.
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Figure 5.5: Dynamics of binding data to a single device.
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Discussion

Discussion

For most solutions which are based on cryptographic schemes, DRM is a good candidate for
extending the data protection. A drawback of using DRM is the negative impact on usability as
the user experiences no direct gain from it. As a consequence, the DRM element of the solution
must take natural user interaction into account and remain transparent to legitimate users and
permitted behaviours.

5.5.1 Interoperability

Looking at existing DRM solutions and their interoperability, the need for a custom DRM solu-
tion is evident. Interoperability issues are certain to occur when dealing with existing third-party
components. This combined with the potential need for extending resource type support makes
use of an existing commercial DRM solution difficult.

5.5.2 Offline DRM approach

The offline DRM approach, presented in Section 5.3.5, is the one considered feasible to integrate
with CHAC. Time-limited usage of offline data must be introduced in the users’ environments to
support user revocation. Once users have received data from the cloud storage and stored it offline,
they no longer need to be authorised by the DRM server. This means that users are not hindered
in accessing data stored offline even though their access has been revoked. To overcome this issue
periodic re-authorisation is necessary. This must be enforced by the DRM client and impacts
the offline data availability to some extent, depending on the duration between the required re-
authentication, but is a necessity seen from a security perspective.

5.5.3 Watermarking

While the introduction of watermarking is to aid as a second line of defence, it should be noted
that currently no method exists to effectively track leaked watermarked data. Thus, the only way
of discovering a leak is finding watermarked data where it is not supposed to be. At this point
irreversible damage caused by the leak could already have been done.
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5.5.4 Comparison to related work

While some of the presented schemes cover the same properties, they each contribute and compli-
ment each other. Table 5.4 shows a comparison between UCDS and the presented schemes. While
it is evident that the presented schemes only consider the user’s local environment, the integration
of these schemes into UCDS adds significant value to, and improve upon, the overall support of
the thesis goals. Figure 5.6 shows a graphical comparison of UCDS and the presented schemes.
Note that the data confidentiality property is achieved at the same level by all compared schemes.
Thus, the individual scheme icons overlap here.

Table 5.4: Comparison of UCDS and schemes proposed in related work.

Environment Category Property Horne | Sankar | Wolf | Michiels | UCDS
User Data confidentiality ++ ++ ++ ++ ++
Data integrity N/A N/A N/A N/A +++
User Security Data availability N/A +++ N/A N/A +++
Non-repudiation N/A N/A N/A N/A +++
Auditability N/A N/A N/A N/A +++
Cloud User-to-user anonymisation N/A N/A N/A N/A +++
User addition and revocation | N/A N/A N/A N/A +++
User Access control Fine-grained access control N/A +++ N/A +++ +++
Access control delegation N/A N/A N/A N/A +++
Many-to-many file sharing N/A N/A N/A N/A +++
Performance Scalability N/A N/A N/A N/A +++
Durability N/A N/A N/A N/A +++

Data confidentiality

Durability /"ﬁr.( Data integrity
e

Scalability e Data availability

=fi—Horne
Many-to- fil
any-to-many file Non-repuduation Sankar
sharing
== Wolf
=@ Michiels
A trol —
ccess contro Auditability upsc
delegation
Fine-grained accese/ User-to-user Circles indicate properties
control anonymisation which are equally well
supported.

User addition and
revocation

Figure 5.6: Graphical comparison of UCDS and schemes proposed in related work.
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5.5.5 Comparison to thesis goals

Through the incorporation of the presented schemes into the conceptual design that is UCDS a
higher coverage of the thesis goals is achieved. The presented conceptual design of UCDS con-
forms to the properties required for a DRM solution to add value to the dynamic collaboration
environment. Table 5.5 shows the support the design offers for these properties. Table 5.6 sum-
marises and compares CHAC to UCDS with regards to the thesis goals. Figure 5.7 is a graphical
representation of the same comparison.

Table 5.5: Comparison of required properties and properties of UCDS.

Property Property Requirement Description Support
Access control Protected data must be inaccessible to unauthorised users Yes
Granular access Read-only and read/write access rights must be supported Yes
n resource types A wide range of resource types must be supported Yes*
Tamper resistance | Robustness and resilience of the system must be ensured Yes
Offline data usage | Protected data must be accessible while offline Yes
Tracing of data Data must be traceable to identify the origin of a leak Yes*
Cloud utilisation | The benefits of a cloud deployment must be leveraged Yes

* Support for resource types must be implemented individually.

Table 5.6: Comparison of CHAC and UCDS.

Environment Category Property CHAC | UCDS
User Data confidentiality + ++
Data integrity +++ -+
User : Data availability ++ +
Security -
Non-repudiation +++ 4+
Auditability +4++ +++
Cloud User-to-user anonymisation +++ +++
User addition and revocation | +++ +++
User Fine-grained access control ++ +++
Access control i
Access control delegation +++ +++
Many-to-many file sharing +++ +++
Scalability +++ +4++
Performance .
Durability +++ +++
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Figure 5.7: Graphical comparison of CHAC and UCDS.

76



6.1.

Chapter

Validation of theory

This chapter focuses on the validation of the conceptual designs, described earlier in this thesis, by
proof of concept prototypes. Chapter 1 defines the thesis goals which form the validation criteria.
Chapter 3 and Chapter 4 each present a conceptual design that is validated here.

Introduction

To validate the conceptual designs presented in earlier chapters, proof of concept prototypes have
been constructed. In this chapter, “proof of concept prototype” is in general shortened to “proto-
type”. The prototypes demonstrate the feasibility for entire designs as they are described in earlier
chapters and not only for a single yet complex component such as Proxy Re-Encryption (PRE).
The prototypes focus on the high-risk and/or complex parts that are relevant to the conceptual
designs. As a consequence, other parts which are of lesser importance to the conceptual designs
are skipped.

Prototypes have been made for Secure Dynamic Cloud-based Data-sharing (SDCD) and Cloud-
based Hierarchical Access Control (CHAC). These conceptual designs are described in Chapter 3
and Chapter 4 respectively. As the conceptual design for CHAC builds upon the design for SDCD,
the prototype for validating CHAC also builds upon the prototype for validating SDCD. No pro-
totype has been built for User-Centered Data Security (UCDS) as the effort required to create a
prototype of a Digital Rights Management (DRM) system outweighs its benefits. Aside from the
non-trivial issues of supporting multiple resource types and integrating with the access control
model of CHAC, validation of the conceptual design of UCDS does not significantly benefit from
a prototype.

The following sections present the two prototypes created by giving an overview of each proto-
type. The descriptions of each prototype are based on the properties of the dynamic collaboration
environment. For each property relevant for SDCD and CHAC, the sections present the aspects
of the prototypes which influences the prototypes’ abilities to validate SDCD and CHAC respec-
tively.

Support for most properties is graded into four levels as seen in Table 1.2. Ideally, the proto-
types validate each property up to the level which the conceptual designs support, but for reasons
explained later, this is not the case for all properties.

Section 6.2 describes the prototype created for validating the conceptual design of SDCD which
is described in Chapter 3. Section 6.3 considers the conceptual design of CHAC from Chapter 4.
Finally, Section 6.4 discusses the validations.
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Validating Secure Dynamic Cloud-based Data-sharing

6.2.1 Overview

This section describes how the conceptual design of SDCD is validated by a prototype. To support
the thesis goals, the conceptual design of SDCD uses several cryptographic components and its
prototype combines all of them into a single system which validates most of the conceptual design
of SDCD.

As in the conceptual design of SDCD, its prototype uses a cloud for storing data entities. To enable
the Data Owner (DO) and the users to interact with the cloud, the SDCD prototype has a user client
and an administration client. The SDCD prototype contains a single cloud-based service and with
respect to the cloud service categories discussed in Section 1.1, the service belongs in the Software
as a Service category. The cloud-based service exposes a storage service, a PRE service, and has
an internal storage for data entities. The storage service makes it possible for users to store and
share data entities. The PRE service is used for all PRE operations.

The cloud services, the user client, and the administration client are implemented using the Mi-
crosoft .NET framework [Microsoft12]. The .NET framework contains many of the required
features for building distributed systems speeding up the prototype creation. An overview of the
SDCD prototype is depicted in Figure 6.1. The figure shows how a single cloud-based service
contains the two services mentioned above and how two users: Alice and Bob through their user
clients accesses data entities stored in the cloud.

— Q —Hask|

/ \/ Cloud \/ -
Administration / \
client |

Issues i \
Data Owner ‘ Cloud service ‘)
Keys to \ |
Uses__\ » Storage service /
P Stores data,
—> Has»| User client / keys, and
/ Uses| okens in
) ‘ \ 4

Alice \ |
» PRE service /

Uses: \\
—> QHas}Lcl'ent)J \: Storage
Bob \//\

Figure 6.1: Overview of the SDCD proof of concept prototype.

6.2.2 Property validation

As described in Chapter 3, the conceptual design of SDCD supports many of the properties pre-
sented as the thesis goals. This can be seen in Figure 6.2 which reiterates the findings of Chapter 3
and shows a comparison of the conceptual design of SDCD to the thesis goals. The following
sections each focus on a particular property which the conceptual design of SDCD partly or com-
pletely supports. For each property, the aspects of the SDCD prototype which influences the
prototype’s ability to validate the conceptual design of SDCD is presented.

78



Data confidentiality

Data confidentiality

Data integrity

Many-to-many file ¢=SDCD

sharing

User-to-user
anonymisation

Fine-grained acces
control

User addition and
revocation

Figure 6.2: Graphical overview of how well SDCD supports the thesis goals.

6.2.2.1 Data confidentiality

The conceptual design of SDCD relies on multiple cryptographic building blocks and their com-
bined ability to achieve confidentiality. In particular, the conceptual design of SDCD applies
uni-directional PRE, Efficient Searchable Encryption (ESE), and hybrid encryption. The crypto-
graphic building blocks and their properties are vital, but their internal workings are out of scope
of this thesis. As a consequence, the SDCD prototype primarily uses third-party implementations
and only resorts to custom implementations if no other options are available.

