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Abstract

We present a very simple, yet general algorithm for computing simultaneous,
minimum fixed-points of monotonic functions, or turning the viewpoint slightly, an
algorithm for computing minimum solutions to a system of monotonic equations.
The algorithm is local (demand-driven, lazy, ...), i.e. it will try to determine the
value of a single component in the simultaneous fixed-point by investigating only
certain necessary parts of the description of the monotonic function, or in terms
of the equational presentation, it will determine the value of a single variable by
investigating only a part of the equational system.

In the worst-case this involves inspecting the complete system, and the algorithm
will be a logarithmie factor worse than a global algorithm (computing the values of
all variables simultaneously). But despite its simplicity the local algorithm has some
advantages which promise much better performance on typical cases. The algorithm
should be seen as a schemata that for any particular application need to be refined
to achieve better efficiency, but the general mechanism remains the same. As such
it seems to achieve performance comparable to, and for some examples improving
upon, carefully designed ad hoc algorithms, still maintaining the benefits of being
local.

We will illustrate this point by tailoring the general algorithm to concrete exam-
ples in such (apparently) diverse areas as type inference, model checking, and strict-
ness analysis. Especially in connection with the last example, strictness analysis,
and more generally abstract interpretation, it is illustrated how the local algorithm
provides a very minimal approach when determining the fixed-points, reminiscent
of, but improving upon, what is known as Pending Analysis [19]. In the case of
model checking a specialised version of the algorithm has already improved on ear-
lier known local algorithms [2,1].

1 Introduction

Fixed-points arise everywhere in computer science, when giving semantics of programming
languages, in program analysis, in program optimization, in program verification, and
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many other situations. We will present a general algorithm for computing such fixed-
points in complete partial orders (cpo’s), and-hence lattices, of finite height. (Any poset
of finite height is trivially a cpo, but we stick to the term cpo because we will only apply
the finiteness property when it is strictly necessary.) The algorithm will be well-suited to
situations where the fixed-points belong to large products of cpo’s, and examples of type
inference problems, strictness analysis, and model checking problems will be shown to fit
into the general framework and yield efficient algorithms.

The simultaneous fixed-points will be described as solutions to sets of monotonic equa-
tions and the algorithm works on such descriptions in a local fashion, i.e. the algorithm
will compute the fixed-point ‘demand-driven’ or locally, assuming that only some of the
components of the fixed-points are really of interest, start from one such component and
investigate what is necessary to determine the value. In this respect it differs from most
fixed-point finding algorithms which tends to globally compute the complete fixed-point.
A notable example of such an algorithm is due to Kildall [8], which describes the algo-
rithm as solving a problem of dataflow analysis. We show how this, indeed very simple,
global algorithm in a version suitable for the present framework, is related to the local,
and show that the possible benefits of the local algorithm compared to the global has a
cost of a logarithmic factor in the worst-case, but the typical case would out-perform the
global algorithm.

The component of interest could be for instance a variable denoting ‘error’ in the
case of type inference, and hence the algorithm would only search locally for an error
in the program under consideration, without necessarily assigning types to all program
fragments. In the case of strictness analysis, this component will typically be a function
applied to one particular argument, which will then be computed without necessarily
computing the behaviour of the function on all arguments as would the global algorithm.

To be more precise, we will consider systems of equations on the following form:

Ly = fl{‘riuv"':‘rhal)
: (1)
Ty = fn(.'l.','n] Sty .T—‘.'nﬂn)
where for 1 < j <n,1 <k < a; wehave 1l < 4k < n. Associated with each variable z is
a set of values D, which we require to be a complete partial order (cpo) with a bottom

element denoted by Lp, and of finite height. For convenience and when there is no risk

of confusion we will write D; for D, and f,, for f;. We use s(z) to denote the tuple of
sons of z, i.e.

s(z;) = (zisy5-00n Tisa,)
and we use s!(z) to denote the set of parents of z, i.e. the set
s (2) = {z;|3k.s5(z;)i = z}.
Moreover, for 1 < j < n the function f; must be monotonic with type

fj:DgﬁX...XD ‘—>DJ-

]
Jay
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We refer to a monotonic equation system as the tuple (V, s, D, f), where V = (z4,...,z,)
is the tuple of variables, s the ‘sons of’ function, D = (Dy,...,D,) the tuple of value
domains,.and f = (fi,..., fa) the tuple of functions.