Proxy re-encryption: For the purpose of PRE the SDCD prototype uses a third party imple-
mentation of a uni-directional PRE scheme developed by Ateniese et al. [Ateniese&06].
This library has limitations which affect the SDCD prototype’s ability to validate some of
the properties supported by the conceptual design of SDCD. The implementation made by
Ateniese et al. is available for academic use under the name: “The JHU-MIT Proxy Re-
cryptography Library” (PRL) [Green&07]. PRL is at a very early stage of development and
it is no longer actively maintained [Ateniese&12]. This resulted in a considerable effort to
integrate PRL into the SDCD prototype. PRL requires that all instances of the library used
in a system has an identical set of public cryptographic parameters. Keys and PRE tokens
generated by one instance of the library cannot be used by another instance with different
public cryptographic parameters. For this purpose, PRL supports serialising/deserialising
of the parameters, but a flaw in the library’s code prevents usage of the deserialised parame-
ters. In the conceptual design of SDCD, the DO, all users, and the cloud itself performs PRE
operations when performing actions, such as generating keys, decrypting, or re-encrypting
data entities. Normally, the operations would be performed locally by generating a single
set of public PRL parameters when initialising the system and distributing the parameters.
The PRL limitations prevent this and as a consequence, a single PRL instance must be used
in the SDCD prototype. This necessitates that the instance is located in the cloud.
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Searchable encryption: The SDCD prototype uses the “Encrypt-and-Hash” scheme for the pur-
pose of ESE [Bellare&07]. The SDCD prototype uses a custom implementation written
by the authors of this thesis. The implementation combines the asymmetric encryption al-
ready provided by PRE with keyword hashing for generating search tokens. The custom
implementation seems secure as it implements a proven secure scheme, but it has not been
reviewed by cryptographic experts.

Hybrid encryption: The symmetric encryption scheme used for hybrid encryption is the “Ad-
vanced Encryption Standard” (AES) [FIPS-197]. The SDCD prototype uses the .NET
framework’s built-in support for AES which is considered secure. A data entity is encrypted
by AES using a random key. This random key is in turn encrypted using the master public
key.

A critical consequence of the PRL limitations is that all key pairs including the private keys at
some point in time are available as plaintext inside the memory in the cloud and thus, the SDCD
prototype suffers a breach of confidentiality.

6.2.2.2 Data integrity

The conceptual design of SDCD includes the ability to verify data integrity by using digital sign-
ing. For this purpose the SDCD prototype applies the “Digital Signature Algorithm” (DSA) which
is an asymmetric digital signature scheme [FIPS-186-3]. The SDCD prototype uses the .NET
framework’s built-in support for DSA which in turn relies on the underlying operating system’s
implementation. This implementation is considered secure. When a data entity is created, its au-
thoring user signs the data entity using his personal signing key. DSA enables the cloud to verify
integrity of the data entity by using the signature associated with a data entity and the public part
of the authoring user’s signing key.

6.2.2.3 Data availability

Microsoft Windows Azure (MWA) has been chosen as the cloud environment for the SDCD proto-
type. MWA has been chosen because it delivers suitable cloud services and because it offers close
integration with the .NET framework. This helped reduce the time needed to create the SDCD
prototype. In MWA, a service may have multiple instances running inside distinct virtual ma-
chines. All service instances handle incoming service requests in cooperation and the individual
instances can be reset, migrated to another data centre, or otherwise be temporarily unavailable.
As described earlier, the SDCD prototype has two cloud-based services: a storage service and a
PRE service. In the SDCD prototype, they are both hosted by a single MWA service instance and
the SDCD prototype does not attempt to handle migration or resets. As such, the SDCD prototype
does not gain improved availability from using a cloud. Instead the availability of the SDCD
prototype is comparable to that of a traditional server.

6.2.2.4 Non-repudiation

The SDCD prototype achieves non-repudiation by using the DSA algorithm to sign data entities
as described above in the section considering integrity. As only a single user has access to the
private key required to sign a data entity, only he can be its author.
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6.2.2.5 User-to-user anonymisation

When a user receives a data entity from the cloud, the data entity contains a number of identifiers.
One for itself and one for each of its attributes. In the SDCD prototype, identifiers for data enti-
ties, attributes, and users are based on Universally Unique IDentifiers (UUID) [Leach&05]. The
identifier of a data entity is randomly generated. The identifier for each data entity attribute is
generated by hashing the unencrypted keyword of the attribute.

For hashing, the SDCD prototype uses the hashing algorithm Message-Digest 5 (MDS5) [Rivest92].
This hashing algorithm is no longer considered adequate for security sensitive purposes, but be-
cause of their size, its hash values are suitable for conversion to UUIDs. As with any hashing
algorithm, hash values are not guaranteed to be unique. This means that two users with distinct
user names could end up with identical identifiers. Despite this theoretical risk, the likelihood of
collision is very low and is not considered by the SDCD prototype. Furthermore, the risk of iden-
tifier collision is not limited to identifiers generated by hashing, but is also present for identifiers
which are randomly generated.

As with identifiers for data entity attributes, generating user identifiers by hashing user names
ensures that identifiers do not leak any information regarding the user except equality. Because of
this, support for user-to-user anonymisation is achieved. However, as the identifiers are determin-
istic, they may be used to analyse access patterns. The signature of a data entity and the public
keys of other users’ signing key pairs are kept in the cloud. This enables the cloud to verify the
integrity of data entities while preserving user-to-user anonymisation.

6.2.2.6 User addition and revocation

The SDCD prototype supports addition and revocation of users. Furthermore, the PRE scheme
used in the SDCD prototype allows the additions and revocations to be performed without affect-
ing other users.

To verify integrity for data entities, the conceptual design of SDCD requires the public part of the
signing key to be kept even after a user has been revoked. A limitation of the SDCD prototype is
the lack of support for multiple keys for each user. This is an issue in the scenario where a user
is added, then revoked, and then added again using the same identifier. All other aspects of user
addition and revocation are supported.

6.2.2.7 Fine-grained access control

The conceptual design of SDCD does not have full support for fine grained access control. Either
a user has full access or no access at all. In the SDCD prototype this is also the case. When a
user is created, a PRE token is placed in the cloud and associated with the new user. In the SDCD
prototype, the existence of the PRE token associated with a particular user determines whether
he should have access or not. As such, coarse-grained access control is supported by the SDCD
prototype.

6.2.2.8 Many-to-many file sharing
In the conceptual design of SDCD, usage of a PRE scheme is central for achieving support for

many-to-many file sharing. Through the re-encryption, made possible by the PRL library, the
SDCD prototype achieves support for many-to-many file sharing.
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6.2.2.9 Scalability

In the conceptual design of SDCD, the DO is necessary only for user management. Once a user
has been given his keys, he can access data entities independently of the DO. The SDCD pro-
totype achieves scalability through the usage of a cloud which makes the dynamic collaboration
environment and all the data entities stored within, available to other users without relying on the
data owner.

6.2.2.10 Durability

MWA provides several ways to store data [Franks&12]. Some storage types are temporary and
some are permanent. Each virtual machine that hosts a service instance has a local file-system and
the SDCD prototype uses this file-system. Using the local file-system allows faster development as
normal file system operations can be used. The other data storage types offered by MWA requires
the use of specialised Application Programming Interfaces (API) [Richter12]. As the local file-
system is temporary storage, data entities stored there are lost if the service instance is reset. As
a consequence durability of the SDCD prototype is negatively affected and not as good as in the
conceptual design of SDCD.

6.2.3 Summary

The SDCD prototype implements many aspects of the conceptual design of SDCD and in particu-
lar attention is paid to the complex cryptographic parts and their interactions as using a particular
cryptographic element could prevent usage of another. The SDCD prototype consists of source
code written in C, C++, and C# and is a distributed system running on multiple platforms. It
contains complex components and the effort put into constructing the SDCD prototype was ap-
proximate two person-weeks. For a technical overview of the SDCD prototype, the interested
reader is directed to Appendix B.

The SDCD prototype validates all the properties to the level supported by the conceptual design
of SDCD except for three: confidentiality, availability, and durability. Furthermore the SDCD
prototype omits several features which limit its real world usability. An example of this is that
communication between the administration client, user client, and the cloud is not secured. An-
other example is that authentication is simulated i.e. authentication is based on user names without
using passwords.

The limitations of PRL are the root cause of the most significant deviations from the conceptual
design of SDCD. For production usage these limitations need to be fixed, but as of Spring 2012,
we were unable to locate any other PRE implementation.

The limitations of PRE cause differences in communication flow and directly limits durability. If
the PRL instance is lost, the stored data entities cannot be decrypted and they become inaccessible.
As data entities become inaccessible by losing the PRL instance, no effort has been made to
ensure that data entities are written to a persistent storage type. This affects durability and as a
consequence, the SDCD prototype is not able to validate durability to the level supported by the
conceptual design of SDCD.

As key and PRE token generation operations are performed in the cloud, confidentiality of all
stored data is breached. However, the breach of confidentiality is caused by implementation details
that given time, can be fixed. A workaround would be to perform all PRE operations on a trusted
server outside the cloud, but this would not add significant value for the purpose of validating the
conceptual design of SDCD.

Finally, availability normally benefits from utilising a cloud, but the SDCD prototype uses a single
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MWA service instance and thus, does not gain improved availability. Instead the single instance
is comparable to a single traditional server.

In spite of the deviations and omissions, the SDCD prototype still validates most of the conceptual
design of SDCD. Table 6.1 is a comparison of how well each property of the conceptual design of
SDCD of validated by the SDCD prototype and Figure 6.3 is a graphical presentation of the same

comparison.

Table 6.1: Comparison of the SDCD prototype and the conceptual design of SDCD.

Environment Category Property SDCD | SDCD prototype

User Data confidentiality + -
Data integrity +++ +++

User . Data availability ++ +

Security —

Non-repudiation +++ +++

Auditability - ,
Cloud User-to-user anonymisation +++ +++
User addition and revocation | +++ +++

User Fine-grained access control + +

Access control -

Access control delegation - -
Many-to-many file sharing +++ +++
Scalability +++ +++

Performance -
Durability +++ +
Data confidentiality
+++
Durability, ;,‘\Data integrity
Scalability( Data availability
T
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Figure 6.3: Graphical comparison of the SDCD prototype and the conceptual design of SDCD.
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Validating Cloud-based Hierarchical Access Control

6.3.1 Overview

This section describes how the conceptual design of CHAC is validated by a prototype. The
CHAC prototype builds upon the SDCD prototype. The CHAC prototype attempts to make as few
modifications to the features of the original SDCD prototype as possible. The CHAC prototype
focuses on adding features required to validate the properties which the conceptual design of
CHAC improves compared to the conceptual design of SDCD. As the CHAC prototype builds
upon the SDCD prototype, the limitations of the prototype are inherited. As will be described
later, this influences the prototype’s ability to validate the conceptual design of CHAC.

The existing clients from the SDCD prototype have been extended to support the data access
control model described in the conceptual design of CHAC. The administration client still handles
system initialisation and users and has been extended to manage roles. The user client is used
when accessing data entities, but has been extended to support the concept of roles.

The cloud service contains the same two services as in the SDCD prototype: a storage service and
a PRE service. However, the storage service has been extended to enforce data access rules. The
PRE service is identical to the one in the SDCD prototype.

An overview of the CHAC prototype is depicted in Figure 6.4. In the figure, a DO has added two
users: Alice and Bob. Alice have been given permission to manage roles and manages roles for
Bob using the administration client. Bob does not have this permission and thus, does not use the
administration client. In the figure, the DO uses only the administration client, but if he so desired,
could use the user client to access data entities.
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—> Has»  Userclient »— \\\ /\ /

Bob

Figure 6.4: Overview of the CHAC proof of concept prototype.

6.3.2 Property validation

The CHAC prototype focuses on validating the properties which the conceptual design of CHAC
improves upon. An overview of the properties and a comparison of the conceptual designs of
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SDCD and CHAC can be seen in Figure 6.5. As can be seen from the comparison, the conceptual
design of CHAC improves upon the conceptual design of SDCD for the properties: auditability,
fine grained access control, and access control delegation.

Data confidentiality
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Figure 6.5: Graphical comparison of SDCD and CHAC.

The following sections focus on aspects of the CHAC prototype which influences the prototype’s
ability to validate the three properties where the conceptual design of CHAC improves upon the
conceptual design of SDCD.

6.3.2.1 Fine-grained access control

The CHAC prototype has, with one exception, full support for the concept of a role as described
in the conceptual design of CHAC. The flag which indicates whether a role is active has not been
implemented. This flag is used for example to set roles as inactive for scenarios where leaks occur
and those with access to the leaked data should be locked out of the system. Although this feature
has not been implemented the remaining functionality based on roles is not influenced.

As in the conceptual design of CHAC, the CHAC prototype organises roles in a tree-based hier-
archy. The rule stating that the permissions of sub-roles must always, except for root roles, be a
subset of their parent’s permissions has been implemented. This rule is enforced by the CHAC
prototype when creating and updating roles. The prototype supports users, assignment and unas-
signment of roles and allows users to be assigned multiple roles at the same time. Likewise,
the rules defining visibility and management of other roles and users, from the perspective of a
particular user, is supported by the prototype.

Private hierarchies introduce extra complexity in the conceptual design of CHAC and the CHAC
prototypes supports all the concepts and operations related to private hierarchies. This includes
their creation and the rules defining situations in which they are deleted. The rules defining visibil-
ity and management of roles and users, from the perspective of a particular user, also takes private
hierarchies into consideration. By supporting virtually all the features and operations related to
roles and their hierarchies, the prototype supports fine-grained access control.

85



Chapter 6. Validation of theory

6.3.2.2 Access control delegation

The CHAC prototype makes it possible for the DO to add users. For each new user a new PRE
key pair, signing key pair, and PRE token is generated. The generated PRE token is stored in the
cloud. Users who have a role granting them permission to add new users are not able to generate
new keys as described in the conceptual design of CHAC. Instead, their own keys are shared with
the new user. This is due to a limitation in the PRL implementation of PRE inherited from the
SDCD prototype. In general, PRE schemes can be transitive, but PRL does not support this. As a
consequence, even if a key pair and a matching PRE token were to be generated, the cloud would
not be able to re-encrypt multiple times as required by the conceptual design of CHAC. With
respect to the thesis goals, this means that the DO is not able to delegate all his capabilities and
thus, the CHAC prototype’s support for access control delegation is limited.

6.3.2.3 Auditability

The CHAC prototype does not support auditability. Implementing support for auditability would
require logging all accesses and modifications of data entities, roles, and users. The logs would
have to be encrypted using the master key pair and stored in the cloud. Finally, client support
would have to be built to enable users who are assigned to root roles to inspect the logs. Imple-
menting these steps would require a significant effort which outweighs the benefits in terms of
validating that part of the conceptual design of CHAC.

6.3.3 Summary

The CHAC prototype focuses on access control and in particular management and delegation of
access control. The features which are built on top of the SDCD prototype, forming the CHAC
prototype, consist of definitions and associated logic for managing roles, users, and data entities.
In total, the effort put into constructing the CHAC prototype is about one person-week. For a
technical overview of the CHAC prototype, the interested reader is directed to Appendix B.

The concept of roles, defined in the conceptual design of CHAC, makes multiple scenarios pos-
sible and the CHAC prototype supports most, but not all of them. Auditability is not supported
and thus, this aspect is not validated. The prototype also inherits the limitations of the SDCD
prototype and its inability to fully validate confidentiality, availability, and durability. The extent
to which the CHAC prototype validates each of the properties of CHAC can be seen in Table 6.2.
A graphical presentation of the same comparison is shown in Figure 6.6.

86



6.4.

Discussion

Table 6.2: Comparison of the CHAC prototype and the conceptual design of CHAC.

Environment Category Property CHAC | CHAC prototype
User Data confidentiality + -
Data integrity +++ +++
User . Data availability ++ +
Security i
Non-repudiation +++ +++
Auditability +++ -
Cloud User-to-user anonymisation +++ +++
User addition and revocation +++ +++
User Fine-grained access control ++ ++
Access control .
Access control delegation +++ ++
Many-to-many file sharing +++ +++
Scalability +++ +++
Performance o
Durability +++ +

Data confidentiality

++t
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Figure 6.6: Graphical comparison of the CHAC prototype and the conceptual design of CHAC.

Discussion

As part of this thesis, a prototype has been constructed to validate the conceptual design of SDCD
and another prototype has been constructed to validate the conceptual design of CHAC. The focus
of the prototypes has been to validate as much of the conceptual designs of SDCD and CHAC as
possible. This means that the prototypes attempt to validate all properties to the level supported by
their respective conceptual designs. The prototypes succeeded in doing so, with a few exceptions.
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7.1.

7.2.

Chapter

Concluding remarks and future work

This chapter concludes on the results achieved in this thesis. The thesis goals defined in Chapter 1
are related to the conceptual designs presented in Chapters 3, 4, and 5. Together the conceptual
designs comprise the results of this thesis.

Introduction

This chapter concludes on the conceptual designs presented in earlier chapters and on the thesis in
general. This includes elaboration on areas where the conceptual designs can be improved. This
chapter also contains reflections on our personal learning outcomes.

In Section 7.2, the achieved results are presented and discussed with regards to the thesis goals
and the theory validation presented in Chapter 6. Future work, expanding on each of the three
conceptual designs, is outlined in Section 7.3. Our personal learning outcomes are described
in Section 7.4, detailing the process of authoring this thesis. Finally Section 7.5 concludes the
chapter and thesis.

Achieved results

The initial goals of this thesis, as presented in Chapter 1, were:

1. To design a dynamic collaboration environment utilising the benefits of cloud storage while
ensuring strong data security and fine-grained data access.

2. To improve our skills and knowledge with regards to designing systems that leverage the
benefits of the cloud, and improve our ability to research a scientific subject from different
perspectives and contribute to the scientific community.

To be able to design a secure dynamic cloud-based collaboration environment with support for
fine-grained data access, it was essential to study existing solutions and approaches. Chapter 2
presents information about security related concepts and technologies relevant for developing a
design satisfying the thesis goals.

The design for the envisioned secure dynamic cloud-based collaboration environment with hier-
archical data access is comprised of the contribution of three designs, each being an extension of
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the former, thus resulting in a simple dependency graph as depicted in Figure 7.1. The designs
focus on different aspects of the goals as they are described in Chapter 1, two of which have been
further validated by proof of concept prototypes. Each design is assessed in its own subsection
below and finally a section is dedicated to a comparison and evaluation of the designs.

Secure dynamic cloud-based collaboration environment

_ with hierarchical access I
s

// éure D nanh /Cloud-based\ /
[ [ v | Dependson | . X \ Depends on [ User-Centered
( | Cloud-based M{—;{ Hierarchical < €&———— Data Securit
\ @’ \\wy \U

Chapter 3 Chapter 4 Chapter 5

\ -

Figure 7.1: Dependencies of the designs.

7.2.1 Secure Dynamic Cloud-based Data-sharing

In Chapter 3 our conceptual design for Secure Dynamic Cloud-based Data-sharing (SDCD) used
for storing data securely in the cloud was presented. The design employs a combination of sym-
metric and asymmetric cryptography to ensure confidentiality. When data is submitted and stored
in the cloud, it is encrypted by the same master key regardless of who submits it. This master key
is generated by a Data Owner (DO) when the system is initialised. The DO is responsible for the
system and is the only entity who can manage users and verify integrity.

Integrity and non-repudiation is ensured by using digital signatures. All users have individual
signing keys which are used when submitting data to the cloud. The digital signature allows the
DO to verify integrity and verify the identity of the author.

The concept of Proxy Re-Encryption (PRE) is applied to support many-to-many file sharing while
retaining the ability to add and revoke users. This allows all users to submit data encrypted by
the same key while receiving and decrypting data using a user specific key. Furthermore, a user
specific key can be revoked without adversely affecting the other users, by removing a PRE token
from the cloud. User-to-user anonymisation is achieved by restricting the capabilities of users
to only encompass data access and data integrity checking. None of these operations reveal the
identity of other users. All other operations such as adding new users are available to the DO only.
When a user has been granted access and has received his keys, no further communication between
the DO and the user is required. This provides scalability and availability as no bottleneck is
introduced and the user communicates directly with the cloud. Availability is also improved by
using a cloud as it has numerous service instances located at geographically distributed locations.
Although SDCD supports many of the properties defined as goals in this thesis, some properties
are notably missing. These are fine-grained access control, access control delegation, and au-
ditability. There is no concept of access control in SDCD and all authorised users are always able
to access all data. Likewise there is no concept of auditability.
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In SDCD the focus is on ensuring data security while utilising the benefits a cloud envivonment
provides. SDCD effectively ensures data security and prevents the Cloud Storage Provider (CSP)
from gaining access to stored data in its unencrypted form. However, once data is in the users’
local environments security can no longer be maintained.

The concept of PRE, which is applied by SDCD, is vulnerable to collusion where a user and the
CSP can collude to obtain information about data that they could not access on their own. This is
an unsolved problem with PRE, however, this liability is made harder to exploit because nothing
in the cloud can be used to identify users. Although communication between users and the cloud
is assumed to be adequately protected a CSP can still, in theory, identify users by other means
such as monitoring the destinations of outgoing data.

The SDCD conceptual design is validated by a proof of concept prototype. The prototype validates
SDCD by implementing many of its features, and focuses on the complex cryptographic parts.
Although the prototype has limitations and deviates from SDCD in a number of places, these
are mostly caused by limitations in a third party PRE library. However, these limitations do not
invalidate the SDCD design. In summary, the proof of concept prototype strengthens the argument
that SDCD is able to fulfill many of the thesis goals.

7.2.2 Cloud-based Hierarchical Access Control

Chapter 4 presented a design named Cloud-based Hierarchical Access Control (CHAC). CHAC
is a customised Role-Based Access Control (RBAC) model with SDCD at its core and enables
support for fine-grained data access. An auditability scheme has been introduced, in addition to
the access control model, adding the security aspect of auditing to the design.