As it is well-known a monotonic equation system (1) has a minimum solution, the
minimum fixed-point of f, given by

uf = Uieafi(L) ' (2)
with the definition
P@ ==z
@) = f(fi2)

vielding an increasing chain 1 T f(1) C f3(L) C ..., where C is the ordering on the cpo
Dy % ... x Dy, and U is the least upper bound of increasing chains.

il

2 Algorithm

Tentatively the algorithm will proceed as follows. We associate with each variable z a
marking m(z), which denotes the current value of z. Initially the marking of all variables
will be ‘unknown’. We assign the variable of interest, z? say, marking L and puts 2% in a
set of active variables, for which the right-hand sides will be inspected to verify that the
current marking is identical to whatever the right-hand side evaluates to. In evaluating
right-hand sides we will always try to inspect as few of the sons as needed, utilizing that
the function might be determined by the current marking of only some of the sons. When
evaluating a right-hand side it might of course turn out that we do indeed need the value
of some sons, which will be assumed to have the value L and put on the list of active
nodes to be examined. In doing so, we keep track of dependencies between variables, and
whenever it turns out that a variable changes its marking (actually, it can only increase)
all variables that might depend on this particular variable is put in the active set to
be reexamined. At some point the set of active nodes will become empty, and we have
actually found (part of) the fixed-point.
This approach has two benefits:

1. Ounly variables reachable from the root variable z° through the ‘sons-of’ relation will
ever be investigated, a kind of syntactic dependency analysis.

2. Moreover, only variables that turns out to be actually needed in determining a
right-hand side will ever be investigated, a kind of semantic dependency analysis.

Of course, in the worst case the set of variables visited might be precisely the set of
variables ‘syntactically’ reachable from the root variable, but potentially much fewer might
be needed. Another important property of the sketched algorithm is that all this happens
on-the-fly: The complete system does not have to be computed a priori, but the right-
hand sides can be supplied on demand.



2.1 ‘Unknown’ values

In order to formally present the algorithm we will introduce notation for ‘unknown’ values.
Technically, we will define a special kind of lifting (_)2 of cpo’s, and characterize a class
of functions which behaves properly with respect to unknown arguments.

Let the ?-lifting D+ of a poset D be defined by

Dy = {7} u{|d]|d € D}
with the ordering <p defined by

Yz € Dy. 7 <p, 2, and
Ya,be D. |a| <p, |b] & a<ph,

hence ? is a bottom element of D.

Definition 1 For 1 < i < k let D; and D be posets and suppose that f: (D;)r x ... %
(Dy)» — Ds is a function. Then f is

s 7-strict if
] L R )|
o 7-reflecting if
Flevggme) =7 = o gp=Y
e ?-monotonic if
<y = L@ L) or fu(d) =T,

and finally,

o 7-faithful if

f(.?:l,-..,l"{_],?,$i+],---,$k) =l = V. f(&"],---,l’i_l, [.EJ,&TH,],...,:E,Q) =il
A function fulfilling all four is said to be 7-nice.

These four notions are intended to capture some intuitive understanding of unknown
values: f must depend on its arguments, f can only yield an ‘unknown’ result if one of
its arguments are unknown, f is monotonic in the usual sense, except that sometimes,
increasing the arguments can cause f to yield an unknown value, and finally, if f yields
a known value with some argument unknown, it must be independent of that particular
argument (with the other arguments fixed).

We will say that a ?-nice function f': (Dq)2 x ... % (Di)? — D is a ?-nice extension
of frhx...xDy— Dif

Vz; € D;. fl(Lml_ju--wLIkJ): [f(mh"'?mk” (3)

i.e. on the lifted elements f’ agrees with f. Notice, that for a ?-nice extension f’ of f we
have

pa '@ U L)) = Le.f(z)] ()
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which follows directly by induction on the approximants, utilizing (3). (We have taken
the liberty of writing | L] for (|Lp,|,..., [Lp.]) € (D1)e x ... x (D))

In a trivial manner, all monotonic functions Dy % ... x Dy — D can be extended to
?-nice functions by mapping any vector of arguments which includes a 7 to 7. However,
this will result in an algorithm which does not fully exploit the possibility of minimizing
the search because it makes the semantic dependency analysis void; all functions will
require the presence of all arguments before giving a value.