CHAC is structured as a hierarchy, achieving a manageable structure that can easily be mapped
onto job or usage functions in an organisational structure. Our initial designs had a user hierar-
chy, existing in parallel with the role hierarchy, to enable a structural dependency between users.
However, this approach was deemed infeasible due to the complexity of maintaining and continu-
ously validating two different hierarchies with intertwining dependencies. To simplify the access
control model, the user hierarchy was abstracted away and only the role hierarchy remains, with
the users now in a flat structure, or a pool of users.

Private role hierarchies were introduced to the access control model to enable addition of indepen-
dent hierarchies. However, caution must be taken when managing roles and users in the hierarchy
from which the new hierarchies originate. This is due to the cascading effect of deleting the cre-
ator role of an additional hierarchy or the user that created it. This could potentially result in the
deletion of the entire hierarchy.

An auditability scheme has been included as part of the CHAC design along with the access con-
trol model. Auditability is considered a valuable feature as it allows designated users to survey the
behaviour of other users and monitor how entities evolve over time in the collaboration environ-
ment. In its current form CHAC only allows root roles to audit. This is due to the fact that being
able to audit contradicts the general concept of anonymisation. If users in the lower tiers of the
hierarchy had permission to audit, anonymisation would be violated.

The current life-cycle management of the PRE key pair hierarchy is based on the relationship
between key pairs in the form of PRE tokens. To allow a user in a lower tier of the hierarchy to de-
crypt data, the encrypted data must first go through a chain of re-encryptions to pass down through
the hierarchy ending at the user. As the collaboration environment evolves over time, the PRE key
pair hierarchy potentially becomes very deep. This is undesirable as the additional re-encryptions
result in an additional computational overhead and expose structural information about the hier-
archy in the form of re-encryption duration. This information could be used for timing attacks
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which could potentially reveal cryptographic details on how data is protected [Kocher96]. This is
a subject for future work.

The CHAC theory is validated through a proof of concept prototype which is based on the pro-
totype validating SDCD. The auditability aspect is the only part not included in the prototype as
this adds little value to the argument that CHAC is a feasible approach for a design conforming
to the thesis goals. As the CHAC prototype is based on the SDCD prototype, the CHAC proto-
type is subject to the same third party PRE library limitations as SDCD. However, this remains an
implementation specific detail and does not invalidate the prototype.

7.2.3 User-Centered Data Security

Chapter 5 presented a design that extends CHAC to encompass the local environment of the users
and is named User-Centered Data Security (UCDS). To achieve security in a user’s local envi-
ronment, UCDS applies Digital Rights Management (DRM). Several commercial DRM schemes
exist. However, due to their proprietary nature, none were considered suitable as they lack sup-
port for arbitrary resource types and extending an existing solution is infeasible, again due to
the proprietary nature of DRM solutions. Furthermore, interoperability in DRM systems is prob-
lematic, resulting in integration with the existing access control model of CHAC becoming very
challenging.

Instead of using an existing DRM system, UCDS proposes the development of a custom sys-
tem allowing for integration with the access control model of CHAC. The definitions of licenses
and rights could even be extended to encompass the definitions used in CHAC. Furthermore, the
encryption schemes of SDCD can be reused in place of conventional DRM encryption. Data per-
sisted in a user’s local environment is stored in its encrypted form when it is received from the
cloud and accessed by a trusted DRM client. To enable this functionality a custom DRM client is
essential.

When a user is revoked from the system his status in the cloud changes. To ensure the revocation
is cascaded to the user’s local environment, the DRM client re-authorises the user. However, this
means that a user must have access to the cloud to access local data using the DRM client, resulting
in usability being severely affected. This is solved by UCDS with the support for offline data
access, where access to data is granted without having to re-authorise the user. Offline access and
the ability to perform a user revocation in a user’s local environment are two conflicting properties.
A particular usage scenario must weigh the needs for the properties and adjust accordingly. UCDS
proposes a solution to this through a scheme imposing time constraints on data, where the user
is forced to periodically re-authenticate with the cloud to ensure continued access to data when
offline.

For the scenario where data is leaked the DRM scheme supports watermarking. However, water-
marking cannot help in tracking leaked data, it can only help with identifying the source of a leak.
This assumes, however, that the data is first discovered where it is not supposed to be.

No proof of concept prototype has been built to validate UCDS. This decision was made because
a proof of concept prototype for this design was deemed to add little value compared to the effort
required for its creation.

7.2.4 Comparison and evaluation

The three conceptual designs focus on different aspects of the thesis goals, where each subsequent
design improves the former incrementally supporting more of the thesis goals than the former
design provided by itself. Table 7.1 shows a comparison between SDCD, CHAC, and UCDS. A
graphical overview of the same comparison can be seen on Figure 7.2. Notice that confidentiality
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is not supported to the highest level defined in the rating scale in Chapter 1. This is only achievable
by ensuring that the CSP is unable to deduce any information about the requested data, for example
by performing statistical analysis. To hide access patterns a technique for Private Information
Retrieval (PIR) exists [Ishai&06]. However, this technique has not been used in our work for
efficiency concerns. Any PIR-based technique needs to access all the data which is available to a
user in the cloud. This is very inefficient in any large scale system [Cao&11]. Had the technique
been included, it would have prevented full utilisation of the performance offered by the cloud.
Thus, the reason for utilising a cloud for the dynamic collaboration environment would have been

invalidated.
Table 7.1: Comparison of SDCD, CHAC, and UCDS.
Environment Category Property SDCD | CHAC | UCDS
User Data confidentiality + + ++
Data integrity +++ +++ +++
User . Data availability ++ ++ +++
Security —
Non-repudiation +++ +++ +++
Auditability - +++ +++
Cloud User-to-user anonymisation +++ +++ +++
User addition and revocation | +++ +++ +++
User Fine-grained access control + ++ +++
Access control ;
Access control delegation - +++ +++
Many-to-many file sharing +++ +++ +++
Scalability +++ +++ +++
Performance o
Durability +++ +++ +++
Data confidentiality
++
Durabilitk/\\.@ata integrity
#~ 7\
V4
V4
0”’
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Figure 7.2: Graphical comparison of SDCD, CHAC, and UCDS.
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Future work

During the progress of this thesis several interesting areas for further work have been identified.
The areas are divided into sections for SDCD, CHAC, UCDS, and one for areas which do not
directly fit into any of the three. For some of them, suggestions on how they can be approached
are given.

7.3.1 Secure Dynamic Cloud-based Data-sharing

Currently users have two destinct key pairs, one for signing data and one for enabling proxy en-
cryption. The key pair used for proxy encryption has been generated to have certain cryptographic
properties, but this key pair might also be suitable for digital signing. Using a single key pair for
both operations would simplify key management and distribution. A user’s public key is required
to be located in the cloud to enable the cloud to verify integrity. However, it is unknown whether
the CSP is able to deduce the master private key from the user’s PRE token and the master public
key. Additional research is necessary to resolve this.

Another area for further study is improving the capability of the dynamic collaboration envi-
ronment to handle multiple simultaneous DOs. This should include mechanics to revoke a DO’s
master key pair once a DO leaves the collaboration environment, without adversely affecting other
authorised entities which access the environment. The potential benefit is a truly dynamic collab-
oration environment where all parties are made equal by removal of the constraint of having a
single entity in complete control. Each DO will be independent from each other with the same
properties and abilities as the DO in the original conceptual design thus, no liabilities or violations
of anonymisation will be introduced from this approach in future works.

7.3.2 Cloud-based Hierarchical Access Control
7.3.2.1 Improved confidentiality

Introducing the access control model with its role hierarchies, users, and data entities requires that
information on these entities are stored in the cloud. Information such as user and role names are
encrypted while residing in the cloud, but to function correctly the cloud must be able to identify
all entity types and thus, the identifiers of roles, users, and data entities cannot be encrypted.
Although identifiers reveal nothing by themselves the structure of users, roles, and data entities
contain many identifiers and by examining the structure itself, information might be deduced.
To improve confidentiality, the CSP should be prevented from deducing information from the
structure.

When users access data stored in the cloud, data confidentiality is ensured by having data en-
crypted until it reaches the users’ environments. To further improve confidentiality of data stored
in the cloud, the CSP should be prevented from analysing the access patterns of users. Access
patterns can be statistically analysed to find tendencies which in turn may disclose information.
A potential solution to resolve this problem could be the introduction of an additional cloud acting
as a proxy, redirecting user requests to the actual cloud storage. This could potentially hide the
identity of users requesting data though it is still uncertain if this will suffice to hide all details of
the origin of the user request as the storage cloud would still need to validate the request through
its access control model.

The aspect of Rule Based Role-Based Access Control (RB-RBAC) [Al-Kahtani&02] which allows
automated role delegation is an interesting aspect that would be worth considering as a future
addition to CHAC. It could potentially reduce the time spent managing and delegating roles and
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allow users to focus on other activities.

7.3.2.2 Dedicated audit roles

By adding auditability to CHAC, selected users are able to audit actions and events associated
with users, roles, and data entities. The current concept only allows auditing by users with root
roles assigned. As a consequence, users who need to perform audits are also assigned all the
permissions of a root role. As a future improvement, it is desirable to separate the ability to
perform audits from the root roles.

From a usage perspective, an ideal solution would be to have the concept of a dedicated audit role.
The audit role would exist at the same level in the role hierarchy as root roles, but with read-only
access to all data. This way users assigned to the auditing role would have the required knowledge
of the entire role hierarchy and the entities within to perform effective audits while at the same
time being prevented from modifying anything.

7.3.2.3 Improved life cycle management

The life cycle of CHAC involves creation of multiple PRE tokens and key pairs. When a user
adds another user, the number of re-encryptions required for the new user to access data entities
grows. This influences performance. A potential way to mitigate this is by performing “structural
cleanups”. If the root of the hierarchy is no longer needed its children are examined recursively.
If only one branch connected to the root of the hierarchy is needed, then the root and its other
children can be removed. This should be transparent to the user. However, the challenge of this
approach is to determine when a key pair is no longer needed. A different approach for solving
this issue could be a many to many relationship between key pairs. However, this would result in
an exponential amount of PRE tokens for each user in the system, which in turn would severely
impact performance and scalability in terms of numbers of users. Therefore this approach is not
recommended.

Another issue in CHAC is that a single user will have many key pairs if the user has been added
multiple times. Each of the key pairs have an associated PRE token stored in the cloud. When
re-encrypting a data entity for the user, the cloud needs to select one of these PRE token. A
potential solution is to create an explicit association between a key pair and a PRE token in the
cloud. The association is established when the key pair and PRE token is created, for instance by
a single randomly generated identifier. The identifier is saved in the cloud along the PRE token
and given to the user alongside his new key pair. When the user accesses data entities in the cloud,
the identifier of the key pair he wishes to use is sent to the cloud and indicates the PRE token to
use.