As an example of how to choose better ?-nice functions, we consider the case of two-
point demains.

Example 1 Consider the situation where all D;’s are identical to the two-point cpo
O = {0,1} with 0 < 1. We can define ?-nice extensions of the usual boolean connectives
A and V as shown in the two tables.

A

Bl
(== == R ] e’
=
—_ o e <<
[ ECIEE] REEC]
— o e
e

?
0
1

These extension are non-trivial, e.g. 0A? = 0. Notice also the ?-monotonic behaviour
showing that A is not monotonic in the usual sense: For (0,7) < (1,7) we get

A0,7) = 0A? = 0 >7 = 1A? = A(1, 7).

Hence although at one stage the value of the conjunction can be determined by locking
at only the first argument, if this argument increases its value to 1, the second argument
must be inspected in order to determine the value of the conjunction.

The 7-nice extensions here capture the well-known facts that sometimes the values of

a conjunction/disjunction can be determined by considering only one of the arguments.
[m}

2.2 The local algorithm

To prove the algorithm correct we will use a lemma, which captures a key property of
fixed-points. Recall, that an embedding-projection pair (j, p) between to cpo’s D and E
is a pair of monotonic functions j : D — E and p: E — D, which satisfy

(i) poj=1dp (id) jop < idp,
where < is the pointwise extension of the ordering of E to functions E — E.

Lemma 2 (Projection lemma) Suppose D and E are cpo’s with bottoms. Let (7, p)
be an embedding-projection pair between D and E with p being w-continuous. For any
w-continuous function f: E — E and element y € D, which satisfy

() Yzep™y). p(flz))=y
(4) y <p plpz.f(z))
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we have
=gl e
Proof: See appendix A O

To understand the role of the projection lemma assume we have given a monotonic
equation system (V,s, D, f), and take E = Il ey(D,)?, the V-indexed product of the
(Dg)7’s. Let B be a subset of the variables, and take D = Il¢g(D,)r x I,¢p{?}. Taking
Jj: D — E to be the obvious inclusion, and defining p: £ — D by

p(m)(v) = { T(U) Z;:efwie

it is easy to see that (7, p) is indeed an embedding-projection pair. Now, suppose we have
given a particular m € D (playing the role of y in the lemma) with the property that all
elements in E which projects to m, maps through f to elements which projects to m; in
other words no matter what elements are supplied for the variables outside B, the value
of f at this modified m stays the same on the variables in B. Then, if we also know,
that m is indeed less than the projection of the minimum fixed-point of f, we conclude
that m is precisely the projection of the fixed-point of f. In more pragmatic terms, this
means that we have found a part of the fixed-point, namely the part corresponding to the
variables in B.

The local algorithm is stated in fisure 1. We have used a syntax from which the
semantics should be obvious. The active set of variables mentioned previously is denoted
by A, and b(z) is a vector of values in O = {0,1} with the j’th coordinate equal to 1 if
the j’th son has previously been inspected. For b € O we have used the conditional b — z

defined by
[ L ifb=0
b‘””‘{x ifb=1

Theorem 3 (Correctness) The algorithm of figure 1 correctly computes part of the
fized-point pf, i.e. it terminates with a set B and e value assignment m, s.t. v € B,
and m|p = pfls.

Proof: (Sketch) The correctness proof is straightforward exploiting the projection lemma
and using Hoare Logic with the following invariant I for the while-loop:

i) Yo e V.m(v) £ fi(m(s(v))) & mi{v) < (pz.f(z U | L])(v)
i) d(v) = {u€ s v)|Fb(i) =1 & s(u); = v}
) by(j) =1 = m(s(v);) #7
iv)  {VEVI £ m(v) < fi{m(s()} S ACV
v) € {v|m(v) #7}
(We have used m(s(v)) to mean (m(s(v)1),...,m(s(v)s,)).) We leave out the proof that
this is a valid invariant. Now, when A = @, I implies by (1) and (iv) that

Yo.m(v) #7 = mv) = fi(m(s(v))) & m(v) < (pZ.F(FU | L]))(v).
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Input: Monotonic equational system (V,s,D, f), a 7-nice ex-
tension f’ of f, and a variable z% € V.
Output: A marking m: ey (Dy)2 and aset B C V with2® e B
such that m equals uf on B.