Finally, multiple signing keys exist for a user which has been added multiple times. When verify-
ing integrity, the cloud needs to determine which signing key pair to use. When verifying integrity
the issue of selecting the correct signing key can be solved by associating each data entity directly
to its corresponding signing key instead of the authoring user.

The issues described regarding life cycle management are not addressed in the design of CHAC
nor the CHAC prototype. Improving upon the design of CHAC to solve the issues, for instance by
the approaches suggested above is a subject for future work.
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7.3.3 User-Centered Data Security
7.3.3.1 Supporting resource types

Directions of future work for UCDS includes researching a new approach towards achieving better
and wider resource type support in the DRM client. This is currently the main issue in UCDS.
Each resource type requires individual implementation to support viewing and editing through
the client, which drastically lowers usability. We suggest an implementation approach using a
controlled virtual machine (VM) to act as a DRM client. The VM would run an entire operating
system thereby being able to support and run commercial applications originally associated with
the corresponding resource. As an example, Microsoft Word could handle its associated textural
resource types within the VM. This would require the VM to be sealed off so information cannot
be extracted from the VM except when sending data to the cloud. This approach would improve
usability due to the different resource types being associated with their corresponding applications.

7.3.3.2 Prototype Implementation

Although the required effort is substantial, it would be valuable to validate the theory and concepts
of UCDS by a proof of concept prototype. If the existing prototypes of SDCD and CHAC are used
as the foundation, UCDS could be integrated with the existing cryptographic schemes and access
control model.

7.3.4 General improvements

A rather large, yet potentially significant improvement of the dynamic collaboration environment
would be the ability to control access to individual parts of a given data resource. This increase
in access control granularity allows collaboration at an even more detailed level. Specifically, this
would allow different access rights to different sections in documents.

Personal learning outcomes

Working on this thesis has been a first-time experience in conducting research in academia for all
the authors of this thesis. Through the thesis, the authors have gained the ability to get a quick
overview and extract important details of scientific research papers. This ability is essential as
some research papers are of great value while others provide little to no useful information. One
of the primary personal learning outcomes of the thesis is that the authors now have a much deeper
knowledge of what a cloud is, what its properties are, and how they can be utilised.

The acquired knowledge of cryptography and in particular the cryptographic schemes used in the
thesis will undoubtedly prove invaluable in the future. This knowledge is relevant in the current
IT landscape where security is an increasing concern.
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7.4.1 Consequences of being a group

Being a three-person group required focus on aligning the individual understandings and percep-
tions of the thesis goals to make sure it was properly reflected throughout the thesis. This required
additional rework and rewriting of chapters. The extent of this thesis also required hard work and
coordination while adapting to English as the written language.

Group discussions have been held several times during the thesis to make sure all agreed on the
common goal and that the best possible solution or approach was chosen. Aligning the expecta-
tions of three people increased the workload, but having the time and resources of three people
available for proofreading, reviewing, and general quality improvement has been invaluable. Es-
pecially, as reviews performed by others than the main author often tend to be more thorough.

To better support three persons simultaneously working on the thesis, the work was parallelised
and each author was assigned primary areas of responsibility. This helped optimise the work effort
and has helped maintain good progress throughout the thesis.

In addition to our internal thesis group discussions, weekly meetings have been conducted with
attendance of the thesis supervisor and co-supervisor when possible. This has provided valuable
feedback on the written work and suggested approaches for the further progress on the thesis.
Through these meetings questions and uncertainties were addressed and clarified. The meetings
also provided a good foundation for keeping the supervisor and co-supervisor up-to-date regarding
the progress of the thesis. Additionally, these meetings provided new perspectives on topics in the
thesis because of the supervisors’ experience and different perspectives. This taught us to direct
our attention to matters and approaches, that had not previously received sufficient attention, and
encouraged us to explain concepts in a simpler and more clear manner.

7.4.2 Shifting focus

The main focus of the thesis has changed a lot since the initial work was conducted. Some of
the challenges originally expected had already been completely or partially solved in research
works by others. Thus, the focus shifted towards solving the shortcomings of these research
works by combining different approaches into a single and more refined solution. This has been
necessary to distance our work from what has already been researched and published. The original
goal of achieving data security in a cloud environment through architectural approaches, while
preserving other software qualities, has not changed. However, techniques for achieving the main
goal have become more refined as knowledge has been gained by analysing related research and
by validating the presented designs by creating proof of concept prototypes.

Choosing cryptography to achieve data confidentiality and integrity required the acquisition of
extensive knowledge on this subject. Although extensive insight on the mathematical algorithms
operating behind the different cryptographic schemes was not necessary, it was necessary to fully
understand the key management and general terms and properties of the schemes. This included
understanding the abilities and liabilities associated with each cryptographic scheme to find the
optimal combination. For example, the choice regarding the use of symmetric or asymmetric
encryption and how the decision of using either would impact the result.

7.4.3 Unforeseen synergies

During development of the proof of concept prototype for validating SDCD, an issue emerged.
A third party library implementing the vital PRE concept was originally intended to be used to
perform re-encryption of data when it is first put into the cloud and again when it is transferred
from the cloud to the user requesting the data. The third party library implemented non-transitive
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proxy encryption and was only capable of re-encrypting data once. This rendered the proof of
concept prototype unable to validate the original design of SDCD. This resulted in brainstorming
on how to overcome the issue. The solution to the re-encryption issue consisted of changing
the way the proxy encryption scheme was being used in SDCD. This, in turn, opened up for the
possibility of allowing data integrity checks to be performed by the cloud. The lesson learned from
this is that it is not always obvious how and which processes end up influencing a solution. To get
the best possible solution multiple processes need to be performed and multiple perspectives need
to be considered.

7.4.4 An engineering perspective

Through the education of becoming masters in software engineering, we have been trained to
divide a seemingly impossible problem into smaller solvable parts. This methodology has been
applied throughout the work on this thesis.

As an example, to define and describe CHAC, initially the thesis goals were considered to deter-
mine the purpose and contribution of CHAC to the thesis. Several concepts such as role-based
access were deemed suitable and they were combined into a single solution. This solution was
complex and perhaps “over-engineered”, but after a few iterations it was simplified to what CHAC
currently is. The current design is simpler and also easier to communicate while still fulfilling the
intended thesis goals. This process has added to the skill of analysing requirements and context to
come up with an appropriate solution.

Final remarks

The goals of this thesis were to design a dynamic collaboration environment leveraging the ben-
efits of a cloud environment, and to improve our skills and knowledge on this subject. We are
pleased with this thesis successfully meeting the specified goals. The only shortcoming being
the lack of support for confidentiality at the highest defined level. Achieving the highest level of
support has been noted for future work.

The dynamic collaboration environment has been built in increments to constitute a complete
solution. By splitting up the collaboration environment into multiple sub-solutions, in essence,
three distinct designs have emerged. Furthermore, the properties of the dynamic collaboration
environment are supported by a generic case and as such, the designs are generic in nature and
bring value to many different scenarios. Having multiple distinct and generic designs enable a
potential organisation in need of a dynamic collaboration environment to select the solution which
best matches its needs.

The conceptual design of the dynamic collaboration environment has been constructed through
the use of many different techniques and approaches. By working with the subject for an exten-
sive period, we have become confident in our skills and our acquired knowledge of performing
scientific research, presenting solutions, and communicating designs and concepts.

In conclusion, using a cloud holds great potential as an on-line and practically always available
storage platform, but before widespread storage of sensitive data can begin, security concerns need
to be addressed. This thesis presents a solid design addressing these concerns.

Through the points raised in the future works section we sincerely hope that others will incorporate
and improve upon our designs, giving this field of research the attention it deserves.
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Appendix

Terminology

ABAC: Attribute-Based Access Control. A control model based on attributes that are associated
either with the resource requested or the entity which is requesting access.

ABE: Attribute-Based Encryption. Fine-grained access control model based on public key en-
cryption associated with an access control policy.

ACL: Access Control Lists. Access control model where authorisation is based on mappings
between entities requesting access to a resource and the actions the entities are allowed to
perform on a particular resource.

AES: Advanced Encryption Standard. NIST standardised symmetric encryption scheme used
globally. It is classified for top secret by the National Security Agency of the United States.

API: Application Programming Interface. Specification of a set of software interfaces and classes
which enables software components to communicate.

ASE: Asymmetric Searchable Encryption. Asymmetric encryption scheme which gives confi-
dentiality while allowing searching the ciphertext for keywords.

CIA: Confidentiality, Integrity and Availability. Abbreviation covering all three terms.

CP-ABE: Ciphertext-Policy Attribute-Based Encryption. Special kind of ABE where a user’s
private key is associated with attributes and an access structure over attributes is associated
with data.

CSP: Cloud Service Provider. Refers to any company or organisation from which you can buy
cloud services. Examples of actual cloud service providers are Amazon, Goggle and Mi-
crosoft.

Data Entity: Single unit of data used in S1 where it is essentially a wrapper of a file adding
various meta data.

DO: Data Owner. Central entity in S1 which is responsible for initialising the system as well as
granting and revoking access for users.

DRM: Digital Rights Management. System specialised in managing data access control. Is often
used to protect audio and video.

DSA: Digital Signature Algorithm. NIST standardised digital signature scheme.
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ECC: Error-Correcting Code. Any algorithm which allows transmitting data over unreliable
or noisy communication channels while preserving integrity. This is usually achieved by
adding redundant information and restoring the original message on the receiving side.

ESE: Efficient asymmetric Searchable Encryption. ASE schemes which support more efficient
searching than normal ASE schemes do.

IaaS: Infrastructure as a Service. Cloud service layer at the bottom of the service layer stack.
Consists of pools of storage and computing resources partitioned using virtualisation.

KP-ABE: Key-Policy Attributed-Based Encryption. Special kind of ABE where data is asso-
ciated with attributes and a user’s private key is associated with an access structure over
attributes.

MD5: Message Digest 5. Widely used cryptographic hash scheme producing a 128bit hash value.
Designed in 1991 and is no longer considered suitable for security purposes as it is not
collision resistant.

MR+MW: Multiple Readers+Multiple Writers. Term used to describe a data sharing solution
supporting both multiple readers and multiple writers at the same time.

MR+SW: Multiple Readers+Single Writer. Term used to describe a data sharing solution sup-
porting multiple readers at the same time, but not only a single writer.

MSSE: Multi-user Searchable Symmetric Encryption. Searchable encryption scheme based on
SSE, but combined with broadcast encryption to obtain support for MR+SW.

MWA: Microsoft Windows Azure. Commercial cloud platform provided by Microsoft.

NIST: National Institute of Standards and Technology. United states federal technology agency
working with the industry to develop and apply technology, measurements, and standards.