for allv € V.do m(v) =7 d(v):=7
A= {2 m(a®) := | L] d(z%):=0 b2 :=0
while A # ¢ do
pickanaz € A A:= A\ {z}
ri= fz(b(z)1 = m(s(z)1),-- ., B(F)a, = m(s(2)a.))
if r =7 then
pick a j s.t. b(z); =0
b(z); =1
if m(s(z);) =? then
m(s(2);) = |L] d(s(2);) = {z} Bs(e);) i= 0
: A= {s(2);,z}UA
d(s(2);) = {z} U d(s(a);)
A= {z}UA
fi :
else if r > m(z) then
mz)i=r A:=d(r)UA
fi

od

Figure 1: The local algorithm.

hence by equation (4) we get

Vo.m(v) £7 = m(v) = fi(m(s(v))) & m(v) < (uf)(v)

and as f; is a T-nice extension of f, we finally get

Ve.m(v) £7 = m(v) = fu(m(s(v))) & m(v) < (uf)(v)

Taking B = {v|m(v) #7}, the result follows from the discussion following the projection
lemma. O

The correctness proof is independent of whatever particular implementation is used
for the datastructures of the algorithm. These choices will of course have a great impact
on the complexity of the algorithm. To illustrate this, let us consider what a generall
implementation could look like. The set of active nodes A could be implemented as a
stack with constant insertion and extraction times, and the algorithm will behave very
much as a depth-first traversal (Tarjan [16]), m, d, and b are all partial maps, with ?
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meaning ‘outside domain of definition’, that could be implemented by some balanced
search tree with search time bounded by logn, n being the number of variables. Each
entry in m is a simple value; in d it’s a dynamically growing list, and each entry in b
could be implemented as a simple counter be with the understanding that the b(x); of the
algorithm equals 1 if the counter be(z) is bigger than j, Le. b(z); = 1 iff be(z) > ;.

To sketch the complexity analysis, let ht(D) be the height of D i.e. the length of the
longest strictly increasing chain in D minus one, and let ¢(f) be the maximal cost of
evaluating f on any of its arguments. Now, observe that every variable will appear in
A at most Y,e,()(hE(D,) + 1) times, as a variable is only reentered into A if one of its
sons gets an increased value, which for each son only can happen ht((D,):) = hi(D,) +1
times. Hence, the worst-case complexity is, by this informal amortized cost argument:

O(3_(clfs) > (ht(Du)+1))logn)

veV ueS(v)
Using more uniform bounds on the functions and domains we arrive at:

Theorem 4 (Complexity) Ifthe cost of computing each of the functions of f is bounded
by ¢, the arity bounded by a, and the height of the cpo’s bounded by h, then the worst-case
complexity is

Ofncahlogn).

In practice this bound is very pessimistic, it will only be reached in very pathological
circumstances: The fixed-point will be identical to the ‘highest’ element in the cpo and as
the algorithm proceeds all the variables change their values in the smallest possible steps.
Moreover, all the variables must be reachable from the root variable in the syntactical
and the semantical sense.

It is, however, very difficult to express anything about the behaviour of the algorithm
on typical cases and even to define what a typical case is. However, the examples to be
shown later will give some indication of when it is successful.

Before proceeding with the discussion on the local algorithm, let us briefly compare
the local algorithm with the global algorithm of Kildall [8], shown in figure 2, suitable
reformulated to fit our framework. In principle it is constructed from the local algorithm
by initializing the marking of all variables to | L], inserting all variables in the active set of
variables, and removing the semantic dependency by analysis always taking d(z) = s~ ().
Of course the branch corresponding to f, yielding an unknown result is removed. By an
argument analogous to the local case, the worst-case complexity is O(ncah), hence the
worst-case behaviour of the local algorithm is a logarithmic factor worse, due to the
searches in connection with the partial maps. This means that from a strict complexity
argument our algorithm is worse, but as it has already been pointed out the local algorithm
offers some benefits which the global lacks.

We now turn attention to three examples showing how the local algorithm can be
applied. Not all details are included, the general lines are sketched, and emphasis is put
on the points of general interest.

Input: Monotonic equational system (V,s, D, f)
Output: A marking m = uf

for all v € V do m(v) := |1]
A=V
while A #£ § do
pickaye A A:= A\ {y}
ri= fu(m(s(2)))
if r > m(z) then
miz)i=r A:=sz)UA
fi
od

Figure 2: Kildall’s global algorithm.

3 Example: Strictness analysis

Our first example will be on strictness analysis as introduced by Mycroft [10] in a version
due to Wadler [17]. However, most of the remarks and constructions apply equally well
to abstract interpretation in general.

We assume that we have given an abstract program as set of mutually recursive function
declarations:

fl(n’fn, T12y .- -:l‘la;) = el

fn(a—”n]s :z:nZ, LR | ‘rﬂﬂn) = ¢€n

where the free variables of the body e; is included in {z;1,...,2ja;, f1,---, fn}. (We will
not bother to define any particular syntax for expressions.) Each function has a type

f_,':DJ'; X...XDjaj—)Dj

where the D’s are cpo’s of finite height with bottom (for strictness analysis this will
typically be finite lattices) and we assume that all the bodies are indeed well-defined with
respect to this typing.

To rephrase this in terms of a monotonic equational system (1) we introduce a variable
vy,.z for each pair of function and argument Z in the ?-lifted product

(Djp)e x ... % (Dja,-)?-

The equation for vy, will be a bit special; we will think of the right-hand side gy, as
a function on all variables of the system, i.e. one for each pair of function and possible
argument. Although finite, this can be quite a lot of variables!



Now, to evaluate gy,.# we simply proceed, by for instance executing an interpreter for
lambda-expressions (if that is the language we have used for the expressions) and when at
some point we need the value of a function at a specific argument which is ‘unknown’, we
suspend the evaluation, return the value 7, and proceed with the algorithm, which picks
a son (this should of course be the one that made us halt in the first place), assumes it
has the value | L| and proceeds.

To tabulate a function for a range of values I/ we simply execute the algorithm for
each element of U, reusing, of course, earlier stored results.

For this to be valid, we must ensure that the right-hand sides are all monotonic.
This could be done by restricting the syntax, but care has to be taken if expressions like
FUf(...),-..) are to be allowed (cf. the problems with Pending Analysis reported in [5]).
We consider this problem to be outside the scope of the current discussion. In the case
of higher-order functions, e.g.

f:(D—=E)=E

another difficulty arises implicitly: When f is applied to an argument h, we must search
for the node vy, which involves comparing functions. Assuming that D and E are
simple domains this is not too bad, the function space will be reasonably small and the
task not impossible. Finally, very few functional programs (except perhaps when using
continuations) seem to apply functionals on many different functions, so in practice few
comparisons will be needed. Moreover, any of the techniques for compactly representing
functions could be used to speed up this part.

Considering the second-order case (like with f above) this approach of computing
strictness has two major benefits compared to iterative algorithms:

1. Only first order functions will ever have to be compared, no second order functions
must be compared to determine stability of the iteration, and in general comparison
of n'th order functions for n + 1’st order analysis.

2. Potentially only a very small proportion of the huge number of possible function-
argument pairs will be needed.

In this second respect our local algorithm is very similar to Pending Analysis [19], but
it can be exponentially faster, due to the explicit treatment of dependencies. To see why,
we first briefly describe the Pending Analysis:

As just described the evaluation start with a function applied to one particular
argument. If in evaluating such a function application, any previously visited
function-argument pair is reencountered, the value is simply assumed to he
bottom. In the case of a lattice of height one this suffice to make sure that
the minimum fixed-point will be correctly computed and in the general case
the application is re-evaluated until it is stable, every time in a recursive
occurrence of a call, using the previously computed value.

To see how this differs from our algorithm, consider the following graph of function
calls assumed to occur in the evaluation of a function application. Each arrow indicate a
function call.
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The pending analysis will traverse this as a tree from the root r, i.e. the root of
(T) will be visited twice and so will all nodes in (I). If the structure of (I) is again as
above it is not difficult to see that the Pending Analysis will perform exponentially many
calls, and this is net merely a problem that can be solved using ‘dynamic programming’ or
‘memorization’. To see why, assume that the Pending Analysis simply stores the computed
values (as suggested in [19]) and whenever an application is revisited this stored value is
used. Now, suppose that we first visit the left branch of the diamond, and through the
upgoing edge from (I) visit the application (*) a second time, which is then assumed to
have the value L. Then all applications in (I) will be evaluated under the assumption that
this is the value of (*), but having visited (I), suppose we finally visit (IT) and discover
that the value of (*) should have been something bigger than L. Now, if, as suggested
for Pending Analysis, the call in the right branch simply reuses all the values computed
for (I) we will end up with a result which is potentially too small! (This is a disaster
for strictness analysis — the value will be ‘unsafe’.) Surely, the fix is to recompute the
values in (I) reflecting the change of (*), which is precisely what our algorithm is doing,
moreover it does it in a very minimal fashion by chasing explicit dependencies.