PaaS: Platform as a Service. Cloud service layer building on the IaaS layer. It provides operating
systems and application frameworks.

PBAC: Policy-Based Access Control. Model that standardises of the ABAC model in an enter-
prise environment which may require compliance with legislation.

PRE: Proxy Re-Encryption. Encryption scheme which allows a message from being encrypted
with one key pair to being encrypted with another key pair.

PIR: Personal Information Retrieval. A technique allowing a user to retrieve an item from a
server without revealing which item is being retrieved.

PRL: The JHU-MIT Proxy Re-cryptography Library. PRE prototype implementation created by
researchers at Johns Hopkins University and Massachusetts Institute of Technology.

RBAC: Role-Based Access Control. Access control model that allows grouping of different enti-
ties into categories based on similar access needs to fulfil particular roles.

REL: Rights Expression Language. Machine-processable language used to express rights in a
DRM system.
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Saa$: Software as a Service. Cloud service layer at the top of the cloud service stack. Consisting
of cloud applications with individual purposes built to leverage the automatic scaling of the
cloud.

SSE: Symmetric Searchable Encryption. Searchable encryption based on symmetric encryption
while allowing searching of the ciphertext for keywords.

SR+MW: Single Reader+Multiple Writers. Term used to describe a data sharing solution sup-
porting multiple writers at the same time, but only a single reader.

SR+SW: Single Reader+Single Writer. Term used to describe a data sharing solution supporting
only a single reader and a single writer.

UUID: Universally Unique IDentifiers. UUID is an identifier standard used in software. The size
of a UUID is 128bit and the standard defines how it should be generated to allow generation
of unique identifiers without central coordination.

WCF: Windows Communication Foundation. API part of the Microsoft .NET framework 3.0 for
building distributed and service-oriented systems.

Xaa$: Anything as a Service. Term used to describe how virtually anything in some situations
are considered services which may be offered by a cloud.

XACML: eXtensible Access Control Markup Language. Standard which defines a declarative
access control policy language implemented in XML and a processing model describing
how to evaluate authorisation requests according to the rules defined in policies.

XML: eXtensible Markup Language. Markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable.
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B.1.

B.2.

Appendix

Proof of concept prototype details

Introduction

This appendix constitutes a brief technical overview of the proof of concept prototypes created
to validate the conceptual designs of Secure Dynamic Cloud-based Data-sharing (SDCD) and
Cloud-based Hierarchical Access Control (CHAC). The purpose of this appendix is to present
the interested reader with extra information regarding the overall design of the SDCD and CHAC
prototypes.

Secure Dynamic Cloud-based Data-sharing prototype

In this section a brief technical overview of the prototype created to validate SDCD is presented.
An overview of the prototype is shown in Figure B.1. The figure shows the Data Owner (DO)
and two users. They use an administration client and a user client to access data stored in a cloud.
The cloud exposes a Proxy Re-Encryption (PRE) service and a storage service. The PRE service
handles generation of key pairs, encryption, re-encryption, and decryption. The storage service is
responsible for storing data entities and ensuring their availability.

The SDCD prototype has been developed using the Microsoft .NET framework and has been
written in C#.

The content and relations of entities used in the prototype is presented in Section B.2.1 after which
the operations of the prototype is described in Section B.2.2. Finally, persistence is described
in Section B.2.3 and the implementation effort, put into constructing the SDCD prototype, is
summarised in Section B.2.4.
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Figure B.1: Overview of the SDCD proof of concept prototype.

B.2.1 Structure

The SDCD prototype has a small model for describing a data entity and its related entities. Each
entity is implemented by a C# class. A user is not implemented as a class. Users exist only as
a particular instance of the System.Guid structure of the Microsoft NET framework which

represent their identifier.

Signature
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1
FilePayLoad : Attribute
1 1| DataEntity | 1 *
Content << > Id
Name d Keyword
Size
1
1

AesEncryptioninfo

InitialisationVector
Key

Figure B.2: Entity Relationship diagram of a data entity.
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Operations

B.2.2 Operations

SDCD defines a number of operations, but not all of them are implemented as part of the SDCD
prototype. This section describes the implemented operations. Sequence diagrams have been
created for some of them.

System initialisation: Figure B.3 shows an overview of the system initialisation. The DO ini-
tialises the system by using the administration client. His identifier is generated from his
name and sent to the cloud which stores the identifier for future authentication of the DO.
Finally the DO’s master key pair is generated.

Administration client Storage service Key and token storage PRE service
I

Initialise system, !

1

Generate DO identifier !
I
I
I
Initialise system | |
L4

Initialise system
L4

_______________ T]

]

T

I

I

1

Save master key 1
pair to XML file !
I

1

1

]

I

I

U g G |

Figure B.3: Dynamics of how the system is initialised in the prototype.

User addition: The DO adds a new user by selecting the master key pair and generates an iden-
tifier for the user based on the user’s name. Then a signing key pair, a PRE key pair, and a
PRE token is generated for the user. The user’s identifier and PRE token key pairs are then
sent to the cloud and given to the user as defined by the conceptual design of SDCD. In this
process, the cloud authenticates the DO and adds the user. Figure B.4 shows a screenshot
from the administration client of the SDCD prototype where a user is being added.

o Cloud Storage Adm[nislmti_ =NaEN X

General Options | Onetime setup system

Pick Master keys

Erter usemame

| Revake userl

Caral
Id:  6b052317-3257-330F-6713-eB0171ebbd

Figure B.4: Screenshot of user addition in the administration client of the SDCD prototype.
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User revocation: The DO revokes a user by using the administration client to obtain a list of

identifiers for all current users. The DO correlates the received identifiers to actual users
himself as the SDCD prototype does not implement this step. He then revokes a specific
user by using the user’s identifier. When doing this, the cloud authenticates the DO and
removes the PRE token of the user. The public part of the user’s signing key pair is retained.

Figure B.5 shows a screenshot from the administration client of the SDCD prototype where
a user is being revoked.

-

ol Cloud Storage Administration (5
General Options I Onetime setup system | Add userl Revoke user
Existing users

4433d512-cdd 7-0923-574b-504 282133150 Refrash
2bc9d045-055-d25a-4d 30-56d 706774347

6b052317-3257-330F-6713-1fe6017 1ebbd

Generate test id
Bob
Id:  ZbcHd045-055-d25a-4d30-56d 78677437

Figure B.5: Screenshot of user revocation in the administration client of the SDCD prototype.

Data entity creation: To create a data entity, a user selects his keys and then the file he wishes

to upload to the cloud. One or more keywords are then associated with the file by the
user. A random AES key is generated and the file contents, file name, and keywords are
encrypted using symmetric encryption after which the keywords are hashed. The AES key
is then encrypted using the master public key and an identifier is generated for the data
entity. Finally the data entity is signed using the user’s signing key pair and transmitted to
the cloud. The cloud authenticates the user and verifies the integrity of the data entity. The
data entity is then stored in the cloud. Figure B.6 shows a screenshot of the user client of
the SDCD prototype where a data entity is being created by selecting and uploading a file.

a- Cloud storage prototype client - [ =& &_J
| Options | Download or delete data | Upload data |
Pick data for upload

Data:  CiUsers'Martin'Desktop Test' 1 Math.zip

Keywords

test Add Upload now
keyword

math

Zp Remove
test keyword

e

Figure B.6: Screenshot of data entity creation in the user client of the SDCD prototype.

Data entity modification: This is not implemented in the prototype. Data entities are immutable
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Data entity deletion: To delete a data entity, it must first be retrieved by searching which is
described below. Once data entities are found, the user requests the cloud to delete a data
entity based on its identifier.

Data entity searching: A user is able to search for data entities through the user client by select-
ing his keys and entering a search keyword. A search token is created from the keyword
and sent to the cloud. The cloud identifies data entities by comparing the search token to
identifiers of their associated attributes. The cloud then re-encrypts the AES keys of the
data entities and returns the data entities. The payloads of the data entities are omitted to
preserve bandwidth. The search operation is shown in Figure B.7.

[ User client | Storage service | | PRE service | Data storage

_ Search for data entity !

Select user keys

Generate search token

I
1
I
1
1
I
1
1
from search keyword 1
]
1
1
]

Find data entities

Find data entities N
T L4
| 1]
€-=mmmmmmmmmm - - T T mmmmmmmmmm -

I
T
For each found data entity) 1
I
I

Re-encrypt AES key
7]

K--=--=-=-=------- T

I
T
For each found data entity 1

I
Decrypt AES key
T

:| Decrypt file name and keywords
1

Show search results

Save file from data entity !

Get data entity payload,
L4

Decrypt payload and

write payload to file

Figure B.7: Dynamics of how a data entity is searched for and how its payload is saved.

At the user client the AES keys are decrypted and then used to decrypt the file name for each
data entity, which is then presented to the user. To save a file encapsulated in a data entity
the user selects the corresponding file name. This results in the payload of the chosen data
entity being downloaded, decrypted using the corresponding AES key, and finally written
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to a file in the user’s environment. Figure B.8 shows a screenshot of a search operation
performed using the user client.

-

adl Cloud storage prototype client =HRCE X
Options | Download or delete data | Upload data |

Search keyword  test

Files

Mame Size Save Delete Werify Integrity
T TN | o [ e
£7b618... libpre.pdb 1436688 | Save || Dele= || Verfy Im=griy |

Figure B.8: Screenshot showing a search result for the keyword “test” in the user client.

Data entity integrity verification: The process of data entity integrity verification is shown in

Figure B.9. To verify the integrity of a data entity, data entities must be searched for ac-
cording to the operation described above. Once data entities are found, the user requests the
cloud to verify integrity based on the identifier of a data entity. The cloud authenticates the
user and looks up the public sign key of the author of the data entity. The data entity is then
found and its integrity is verified. Finally, the result of the verification is sent to the user.

User client Storage service Data storage | | Key and token storage
I

_ Verify integrity !

I
I I
X - .
Data entities are already Verify integrity, ! | :
searched for and the Verify existence of user's PRE token, !
results are shown to T 7
the user VR o __
Find authors sign Ipubllc key L

Verify signature!
I

|
1
1
K-=-==-=--=---- |
!
|
|

Figure B.9: Dynamics of how the integrity of a data entity is verified in the prototype.

Data entity author authenticity verification: This is not implemented in the prototype. There-
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Persistence

B.2.3 Persistence

The SDCD prototype stores data entities and their related information in the cloud. The data entity
payloads are stored in separate files and the remaining meta-data regarding data entities are stored
using eXtended Markup Language (XML) files. Several fields of the information associated with
a data entity is binary. In the XML files this information is encoded. Examples of the XML files
stored in the cloud by the SDCD prototype can be seen below.