Let us return to a concrete example, the function cat (for ‘concatenate’) defined in
the following program:

foldr(f,[],a) a
foldr(f,h: t,a) = f(h,foldr(f,t,a))
append(1,m) foldr(cons,1,m)

I

cat(1) = foldr(append,1,nil)
with the types

cons D axXa list— a list

foldr : (axy—9)xa listxy— 7y

append : « list X o list — o list

cat : « list list — a list

Let 2 =0 = {0,1}, 4 = {0,1,2,3} with 0 < 1 < 2 < 3 likewise for 6. Then Wadler’s
analysis [17] suggests the following abstract types, when cat is to be instanciated to

11



¢ list list for some ground type c.!

cons 1 2x4—4

foldr : (4x4—4)x6x4—4
append : 4 x4 — 4

cat : 64

The size of (4 x4 — 4)x6x4 is around 10", so hopefully we do not need to evaluate foldr
on all its arguments! Actually, in computing foldr at one argument the local algorithm
visits at most 24 variables. This case is particularly simple, as the same function is used
for the argument of foldr in any recursive call, but the general point remains the same.
If we look at the functional defining £oldr this is actually defined on a lattice of 410"
elements with height 3%10'!, so any attempt of iterating from the bottom inside this huge
lattice can be fatal.

4 Example: Model checking

To explain this example we need to briefly introduce the problem of model checking in
the modal p-calculus (the full details on the construction and proofs of the claims can be
found in [2,1]). The problem we want to solve is do decide whether a particular state s
of a labelled transition system, a triple T = (S, L,—), where S is a set of states, L a set
of labels, and —C § x L x S is a transition relation, satisfies an assertion A in the modal
p-calculus, i.e. to decide

sEA

with respect to a proper definition of |=. The syntax of assertions is defined by
Az=F|T | AV A | AgAAr | (@A [a]A| X | p XA v X A

Without going into all the details we just state the result that when considering asser-
tions with one fixed-point the problem of satisfaction can be transformed to a set of
monotonic equations with a variable ranging over O = {0,1} for each pair of state of T
and subassertion of A, yielding a system with |A||S| equations, with the total size of the
right-hand sides, all consisting of finite conjunctions and disjunctions, equal to |A||T|.
Finite conjunctions and disjunctions are easily implemented efficiently by keeping track
of the number of sons with marking 1, hence any change can be propagated in constant
time.

As all the cpo’s have height one the algorithm ends up running in worst-case time
O(|A||T| log(]Al|S])), which improves on the local algorithms of Larsen [9], Stirling and
Walker [15], Winskel [18], and Cleaveland [3], and also the global algorithm of Emerson
and Lei [6].

! Actually foldr is needed in two versions corresponding to the two different applications of foldr,
but the more general of the two has enough information to deduce the strictness information for the
other.

12

(Historically, this special application of the algorithm was discovered first, the present
generalization is a clarified, rational reconstruction of the fundamental mechanisms of the
algorithm of [2,1].)

5 Example: Constraint systems

Recently, it has become popular to solve various type checking, type inference, and other
program analysis related problems, by constructing a set of constraints to be solved. We
will show how one of these problems can be solved by the local method with optimal
complexity (up to the logarithmic factor).

The particular constraint system we consider is due to Palsberg and Schwartzbach [14],
used in performing what they call safety analysis — a version of closure analysis — but very
similar sets of constraints have been used for type inference [13]. For each subterm of the
program we will have a variable, which is going to hold information about that particular
part of the program (whether this is type information or anything else is irrelevant). In
this particular situation, we will think of the information of interest as subsets of what we
will call tokens. The set of subsets of tokens is a finite lattice P(S) ordered by inclusion
and S being the set of tokens. Now, the constraint system can be formulated as consisting
of a set of conditional and unconditional inequalities

cCz, r=yCz, wCc

where x,y are token set variables, ¢ a constant token set, and r is a boolean constant
defined as r = e where ¢ is an expression built from disjunctions and conjunctions of
other boolean constants and the inequalities ¢ € z. Denote by C the complete set of

inequalities and boolean constant definitions. We huild a set of monotonic equations with

1. a variable v, of type P(S) for each of the token set variables z,
2. a variable b, of type O for each of the boolean constants, and

3. a variable b.c/bsc. of type O for each constraint ¢ C z/z C .

We will make use of some auxiliary functions: Let — be the conditional of type O x
P(S) — P(5) with an obvious definition (using 1 to represent true), (c C) : P(S) — O
has just as obvious a definition, and finally viol(< ¢) : P(§) — O is defined on u € P(5)
as the negation of u C ¢ (to make it monotonic in u).

The equations associated with the variables are now as follows:

Uz = {Urﬁygr €EC b’r =2 y) U (chxec C)
b, be r=ec(C
where b, is (recursively) defined by
AiEI b, ife= AiE[ €
be =14 Vierbe ife=Vire
b,-f ife =

(cO)r,
viol(C ¢)r,

bcg £
brgc
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The right-hand sides are all monotonic, and we can easily give 7-nice extensions of the
functions involved. For A and V we use the straightforward extension of the binary
case from example 1 with the efficient implementation discussed in the model checking
example. For U: P(S)* — P(S) we take

s if Jiu; =S
U,y me) = § 2 if Vi # S & Jioy; =7

u U...Uu; otherwise

The rest are as follows:

if| 7 o #? (cQ) viol(C ¢)
717 7 7 ? ? 7
0(Lp 1p - 0 ifcZa - 0 ifzCz
1|7 x 1 ifecz 1 ifzde

Now, it is not hard to see, that the set of inequalities C has a solution, if and only if,
the monotonic equation system has a minimum solution in which all the variables VaCes
corresponding to what Palsberg and Schwartzbach calls ‘safety constraints’, are 0, thus
not being violated. The algorithm they suggest has running time O(n?), n being the size
of the program and the number of tokens. They argue that the number of constraints will
be O(n?).

A straightforward implementation of the union operator and the tests for inclusion
gives us a local algorithm with the following running time

Soev(elfa) Tueseo (WD) + 1)) logn
= L. (an,na,(n+1))logn+ ‘cheaper stuff’
a,, being the arity of the right-hand side of v,
n*logn(%,, a2,

O(n'logn)

m

The way to improve on this shows as a general point how the general algorithm can be
used as the backbone of more specific and efficient algorithms, while maintaining the
overall structure. Here, the expensive part is the repeated computation of unions of sets,
the size of which is bounded by n. But the only thing that happens in the algorithm is
‘small’ changes in the arguments, so by altering the way changes are propagated we will
improve the bound to O(n®logn) (and Kildall’s algorithm achieves O(n®), through the
same construction).

To each variable we associate a bitvector of length n, the i'th coordinate indicating
whether token number 7 belongs to the set or not. Then, when a variable changes marking
and we add the parents to the active set, we will also propagate the actual change as a
list of tokens, which can then be incorporated in time proportional to the size of the
change. In this manner, the amortized cost of computing each of the union operations
will be bounded by the arity multiplied with n+ 1 (the height of the lattices of the sons).

14

Similarly, the inclusion tests (¢ C) and (€ ¢) can be implemented with amortized cost
O(n). The total running time is now bounded by

(total cost for v.’s+ total cost for b,’s + total cost Jor bocy/bsc.’s)logn

which is
O((n® + n® + n®) logn) = O(n®logn).

6 Related Work

The aims of minimizing the number of variables of the equation system investigated when
finding a partial minimum solution is shared with the aims of Cousot and Cousot in their
“chaotic fixed-point iteration” [4, sec. 4.2.1] and in the refined denotational semantics
known as “minimal function graphs” (Jones and Mycroft [7]). However, whereas these
papers describe general schemes for computing partial minimum solutions, they are very
brief on the subject of when functions “need” the values of other functions applied to
specific arguments, and how to incorporate that into an algorithm. Jones and Mycroft
leave out this decisions, their description is parametrised by such proper choices, and
Cousot and Cousot seems to indicate a mere syntactic criterion (corresponding roughly
to the part of our algorithm performing syntactic dependency analysis). Contrary to this,
we formalise the dependency as the notion of ?-nice extensions and show how this together
with the explicit presence of a graph representing the semantic dependencies, allowing for
efficient sharing and updating of values, making, even in the worst-case, this local method
almost? as efficient as the global method — which in turn has bad average-case behaviour.