Some of the binary values associated with a data entity are large and in the examples below, they
have been truncated to fit the page. Code Listing B.1 is an example of the information stored about
users and code Listing B.2 is an example of the information stored about a data entities. From the
examples it can be seen that while the XML files reveals structural information, they do not reveal
information such as the names, actual keywords, or payloads of the stored data entities.

<?xml version="1.0"7?>
<UsersMetadata xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<DataOwnerId>44aad512-cdd7-0923-974b-50428e133190</DataOwnerId>
<UserMetadata>
<UserMetadata UserId="44aad512-cdd7-0923-974b-50428e133190">
<DelegationToken>QAAAAD43x+ ... CED261Q==</DelegationToken>
<SignPublicKey>BgIAAAAIAABE ... uyKN2EodgB8</SignPublicKey>
</UserMetadata>
<UserMetadata UserId="2bc9d045-05£9-d25a-4d30-56d7867743d7">
<DelegationToken>QAAAAEYVNT ... 6HKt/Ww==</DelegationToken>
<SignPublicKey>BgIAAAAIiAABE ... 47N13RnuQxe</SignPublicKey>
</UserMetadata>
<UserMetadata UserId="6b052317-3e57-330£f-6713-1fe60171ebb4">
<DelegationToken>QAAAACxgVY ... tvvOG5g==</DelegationToken>
<SignPublicKey>BgIAAAAiAABE ... NmZBan4eFVj</SignPublicKey>
</UserMetadata>
</UserMetadata>
</UsersMetadata>
S
Listing B.1: Example of an XML file storing information about users in the SDCD prototype.
<?xml version="1.0"?>
<StorageMetadata xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Entities>
<EntityMetadata>
<Id>b0cdc830-66a5-44f1-b645-ala9644be9fc</Id>
<Name>7WMWFmM13N3YGdhzrIlcbAQ==</Name>
<Size>34304</Size>
<Attributes>
<EntityAttribute Id="a383b420-90b4 ... ae02db930429">
<Keyword>5/P996umfoCYL3JkpCsHWg==</Keyword>
</EntityAttribute>
<EntityAttribute Id="f87be32b-a2cl ... c4b8700cl45d">
<Keyword>6RQAGASfXxtkhJvUQnSirw==</Keyword>
</EntityAttribute>
<EntityAttribute Id="00bc84ba-ea42 ... 31992a8d66d5">
<Keyword>iEQROL6cUfEeEJNNpol3jw==</Keyword>
</EntityAttribute>
</Attributes>
<AesKey>AUAAAAAZRHtd ... d8Z8kVUBS8gfGKTAmMbSGBTk=</AesKey>
<AesIV>AUAAAACGECKSp ... IBYHF6zEliKspvW/KCwsIOMI=</AesIV>
<Signature>acC4Fb080 ... g4I3CgQzZUYvt4cedgnQ==</Signature>
</EntityMetadata>
<EntityMetadata>
<Id>e7b618ed-bd3b-4a50-b28f-96£9d2£434a0</1d>
<Name>o0s/nPfpZkD0GPQ8pNPyydQ==</Name>
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<Size>1436688</Size>
<Attributes>
<EntityAttribute Id="a383b420-90b4 ... ae02db930429">
<Keyword>gFDI9EQHPEi148Ie5/vIP8CQ==</Keyword>
</EntityAttribute>
<EntityAttribute Id="cld4b5cd-2c7d ... 48a39309cal4">
<Keyword>igxr4BeeMJSiB5NKuAcz8Q==</Keyword>
</EntityAttribute>
<EntityAttribute Id="88cc54db-2a7e ... 631e4dl58e71">
<Keyword>Nf/xFcmoePet 9aVvTu7QRQ==</Keyword>
</EntityAttribute>
</Attributes>
<AesKey>AUAAAAAYDMME ... nRdofsjttMtopRagMWwjXnXk=</AesKey>
<AesIV>AUAAAAAtOZRUw ... wfcqgZlJoPWUJIxJEyxVWt/fy0=</AesIV>
<Signature>UHA+UsH47 ... m2UkfIThLuA5+Ved4Z4g==</Signature>
</EntityMetadata>
</Entities>
<Attributes>
<AttributeMetadata>
<AttributeId>a383b420-90b4 ... ae02db930429</AttributeId>
<EntityIds>

<EntityId Id="b0cdc830-66a5-44f1-b645-ala9644be9fc" />
<EntityId Id="e7b618ed-bd3b-4a50-b28f-96£9d2f434a0" />
</EntityIds>
</AttributeMetadata>
<AttributeMetadata>
<AttributeId>f87be32b-a2cl ... c4b8700cl45d</AttributeId>
<EntityIds>
<EntityId Id="b0cdc830-66a5-44f1-b645-ala9644be9fc" />
</EntityIds>
</AttributeMetadata>
<AttributeMetadata>
<AttributeId>00bc84ba-ead2 ... 31992a8d66d5</AttributelId>
<EntityIds>
<EntityId Id="b0cdc830-66a5-44fl1-b645-ala9644be9fc" />
</EntityIds>
</AttributeMetadata>
<AttributeMetadata>
<AttributeId>cld4b5cd-2c7d ... 48a39309cald4</Attributeld>
<EntityIds>
<EntityId Id="e7b618ed-bd3b-4a50-b28f-96£9d2£434a0" />
</EntityIds>
</AttributeMetadata>
<AttributeMetadata>
<AttributeId>88cc54db-2a7e ... 631led4dl58e71</Attributeld>
<EntityIds>
<EntityId Id="e7b618ed-bd3b-4a50-b28f-96£9d2£434a0" />
</EntityIds>
</AttributeMetadata>
</Attributes>
<Authors>
<AuthorMetadata>
<AuthorId>2bc9d045-05£9-d25a-4d30-56d7867743d7</AuthorId>
<EntityIds>
<EntityId Id="b0cdc830-66a5-44f1-b645-ala9644be9fc" />
<EntityId Id="e7b618ed-bd3b-4a50-b28f-96£9d2£434a0" />
</EntityIds>
</AuthorMetadata>
</Authors>
</StorageMetadata>

Listing B.2: Example of an XML file storing information about data entities in the SDCD proto-

type.
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Implementation effort

B.2.4 Implementation effort

The SDCD prototype successfully validates the conceptual design of SDCD. This is done by us-
ing different technologies, frameworks, and platforms and by writing and compiling many lines
of code. The prototype uses a PRE library implementing a PRE scheme described by Ateniese et
al. [Ateniese&06]. The implementation of the PRE scheme is done by Ateniese et al. and is avail-
able under the name: “The JHU-MIT Proxy Re-cryptography Library” (PRL) [Green&07]. This
library in turn uses the “MIRACL library” which is a commercial third-party library [CertiVox&12].
The MIRACL library was compiled from its source code which has not been modified for the use
in the SDCD prototype. The PRL library, as it was obtained from its authors, contained compila-
tion errors which we fixed, however, most of the source code for the library has not been modified.
Finally several lines of code has been written specifically for the SDCD prototype. Except for code
which is part of the Microsoft .NET framework, Table B.1 presents an overview of the amount
of code used to construct the SDCD prototype. The table does not show the code generated
by tools used to design the user interface of the administration and user client. This would add
approximately 1100 additional lines of code for the SDCD prototype. In total, the effort for
developing the SDCD prototype was approximately two person-weeks.

Table B.1: Approximate number of lines of code in the SDCD prototype.

Area of prototype Language | Lines of code Description

MIRACL library C ~ 32000 Commercial third-party library used by
the PRL library.

PRL library C/C++ ~ 3800 Library implementing the PRE scheme
used by the SDCD prototype.

The code we produced | C# =~ 4250 Code written specifically for the SDCD
prototype.

Total Mixed ~ 40050 Total number of lines of code compiled
for constructing the SDCD prototype.
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Cloud-based Hierarchical Access Control prototype

The CHAC prototype builds upon the SDCD prototype and extends its existing functionality to
support fine-grained access control and access control delegation. An overview of the CHAC
prototype can be seen in Figure B.10. In this figure, the data owner and two users use the adminis-
tration client and user client to interact with the cloud. Like in the SDCD prototype, the cloud has
two services and stores data entities, but in the CHAC prototype the cloud also stores information
regarding roles.
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Figure B.10: Overview of the CHAC proof of concept prototype.

B.3.1 Structure

The CHAC prototype uses the same definition of a data entity as the SDCD prototype. Figure B.11
shows the part of the prototype’s model which is related to a data entity. The CHAC prototype
extends the SDCD prototype by defining roles which govern access to data entities. The CHAC
prototype also has a user entity. Figure B.12 shows the relationships in the CHAC prototype.
It shows a many-to-many relationship between roles and users and a one-to-many relationship
between roles. Thereby, the concept of sub-roles is modeled.

B.3.2 Operations

CHAC defines an additional number of operations extending SDCD. Not all of the operation are
implemented as part of the CHAC prototype. This section describes the operations that have been
implemented. Sequence diagrams and screenshots have been created for some of these operations.
Through the administration client a number of operations are available. The client is shown in
Figure B.13.
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Figure B.11: Entity Relationship diagram of a data entity.
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Figure B.12: Entity Relationship diagram of a data entity.

Create sub-role: Figure B.14 shows how a sub-role is created. This operation allows a user, with
the appropriate permission, to create additional sub-roles by selecting the role to base the
new sub-role on. Additionally, the user must select a subset of permissions which the sub-
role is granted. The information is then sent to the cloud. When the sub-role is created it
is shown in the role hierarchy. The permission details of a role can be see in Figure B.13
where the current permissions of the selected Role AB is shown.

Update sub-role: Existing roles can be updated by either adding or removing some of its permis-
sions. Adding permissions is still limited to a subset of the permissions of the parent role of
the role being edited. If permissions are revoked this change is cascaded down to sub-roles
of the role being edited. This is done through use of the administration client.

Delete role: Deletion of roles is also possible through the administration client. A role is selected
and the “Delete role” option is used. Sub-roles of a role being deleted are attached to the
parent of the role being deleted. Any users assigned to the role being deleted are removed
from the role. If a user is not assigned to any other roles this user is removed from the
hierarchy.
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Figure B.13: Screenshot showing the administration client used for role and user management.
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Figure B.14: Dynamics of how the roles are created in the prototype.

Add user to role: Figure B.15 shows a sequence diagram where the process of adding a user to
a role is shown. After selecting a role in the hierarchy a user can be assigned to this role,
provided the user trying to add him has the permission to perform this action.

Remove user from role: Users can also be removed from roles. To do so, a user must be selected
in the role hierarchy and then the “Remove user from role” option must be selected, see
Figure B.13. This removes the user from the role. If the user is not assigned to any other
roles he is removed from the hierarchy. Again, only users with permission to perform this
action can remove other users.