Similarly, the aims of fast fixed-point finding of functionals illustrated in our example
on strictness analysis, is shared by the work of Nielson and Nielson [12,11]. Their ap-
proach is, however, somewhat orthogonal to the algorithms described here. They focus
on classifying functions subject to the number of steps needed in computing the fixed-
point iteratively and on finding classes for which equality tests of functions can be done,
without having to consider by brute-force each element in the domains of the functions.
(An example is: if the elements of the approximation sequence can guarenteed to be join-
preserving, then the functions need only be compared on the join-irreducible elements
(often called atoms) of the poset constituting the domain of the functions.) Especially,
as concerns this last analysis minimizing the cost of comparing functions, the present
algorithm could benefit from their results when applied to higher-order cases.

7 Conclusion

We have introduced a local fixed-point finder, and shown how it can be used for solving
three problems of general interest. The pattern we have used is to reformulate the prob-
lems to problems of finding minimum solutions to sets of monotonic equations, and by

2“The log-factor”.
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tailoring the local algorithm achieve an efficient solution to the problem. We expect that
this approach can be used on a variety of cases.

An interesting aspect which has not been investigated in this paper, is the potential
speed-up coming from decomposing the value domains to smaller domains and thereby
adding new variables. A notable example of the success of such an approach is the model
checking problem, where the original problem is to compute a fixed-point of a function
f = AX.A on a lattice P(S). This lattice is decomposed to the lattice O'°l and the
corresponding systems has | S| variables with a total size of the right-hand sides of | A||T|
(T is the labelled transition system), thereby yielding a significant speed-up {from |A]|T|2
to [A||T|), which actually corresponds to computing just one approximation to the fixed-
point, i.e. one application of f.

The connection to the work from data-flow analysis is intriguing and should be further
investigated.
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A  Proof of lemma 2
First a useful proposition:

Proposition 5 Let D be a cpo with bottom, and f an w-continuous function on D, For
every x € D with

2z < f(z) and z < uf,
the ehain {f'(z)}ic, 1s increasing and
LTiwai(‘T) = f“f
Proof: Easy. O

Lemma 6 Suppose D and E are epo’s with bottoms. Let (j, p) be an embedding-projection
pair between D and E, i.e. j: D — E and p: E — D are monotonic functions with

(4) poj=idp (i) jop < idg,

where < is the pointwise extension of the ordering of E to functions E — E. Then p is
a right edjoint to j, i.e. forallz € D,y € E:

Jx)<epy € z<pp(y). (5)
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Proof: =
iz) <gy = p(j(z)) <p p(y) by monotonicity of p
= z <p p(y) by (2)
¢: - . . .
z<pply) = jlz)<pilp(y)) by monotonicity of j
= Jj(=) <ei(p(y)) <ey by (i)
m]

Proof (Projection lemima.): We first argue that p~!(y) is a cpo with hottom. Let
29 € z1 € 23 £ ... be an increasing chain in p~'(y). Then by w-continuity of p,

pUz) = Uplz) = 9,
hence Uz; € p~'(y). Morcover, for all & € p~*(y), i.e. ¥y = p(z), we have y < p(x) and
therefore j(y) < x by lemma 6 equation (5). In other words, j(y) is a bottom element of
P (y)-
Now, from (7) it follows that f restrict to an w-continuous function on p~!(y). and
that {(fl;-11)'(4(y)) }iew is an increasing chain in p~*(y) hence f,-1,) has a minimum

fixed-point ] )
z = Uieo(flom19) (1(¥)) = Uieuf'(i(9))-

From lemma 6 using assumption (ii) we get j(y) < pe.f(z) and using (z) we get j(y) <
f(5()) and hence by proposition 5,

z = Uieof'(§(y)) = pz.f(2)
from which it follows that
y = p(z) = pluz.f(z)).
O
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