Create private hierarchy: The prototype also allows creation of private role hierarchies. This is
done by creating a new role. If the user creating the new role is allowed to create private
hierarchies, he can mark the new role as “root role” and through this root role the new
private hierarchy is created. The user is then automatically assigned this root role.
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Figure B.15: Dynamics of how the roles are assigned to users in the prototype.

Auditability: This is not implemented in this prototype. Therefore, auditing of entities in the
collaboration environment is not supported.

The user client created as a part of the SDCD prototype has been extended in the CHAC prototype.
The following operations have had their features extended:

Create data entity: Fine-grained data access is now implemented as a part of the user client.
Figure B.16 shows options made available. When a user is uploading a new data entity
he can choose which roles should have access to the data entity. If access is granted to a
specific role it can be configured to only allowing read-only access.

Cloud storage pr:
| Options | Download or delete data | Upload data

Pick file for upload

Fle:  C:\Users'\Adam'Desktop'Master pdf
Keywords Foles
Selected MName Root Readonly

-l-hESis
= IR

Add
leeyword
Remove
keyword

Upload now

Figure B.16: Screenshot showing a user uploading a data entity.

Data entity search: Fine-grained data access has been implemented when searching for data en-
tities through the user client. The user will only be able to search for entities that are visible
to the role or roles that the user is assigned to. Read-only access is enforced in such a way
that users cannot delete or alter data entites that are marked as read-only. Figure B.17 shows
an example of a user attempting to delete a data entity. The role, through which the user is
attempting to delete the data entity, has read-only access to the data entity and thus it cannot
delete the entity.
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Figure B.17: Screenshot showing a user attempting to delete a data entity.

B.3.3 Persistence

Like in the SDCD prototype, the CHAC prototype also stores information in XML files. As
the information stored in CHAC has been extended to include roles, the information stored has
likewise been extended. Examples of the XML files used in the CHAC prototype can be seen
below.

Code Listing B.3 is an example of how user key pair information is stored. It is created by a
user and then sent to the specific user it is associated with. Code Listing B.4 is an example of
the data stored in the cloud containing information about roles, user, and data entities. From the
examples it can be seen that while the XML files reveal structural information, they do not reveal
information such as the names, actual keywords, or payloads of the stored data entities.

<?xml version="1.0"?>
<KeyCollection xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<PublicKey>QAAAAI1IfM8T9Im9JD ... /dkvIif4WMs6Klc=</PublicKey>

<PrivateKey>FAAAABrkgaQnwszlj ... EbRSjEeXoVB7blU</PrivateKey>

<SignKeys>BwIAAAAIAABEUIMyAAQ ... fPzYt70BiQ2/dfqgH/</SignKeys>
</KeyCollection>

Listing B.3: Example of an XML file containing user key pair and signing key. Used in the CHAC
prototype.

<?xml version="1.0"7?>
<StorageMetadata xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<DataOwnerUserId>5f0b00b5- ... -d294fc8eb7af</DataOwnerUserId>
<DataOwnerRoleId>5bd74c67- ... -7f0c6ff5126a</DataOwnerRoleId>
<Users>

<UserMetadata Id="5f0b00b5-6bdl1-1203-8e6e-d294fc8eb7af">
<Name>AUAAAACHYX2qqSw301Q2kp4 jELtVd9GgOgnbo=</Name>
<SignPublicKey>BgIAAAAiAABEU ... 3F8StinRC</SignPublicKey>
</UserMetadata>
<UserMetadata Id="44aad512-cdd7-0923-974b-50428e133190">
<Name>AUAAAABA65LIpdxycImR/04BW5SFG9IcVdr8=</Name>

<DelegationToken>QAAAAG/21i ... nDST7Cw==</DelegationToken>
<SignPublicKey>BgIAAAAIiAAB ... 5Sg30R/x57C</SignPublicKey>
</UserMetadata>

<UserMetadata Id="2bc9d045-05£9-d25a-4d30-56d7867743d7">
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<Name>AUAAAACAOfsMwIlwGnoMIy2Afhv0XgllglJ5X=</Name>

<DelegationToken>QAAAAARSH ... c0ZQFPw==</DelegationToken>
<SignPublicKey>BgIAAAAiAAB ... tsOg85xs9sR</SignPublicKey>
</UserMetadata>

<UserMetadata Id="6b052317-3e57-330£f-6713-1fe60171lebb4d">
<Name>AUAAAAAh7m7UN+RBBUKNEEK1AiPxkSxnWRA96=</Name>

<DelegationToken>QAAAACHIX ... gMjncyA==</DelegationToken>
<SignPublicKey>BgIAAAAiAAB ... 0BiQ2/dfgH/</SignPublicKey>
</UserMetadata>
</Users>
<Roles>

<RoleMetadata Id="5bd74c67-8bd0-4lea-b29c-7f0c6ff5126a">
<Name>AUAAAABidsCKy0ooUXH14AzuSXasjxlkvUn2=</Name>
<AssignUnassignRole>true</AssignUnassignRole>
<CanManageSubRoles>true</CanManageSubRoles>
<CanCreateRoot>true</CanCreateRoot>
<CanCreateUsers>true</CanCreateUsers>
<IsRoot>true</IsRoot>
<DataEntityPermission>ModifyContent</DataEntityPermission>
<ChildRoles>
<ChildId Id="3de5fb87-al3b-48a9-b6ec-219819969a0b" />
</ChildRoles>
<Users>
<ChildId Id="5f0b00b5-6bd1-1203-8e6e-d294fc8eb7af" />
</Users>
<DataEntities>
<EntityId Id="167f4fde-125f-4c29-aff2-b5364d254c4f" />
</DataEntities>
</RoleMetadata>
<RoleMetadata Id="3de5fb87-al3b-48a9-b6ec-21981996%a0b">
<Name>AUAAAACa/kWSXmYH1xasOGhXBF22CSeWcaZ5=</Name>
<AssignUnassignRole>true</AssignUnassignRole>
<CanManageSubRoles>true</CanManageSubRoles>
<CanCreateRoot>true</CanCreateRoot>
<CanCreateUsers>true</CanCreateUsers>
<IsRoot>false</IsRoot>
<DataEntityPermission>ModifyContent</DataEntityPermission>
<ChildRoles>
<ChildId Id="ed3d3d57-9d8b-49a8-8835-dd86c9761ff6e" />
<ChildId Id="4c41962c-2d49-457¢c-93dc-b96b3970175£f" />
</ChildRoles>
<Users>
<ChildId Id="44aad512-cdd7-0923-974b-50428e133190" />
</Users>
<DataEntities>
<EntityId Id="167f4fde-125f-4c29-aff2-b5364d254c4f" />
</DataEntities>
</RoleMetadata>
<RoleMetadata Id="ed3d3d57-9d8b-49a8-8835-dd86c9761ff6">
<Name>AUAAAABl+ibun+Y7TSIWJmWslgO9JQJVNn6V:</Name>
<AssignUnassignRole>true</AssignUnassignRole>
<CanManageSubRoles>true</CanManageSubRoles>
<CanCreateRoot>false</CanCreateRoot>
<CanCreateUsers>true</CanCreateUsers>
<IsRoot>false</IsRoot>
<DataEntityPermission>ModifyContent</DataEntityPermission>
<ChildRoles />
<Users>
<ChildId Id="2bc9d045-05f9-d25a-4d30-56d7867743d7" />
</Users>
<DataEntities>
<EntityId Id="167f4fde-125f-4c29-aff2-b5364d254c4f" />
</DataEntities>
</RoleMetadata>
<RoleMetadata Id="4c41962c-2d49-457¢c-93dc-b96b3970175f">
<Name>AUAAAAADB/VXg+jn+Eqqp9sHxz2H7VyY31wJ=</Name>
<AssignUnassignRole>true</AssignUnassignRole>
<CanManageSubRoles>true</CanManageSubRoles>
<CanCreateRoot>false</CanCreateRoot>
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<CanCreateUsers>false</CanCreateUsers>
<IsRoot>false</IsRoot>
<DataEntityPermission>ReadContent</DataEntityPermission>
<ChildRoles />
<Users>
<ChildId Id="6b052317-3e57-330f-6713-1fe60171lebb4d" />
</Users>
<DataEntities>
<EntityId Id="167f4fde-125f-4c29-aff2-b5364d254c4f" />
</DataEntities>
</RoleMetadata>
</Roles>
<Entities>
<EntityMetadata>
<Id>167f4fde-125f-4c29-aff2-b5364d254c4f</1d>
<AuthorId>44aad512-cdd7-0923-974b-50428e133190</AuthorId>
<Name>5iLOQt+n9c7Exd7gS9Bcdg==</Name>
<Size>7152768</Size>
<Attributes>
<EntityAttribute Id="e20191de- ... -lafa-6367a6ff865f">
<Keyword>6bmUltxD3Si0fFFsNo5Pzw==</Keyword>
</EntityAttribute>
</Attributes>
<AesKey>AUAAAABtgzBYSB/21Yy05B0y ... wdHANHL8XE=</AesKey>
<AesIV>AUAAAAAHOAANMVOCT7ThXPWjc+K ... yeJzVt6iLA=</AesIV>
<Signature>MdilyzEoXn7kCknxlTrB6 ... a6S7ag==</Signature>
</EntityMetadata>
</Entities>
</StorageMetadata>

Listing B.4: Example of an XML file storing information about roles, users, and data entities in
the CHAC prototype.
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B.3.4 Implementation effort

The CHAC prototype successfully validates most of the conceptual design of CHAC. Like for
the SDCD prototype, the CHAC prototype is built by using different technologies, frameworks,
and platforms. As the CHAC prototype builds upon the SDCD prototype, the code of the SDCD
prototype is reused. The MIRACL library and the PRL libraries are reused without modifications.
The code written specifically for the SDCD prototype has undergone only minor modifications.
Besides the code reused from the SDCD prototype, several lines of code has been written specif-
ically for the CHAC prototype to support its concept of roles and the associated functionality.
Except for code which is part of the Microsoft .NET framework, Table B.2 presents an overview
of the amount of code used in the CHAC prototype. The number of lines of code shown in the
table do not include C# code generated by using tools for designing the user interface of the ad-
ministration and user client. This would add another &~ 900 lines to the code produced for the
CHAC prototype. In total, the effort for developing the SDCD prototype was approximately one
person-week.

Table B.2: Approximate number of lines of code in the CHAC prototype.

Area of prototype | Language | Lines of code Description

MIRACL library C ~ 32000 Commercial third-party library used by
the PRL library.

PRL library C/C++ ~ 3800 Library implementing the PRE scheme
used by the SDCD prototype.

Inherited from the | C# ~ 4250 Code written specifically for the SDCD

SDCD prototype prototype.

Code we produced | C# ~ 1800 Code written specifically for the CHAC

for the CHAC pro- prototype.

totype

Total Mixed ~ 41850 Total number of lines of code compiled
for constructing the CHAC prototype.
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